वृत्ताकार क्षेत्र: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
{{see also|वृत्ताकार चाप § सेक्टर क्षेत्र}} | {{see also|वृत्ताकार चाप § सेक्टर क्षेत्र}} | ||
वृत्त का कुल क्षेत्रफल {{math|''πr''{{isup|2}}}} है। त्रिज्यखंड का क्षेत्रफल θ वृत्त के क्षेत्रफल को कोण (रेडियन में व्यक्त) के अनुपात {{math|2''π''}} से गुणा करके प्राप्त किया जा सकता है। (क्योंकि क्षेत्र का क्षेत्रफल इसके कोण के सीधे आनुपातिक है, एवं {{math|2''π''}} रेडियन में पूर्ण वृत्त का कोण होता है)। | वृत्त का कुल क्षेत्रफल {{math|''πr''{{isup|2}}}} होता है। त्रिज्यखंड का क्षेत्रफल θ वृत्त के क्षेत्रफल को कोण (रेडियन में व्यक्त) के अनुपात {{math|2''π''}} से गुणा करके प्राप्त किया जा सकता है। (क्योंकि क्षेत्र का क्षेत्रफल इसके कोण के सीधे आनुपातिक है, एवं {{math|2''π''}} रेडियन में पूर्ण वृत्त का कोण होता है)। | ||
<math display="block">A = \pi r^2\, \frac{\theta}{2 \pi} = \frac{r^2 \theta}{2}</math> | <math display="block">A = \pi r^2\, \frac{\theta}{2 \pi} = \frac{r^2 \theta}{2}</math> | ||
''L'' के संदर्भ में त्रिज्यखंड का क्षेत्रफल कुल क्षेत्रफल π''r''<sup>2</sup> को ''L'' के अनुपात से कुल परिमाप 2πr से गुणा करके प्राप्त किया जा सकता है। | ''L'' के संदर्भ में त्रिज्यखंड का क्षेत्रफल कुल क्षेत्रफल π''r''<sup>2</sup> को ''L'' के अनुपात से कुल परिमाप 2πr से गुणा करके प्राप्त किया जा सकता है। | ||
Line 30: | Line 30: | ||
किसी त्रिज्यखंड के [[परिमाप]] की लंबाई चाप की लंबाई एवं दो त्रिज्याओं के योग के समान होती है। | किसी त्रिज्यखंड के [[परिमाप]] की लंबाई चाप की लंबाई एवं दो त्रिज्याओं के योग के समान होती है। | ||
<math display="block">P = L + 2r = \theta r + 2r = r (\theta + 2)</math> | <math display="block">P = L + 2r = \theta r + 2r = r (\theta + 2)</math> | ||
जहाँ {{mvar|θ}} रेडियंस में है। | जहाँ {{mvar|θ}} रेडियंस में है। | ||
== चाप की लंबाई == | == चाप की लंबाई == | ||
Line 40: | Line 40: | ||
== जीवा की लंबाई == | == जीवा की लंबाई == | ||
चाप के चरम बिन्दुओं से बनी जीवा (गणित) की लंबाई किसके द्वारा दी जाती है | चाप के चरम बिन्दुओं से बनी जीवा (गणित) की लंबाई किसके द्वारा दी जाती है, | ||
<math display="block">C = 2R\sin\frac{\theta}{2}</math> | <math display="block">C = 2R\sin\frac{\theta}{2}</math> | ||
जहाँ {{mvar|C}} जीवा की लंबाई का प्रतिनिधित्व करता है, {{mvar|R}} वृत्त की त्रिज्या का प्रतिनिधित्व करता है, एवं {{mvar|θ}} रेडियंस में क्षेत्र की कोणीय चौड़ाई का प्रतिनिधित्व करता है। | जहाँ {{mvar|C}} जीवा की लंबाई का प्रतिनिधित्व करता है, {{mvar|R}} वृत्त की त्रिज्या का प्रतिनिधित्व करता है, एवं {{mvar|θ}} रेडियंस में क्षेत्र की कोणीय चौड़ाई का प्रतिनिधित्व करता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
*वृत्ताकार खंड - खंड का वह भाग जो वृत्त के केंद्र द्वारा बनाए गए त्रिभुज एवं सीमा पर वृत्ताकार चाप के दो अंत बिंदुओं को विस्थापित के पश्चात बना रहता है। | *वृत्ताकार खंड - खंड का वह भाग है, जो वृत्त के केंद्र द्वारा बनाए गए त्रिभुज एवं सीमा पर वृत्ताकार चाप के दो अंत बिंदुओं को विस्थापित के पश्चात बना रहता है। | ||
* शंकु खंड | * शंकु खंड | ||
*[[पृथ्वी चतुर्भुज]] | *[[पृथ्वी चतुर्भुज]] |
Revision as of 15:45, 27 April 2023
वृत्ताकार क्षेत्र, जिसे वृत्त क्षेत्र या डिस्क क्षेत्र (प्रतीक: ⌔) के रूप में भी जाना जाता है, डिस्क (गणित) ( वृत्त से घिरा बंद क्षेत्र) का भाग है, जो दो त्रिज्या एवं चाप (ज्यामिति) से घिरा होता है। क्षेत्र (ज्यामिति) को लघु क्षेत्र के रूप में जाना जाता है एवं बड़ा क्षेत्र प्रमुख क्षेत्र के रूप में जाना जाता है।[1] आरेख में θ केंद्रीय कोण है, वृत्त की त्रिज्या, एवं लघु क्षेत्र की चाप लंबाई होती है।
चाप के अंत बिंदुओं को परिधि पर किसी भी बिंदु से युग्मित करके बनाया गया कोण जो कि क्षेत्र में नहीं है, केंद्रीय कोण के अर्द्ध के समान होता है।[2]
प्रकार
180° के केंद्रीय कोण वाले खंड को डिस्क (ज्यामिति) कहा जाता है। अर्ध-डिस्क एवं व्यास अर्धवृत्त से घिरा हुआ है। अन्य केंद्रीय कोण वाले क्षेत्रों को कभी-कभी विशेष नाम दिया जाता है, जैसे कि 'चतुर्भुज' (90°), 'षष्ठक' (60°), एवं 'अष्टक' (45°), जो चौथाई, 6वें या 8वें क्षेत्र से आते हैं। पूर्ण चक्र का भाग, क्रमशः भ्रामक रूप से, चतुर्थांश ( वृत्ताकार चाप) के चाप (ज्यामिति) को भी चतुर्थांश कहा जा सकता है।
दिशा सूचक यंत्र
परंपरागत रूप से कम्पास गुलाब पर वायु की दिशाएं 8 अष्टक (N, NE, E, SE, S, SW, W, NW) के रूप में दी जाती हैं, क्योंकि यह केवल 4 चतुर्थांशों में से वायु फलक देने की तुलना में अधिक स्थिर होती है। सामान्यतः अधिक स्थिर संकेत देने के लिए पर्याप्त स्थिरता नहीं होती है।
यंत्र अष्टक (साधन) का नाम इस तथ्य से आता है, कि यह वृत्त के 1/8वें भाग पर आधारित है। सामान्यतः, कम्पास गुलाब पर अष्टक देखे जाते हैं।
क्षेत्र
वृत्त का कुल क्षेत्रफल πr2 होता है। त्रिज्यखंड का क्षेत्रफल θ वृत्त के क्षेत्रफल को कोण (रेडियन में व्यक्त) के अनुपात 2π से गुणा करके प्राप्त किया जा सकता है। (क्योंकि क्षेत्र का क्षेत्रफल इसके कोण के सीधे आनुपातिक है, एवं 2π रेडियन में पूर्ण वृत्त का कोण होता है)।
परिधि
किसी त्रिज्यखंड के परिमाप की लंबाई चाप की लंबाई एवं दो त्रिज्याओं के योग के समान होती है।
चाप की लंबाई
चाप की लंबाई का सूत्र है।[4]
जीवा की लंबाई
चाप के चरम बिन्दुओं से बनी जीवा (गणित) की लंबाई किसके द्वारा दी जाती है,
यह भी देखें
- वृत्ताकार खंड - खंड का वह भाग है, जो वृत्त के केंद्र द्वारा बनाए गए त्रिभुज एवं सीमा पर वृत्ताकार चाप के दो अंत बिंदुओं को विस्थापित के पश्चात बना रहता है।
- शंकु खंड
- पृथ्वी चतुर्भुज
संदर्भ
- ↑ Dewan, Rajesh K. (2016). सरस्वती गणित. New Delhi: New Saraswati House India Pvt Ltd. p. 234. ISBN 978-8173358371.
- ↑ Achatz, Thomas; Anderson, John G. (2005). तकनीकी दुकान गणित. Kathleen McKenzie (3rd ed.). New York: Industrial Press. p. 376. ISBN 978-0831130862. OCLC 56559272.
- ↑ 3.0 3.1 Uppal, Shveta (2019). गणित: दसवीं कक्षा के लिए पाठ्यपुस्तक. New Delhi: National Council of Educational Research and Training. pp. 226, 227. ISBN 978-81-7450-634-4. OCLC 1145113954.
- ↑ Larson, Ron; Edwards, Bruce H. (2002). प्रीकैलकुलस के साथ कैलकुलस I (3rd ed.). Boston, MA.: Brooks/Cole. p. 570. ISBN 978-0-8400-6833-0. OCLC 706621772.
- ↑ Wicks, Alan (2004). अंतर्राष्ट्रीय स्तर के लिए गणित मानक स्तर: नए पाठ्यक्रम के लिए एक पाठ. West Conshohocken, PA: Infinity Publishing.com. p. 79. ISBN 0-7414-2141-0. OCLC 58869667.
स्रोत
- जेरार्ड, एल.जे.वी., द एलिमेंट्स ऑफ ज्योमेट्री, इन एट बुक्स; या, एप्लाइड लॉजिक में पहला कदम (लंदन, लॉन्गमैन | लॉन्गमैन, ग्रीन, रीडर एवं डायर, 1874), p. 285।
- एड्रियन-मैरी लीजेंड्रे|लेजेंड्रे, ए.एम., एलिमेंट्स ऑफ ज्योमेट्री एंड ट्रिगोनोमेट्री, चार्ल्स डेविस (प्रोफेसर), एड। (न्यूयॉर्क: अल्फ्रेड स्मिथ बार्न्स#ए.एस. बार्न्स एंड कंपनी|ए.एस. बार्न्स एंड कंपनी, 1858), p. 119।
श्रेणी:मंडलियां