संख्यात्मक विधि: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 48: | Line 48: | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
[[Category:CS1 maint]] | |||
[[Category: | |||
[[Category:Created On 27/04/2023]] | [[Category:Created On 27/04/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:संख्यात्मक विश्लेषण]] |
Latest revision as of 20:28, 16 May 2023
संख्यात्मक विश्लेषण में, संख्यात्मक विधि एक गणितीय उपकरण है जिसे संख्यात्मक समस्याओं को हल करने के लिए डिज़ाइन किया गया है। एक प्रोग्रामिंग भाषा में उपयुक्त अभिसरण जाँच के साथ एक संख्यात्मक पद्धति के कार्यान्वयन को संख्यात्मक एल्गोरिथम कहा जाता है।
गणितीय परिभाषा
माना एक अच्छी समस्या हो, अर्थात एक वास्तविक या जटिल कार्यात्मक संबंध है, जो एक इनपुट डेटा सेट और एक आउटपुट डेटा सेट के क्रॉस-उत्पाद पर परिभाषित होता है, जैसे कि स्थानीय रूप से लिप्सचिट्ज़ फ़ंक्शन मौजूद है जिसे रिज़ॉल्वेंट कहा जाता है, जिसमें वह गुण होता है जो हर रूट के लिए होता है का , . हम सन्निकटन के लिए संख्यात्मक विधि को परिभाषित करते हैं , समस्याओं का क्रम
साथ , और प्रत्येक के लिए . जिन समस्याओं की विधि सम्मिलित है, उन्हें अच्छी तरह से प्रस्तुत करने की आवश्यकता नहीं है। यदि वे हैं, तो विधि को स्थिर या अच्छी तरह से प्रस्तुत कहा जाता है।[1]
सुसंगति
प्रभावी रूप से अनुमानित करने के लिए एक संख्यात्मक पद्धति के लिए आवश्यक शर्तें वह है ओर वो जैसा व्यवहार करता है जब . तो, एक संख्यात्मक विधि को सुसंगत कहा जाता है यदि केवल कार्यों का क्रम बिंदुवार अभिसरण करता है इसके समाधान के सेट पर :
जब पर विधि को सख्ती से सुसंगत कहा जाता है।[1]
अभिसरण
द्वारा निरूपित करें स्वीकार्य गड़बड़ी का एक क्रम कुछ संख्यात्मक विधि के लिए (अर्थात ) और के साथ मान ऐसा है कि . एक शर्त जिसे समस्या को हल करने के लिए एक सार्थक उपकरण होने के लिए विधि को पूरा करना होता है अभिसरण है:
कोई आसानी से सिद्ध कर सकता है कि बिंदुवार अभिसरण से का तात्पर्य संबंधित विधि का अभिसरण कार्य है।[1]
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 Quarteroni, Sacco, Saleri (2000). Numerical Mathematics (PDF). Milano: Springer. p. 33. Archived from the original (PDF) on 2017-11-14. Retrieved 2016-09-27.
{{cite book}}
: CS1 maint: multiple names: authors list (link)