गैलोइस कनेक्शन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, विशेष रूप से क्रम सिद्धांत में, गाल्वा संयोजन दो [[आंशिक रूप से आदेशित सेट|आंशिक रूप से क्रमित समुच्चय]] (क्रमित समुच्चय) के बीच एक विशेष संगति (सामान्यतः) होता है। गाल्वा संयोजन विभिन्न गणितीय सिद्धांतों में अनुप्रयोग खोजते हैं। वे [[उपसमूह|उपसमूहों]] और क्षेत्र विस्तार के बीच संगति के विषय में [[गैल्वा सिद्धांत के मौलिक प्रमेय]] को सामान्यीकृत करते हैं, जिसे फ्रांसीसी गणितज्ञ इवरिस्टे गाल्वा द्वारा खोजा गया था। | गणित में, विशेष रूप से क्रम सिद्धांत में, गाल्वा संयोजन दो [[आंशिक रूप से आदेशित सेट|आंशिक रूप से क्रमित समुच्चय]] (क्रमित समुच्चय) के बीच एक विशेष संगति (सामान्यतः) होता है। गाल्वा संयोजन विभिन्न गणितीय सिद्धांतों में अनुप्रयोग खोजते हैं। वे [[उपसमूह|उपसमूहों]] और क्षेत्र विस्तार के बीच संगति के विषय में [[गैल्वा सिद्धांत के मौलिक प्रमेय|गाल्वा सिद्धांत के मौलिक प्रमेय]] को सामान्यीकृत करते हैं, जिसे फ्रांसीसी गणितज्ञ इवरिस्टे गाल्वा द्वारा खोजा गया था। | ||
गाल्वा संयोजन को पहले से क्रमित किए गए समुच्चय या पहले से क्रमित किए गए वर्ग पर भी परिभाषित किया जा सकता है; यह लेख क्रमित समुच्चयों के सामान्य स्थिति को प्रस्तुत करता है। साहित्य में गाल्वा संयोजन की दो निकट संबंधी धारणाएँ हैं। इस लेख में, हम उन्हें (एकदिष्ट) गाल्वा संयोजन और एंटीटोन गाल्वा संयोजन के रूप में संदर्भित करेंगे। | गाल्वा संयोजन को पहले से क्रमित किए गए समुच्चय या पहले से क्रमित किए गए वर्ग पर भी परिभाषित किया जा सकता है; यह लेख क्रमित समुच्चयों के सामान्य स्थिति को प्रस्तुत करता है। साहित्य में गाल्वा संयोजन की दो निकट संबंधी धारणाएँ हैं। इस लेख में, हम उन्हें (एकदिष्ट) गाल्वा संयोजन और एंटीटोन गाल्वा संयोजन के रूप में संदर्भित करेंगे। | ||
Line 12: | Line 12: | ||
:{{math|''F''(''a'') ≤ ''b''}} है [[अगर और केवल अगर|यदि और मात्र यदि]] {{math|''a'' ≤ ''G''(''b'')}} {{math|''a'' ≤ ''G''(''b'')}}। | :{{math|''F''(''a'') ≤ ''b''}} है [[अगर और केवल अगर|यदि और मात्र यदि]] {{math|''a'' ≤ ''G''(''b'')}} {{math|''a'' ≤ ''G''(''b'')}}। | ||
इस स्थिति में, {{mvar|F}} को {{mvar|G}} का निचला संलग्नक कहा जाता है और {{mvar|G}} को ''F'' का उच्चतर संलग्नक कहा जाता है। स्मरणीय रूप से, उच्चतर /निचली शब्दावली से तात्पर्य है जहां फलन अनुप्रयोग ≤ के सापेक्ष प्रकट होता है।<ref>Gierz, p. 23</ref> आसन्न शब्द इस तथ्य को संदर्भित करता है कि एकदिष्ट गाल्वा संयोजन [[श्रेणी सिद्धांत]] में आसन्न प्रकार्यक के संलग्नक की विशेष स्थिति हैं जैसा कि नीचे चर्चा की गई है। यहाँ अन्य शब्दावली का सामना निम्न ( | इस स्थिति में, {{mvar|F}} को {{mvar|G}} का निचला संलग्नक कहा जाता है और {{mvar|G}} को ''F'' का उच्चतर संलग्नक कहा जाता है। स्मरणीय रूप से, उच्चतर /निचली शब्दावली से तात्पर्य है जहां फलन अनुप्रयोग ≤ के सापेक्ष प्रकट होता है।<ref>Gierz, p. 23</ref> आसन्न शब्द इस तथ्य को संदर्भित करता है कि एकदिष्ट गाल्वा संयोजन [[श्रेणी सिद्धांत]] में आसन्न प्रकार्यक के संलग्नक की विशेष स्थिति हैं जैसा कि नीचे चर्चा की गई है। यहाँ अन्य शब्दावली का सामना निम्न (उत्तर. उच्चतर) आसन्न के लिए बाएँ आसन्न (उत्तर दाएँ संलग्न) से होता है। | ||
गाल्वा संयोजन का एक आवश्यक गुण यह है कि गाल्वा संयोजन का एक उच्चतर /निचला संलग्नक ''विशिष्ट'' दूसरे को निर्धारित करता है: | गाल्वा संयोजन का एक आवश्यक गुण यह है कि गाल्वा संयोजन का एक उच्चतर / निचला संलग्नक ''विशिष्ट'' दूसरे को निर्धारित करता है: | ||
:{{math|''F''(''a'')}} {{math|''a'' ≤ ''G''({{overset|~|''b''}})}} के साथ कम से कम अवयव {{math|{{overset|~|''b''}} }} है , और | :{{math|''F''(''a'')}} {{math|''a'' ≤ ''G''({{overset|~|''b''}})}} के साथ कम से कम अवयव {{math|{{overset|~|''b''}} }} है , और | ||
Line 45: | Line 45: | ||
==== पावर समुच्चय; निहितार्थ और संयोजन ==== | ==== पावर समुच्चय; निहितार्थ और संयोजन ==== | ||
क्रम-सैद्धांतिक उदाहरण के लिए, आइए {{mvar|U}} कुछ [[सेट (गणित)|समुच्चय (गणित)]] हो, और चलो {{mvar|A}} और {{mvar|B}} दोनों का [[ सत्ता स्थापित |सत्ता स्थापित]] हो {{mvar|U}}, [[[[सबसेट|उपसमुच्चय]] समावेशन]] द्वारा क्रमित। एक निश्चित उपसमुच्चय चुनें {{mvar|L}} का {{mvar|U}}। फिर नक्शे {{mvar|F}} और {{mvar|G}}, कहाँ {{math|''F''(''M'' ) {{=}} ''L'' ∩ ''M''}}, और {{math|''G''(''N'' ) {{=}} ''N'' ∪ (''U'' \ ''L'')}}, के साथ एक एकदिष्ट | क्रम-सैद्धांतिक उदाहरण के लिए, आइए {{mvar|U}} कुछ [[सेट (गणित)|समुच्चय (गणित)]] हो, और चलो {{mvar|A}} और {{mvar|B}} दोनों का [[ सत्ता स्थापित |सत्ता स्थापित]] हो {{mvar|U}}, [[[[सबसेट|उपसमुच्चय]] समावेशन]] द्वारा क्रमित। एक निश्चित उपसमुच्चय चुनें {{mvar|L}} का {{mvar|U}}। फिर नक्शे {{mvar|F}} और {{mvar|G}}, कहाँ {{math|''F''(''M'' ) {{=}} ''L'' ∩ ''M''}}, और {{math|''G''(''N'' ) {{=}} ''N'' ∪ (''U'' \ ''L'')}}, के साथ एक एकदिष्ट गाल्वा संयोजन बनाएं {{mvar|F}} निचला आसन्न होना। एक समान गाल्वा संयोजन जिसका निचला आसन्न मीट (न्यूनतम) ऑपरेशन द्वारा दिया गया है, किसी भी [[हेटिंग बीजगणित]] में पाया जा सकता है। विशेष रूप से, यह किसी भी [[बूलियन बीजगणित (संरचना)]] में मौजूद है, जहां दो मैपिंग द्वारा वर्णित किया जा सकता है {{math|''F''(''x'') {{=}} (''a'' ∧ ''x'')}} और {{math|''G''( ''y'') {{=}} ( ''y'' ∨ ¬''a'') {{=}} (''a'' ⇒ ''y'')}}। तार्किक शब्दों में: से निहितार्थ {{mvar|a}} के साथ संयोजन का उपरी संलग्नक है {{mvar|a}} । | ||
==== जाली ==== | ==== जाली ==== | ||
गाल्वा संयोजन के लिए और दिलचस्प उदाहरण [[पूर्णता (आदेश सिद्धांत)|पूर्णता (क्रम सिद्धांत)]] पर लेख में वर्णित हैं। मोटे तौर पर बोलते हुए, यह पता चला है कि सामान्य फलन ∨ और ∧ विकर्ण मानचित्र के निम्नतर और उच्चतर हिस्से हैं {{math|''X'' → ''X'' × ''X''}}। आंशिक क्रम के सबसे कम और सबसे बड़े अवयव अद्वितीय फलन के निम्नतर और उच्चतर संलग्नक ों द्वारा दिए गए हैं {{math|''X'' → {1}.}} आगे जाकर, पूर्ण जालकों को भी उपयुक्त संलग्नकों के अस्तित्व द्वारा अभिलक्षित किया जा सकता है। ये विचार क्रम थ्योरी में गाल्वा संयोजन की सर्वव्यापकता का कुछ आभास देते हैं। | |||
==== सकर्मक समूह क्रियाएं ==== | ==== सकर्मक समूह क्रियाएं ==== | ||
Line 93: | Line 93: | ||
:<math>I(U) = \{f \in K[X_1,\dots,X_n] : f(x) = 0 \mbox{ for all } x \in U\}.</math> | :<math>I(U) = \{f \in K[X_1,\dots,X_n] : f(x) = 0 \mbox{ for all } x \in U\}.</math> | ||
तब {{mvar|V}} और मैं एक एंटीटोन | तब {{mvar|V}} और मैं एक एंटीटोन गाल्वा संयोजन बनाता हूं। | ||
संवृत चालू {{math|''K''<sup> ''n''</sup>}} [[जरिस्की टोपोलॉजी]] में क्लोजर है, और यदि फील्ड है {{mvar|K}} [[बीजगणितीय रूप से बंद क्षेत्र|बीजगणितीय रूप से संवृत क्षेत्र]] है, तो बहुपद वलय पर संवृत होने से उत्पन्न आदर्श के एक आदर्श का रेडिकल है {{mvar|S}}। | संवृत चालू {{math|''K''<sup> ''n''</sup>}} [[जरिस्की टोपोलॉजी]] में क्लोजर है, और यदि फील्ड है {{mvar|K}} [[बीजगणितीय रूप से बंद क्षेत्र|बीजगणितीय रूप से संवृत क्षेत्र]] है, तो बहुपद वलय पर संवृत होने से उत्पन्न आदर्श के एक आदर्श का रेडिकल है {{mvar|S}}। | ||
Line 103: | Line 103: | ||
==== बाइनरी संबंधों से उत्पन्न होने वाले पावर समुच्चय पर संयोजन ==== | ==== बाइनरी संबंधों से उत्पन्न होने वाले पावर समुच्चय पर संयोजन ==== | ||
कल्पना करना {{mvar|X}} और {{mvar|Y}} मनमाना समुच्चय और एक [[द्विआधारी संबंध]] हैं {{mvar|R}} ऊपर {{mvar|X}} और {{mvar|Y}} दिया हुआ है। किसी उपसमुच्चय के लिए {{mvar|M}} का {{mvar|X}}, हम परिभाषित करते हैं {{math|''F''(''M'' ) {{=}} { ''y'' ∈ ''Y'' {{!}} ''mRy'' ∀''m'' ∈ ''M'' }.}} इसी तरह, किसी उपसमुच्चय के लिए {{mvar|N}} का {{mvar|Y}}, परिभाषित करना {{math|''G''(''N'' ) {{=}} { ''x'' ∈ ''X'' {{!}} ''xRn'' ∀''n'' ∈ ''N'' }.}} तब {{mvar|F}} और {{mvar|G}} के पावर समुच्चय के बीच एक एंटीटोन गाल्वा संयोजन प्राप्त करें {{mvar|X}} और {{mvar|Y}}, दोनों समावेशन ⊆ द्वारा क्रमित हैं।<ref>Birkhoff, 1st edition (1940): §32, 3rd edition (1967): Ch. V, §7 and §8</ref> | कल्पना करना {{mvar|X}} और {{mvar|Y}} मनमाना समुच्चय और एक [[द्विआधारी संबंध]] हैं {{mvar|R}} ऊपर {{mvar|X}} और {{mvar|Y}} दिया हुआ है। किसी उपसमुच्चय के लिए {{mvar|M}} का {{mvar|X}}, हम परिभाषित करते हैं {{math|''F''(''M'' ) {{=}} { ''y'' ∈ ''Y'' {{!}} ''mRy'' ∀''m'' ∈ ''M'' }.}} इसी तरह, किसी उपसमुच्चय के लिए {{mvar|N}} का {{mvar|Y}}, परिभाषित करना {{math|''G''(''N'' ) {{=}} { ''x'' ∈ ''X'' {{!}} ''xRn'' ∀''n'' ∈ ''N'' }.}} तब {{mvar|F}} और {{mvar|G}} के पावर समुच्चय के बीच एक एंटीटोन गाल्वा संयोजन प्राप्त करें {{mvar|X}} और {{mvar|Y}}, दोनों समावेशन ⊆ द्वारा क्रमित हैं।<ref>Birkhoff, 1st edition (1940): §32, 3rd edition (1967): Ch. V, §7 and §8</ref> | ||
समरूपता तक पावर समुच्चय के बीच सभी एंटीटोन गाल्वा संयोजन इस तरह से उत्पन्न होते हैं। यह कॉन्सेप्ट लैटिस पर बेसिक प्रमेय से आता है।<ref>Ganter, B. and Wille, R. ''Formal Concept Analysis -- Mathematical Foundations'', Springer (1999), {{ISBN|978-3-540-627715}}</ref> [[औपचारिक अवधारणा विश्लेषण]] में द्विआधारी संबंधों से उत्पन्न होने वाले गाल्वा संयोजन के सिद्धांत और अनुप्रयोगों का अध्ययन किया जाता है। वह फ़ील्ड गणितीय डेटा विश्लेषण के लिए गाल्वा संयोजन का उपयोग करता है। संबंधित साहित्य में | समरूपता तक पावर समुच्चय के बीच सभी एंटीटोन गाल्वा संयोजन इस तरह से उत्पन्न होते हैं। यह कॉन्सेप्ट लैटिस पर बेसिक प्रमेय से आता है।<ref>Ganter, B. and Wille, R. ''Formal Concept Analysis -- Mathematical Foundations'', Springer (1999), {{ISBN|978-3-540-627715}}</ref> [[औपचारिक अवधारणा विश्लेषण]] में द्विआधारी संबंधों से उत्पन्न होने वाले गाल्वा संयोजन के सिद्धांत और अनुप्रयोगों का अध्ययन किया जाता है। वह फ़ील्ड गणितीय डेटा विश्लेषण के लिए गाल्वा संयोजन का उपयोग करता है। संबंधित साहित्य में गाल्वा संयोजन के लिए कई एल्गोरिदम पाए जा सकते हैं, उदाहरण के लिए।<ref>Ganter, B. and Obiedkov, S. ''Conceptual Exploration'', Springer (2016), {{ISBN|978-3-662-49290-1}}</ref> | ||
== गुण == | == गुण == | ||
निम्नलिखित में, हम एक (एकदिष्ट) गाल्वा संयोजन पर विचार करते हैं {{math| ''f'' {{=}} ( ''f'' <sup>∗</sup>,  ''f''<sub>∗</sub>)}}, कहाँ {{math| ''f'' <sup>∗</sup> : ''A'' → ''B''}जैसा कि ऊपर प्रस्तुत किया गया है } निचला संलग्नक है। कुछ सहायक और शिक्षाप्रद बुनियादी गुणों को तुरंत प्राप्त किया जा सकता है। | निम्नलिखित में, हम एक (एकदिष्ट) गाल्वा संयोजन पर विचार करते हैं {{math| ''f'' {{=}} ( ''f'' <sup>∗</sup>,  ''f''<sub>∗</sub>)}}, कहाँ {{math| ''f'' <sup>∗</sup> : ''A'' → ''B''}जैसा कि ऊपर प्रस्तुत किया गया है } निचला संलग्नक है। कुछ सहायक और शिक्षाप्रद बुनियादी गुणों को तुरंत प्राप्त किया जा सकता है। गाल्वा संयोजन की परिभाषित गुण से, {{math| ''f'' <sup>∗</sup>(''x'') ≤  ''f'' <sup>∗</sup>(''x'')}} के बराबर है {{math|''x'' ≤  ''f''<sub>∗</sub>( ''f'' <sup>∗</sup>(''x''))}}, सभी के लिए {{mvar|x}} में {{mvar|A}}। इसी तरह के तर्क से (या मात्र द्वैत (क्रम सिद्धांत) को लागू करके), कोई यह पाता है {{math| ''f'' <sup>∗</sup>( ''f''<sub>∗</sub>(''y'')) ≤ ''y''}}, सभी के लिए {{mvar|y}} में {{mvar|B}}। इन गुणों का वर्णन संयुक्त कह कर किया जा सकता है {{math| ''f'' <sup>∗</sup>∘ ''f''<sub>∗</sub>}} अपस्फीतिकारक है, जबकि {{math| ''f''<sub>∗</sub>∘ ''f'' <sup>∗</sup>}} मुद्रास्फीति (या व्यापक) है। | ||
अब विचार करें {{math|''x'', ''y'' ∈ ''A''}} ऐसा है कि {{math|''x'' ≤ ''y''}}। फिर उपरोक्त का उपयोग करके प्राप्त करता है {{math|''x'' ≤  ''f''<sub>∗</sub>( ''f'' <sup>∗</sup>(''y''))}}। | अब विचार करें {{math|''x'', ''y'' ∈ ''A''}} ऐसा है कि {{math|''x'' ≤ ''y''}}। फिर उपरोक्त का उपयोग करके प्राप्त करता है {{math|''x'' ≤  ''f''<sub>∗</sub>( ''f'' <sup>∗</sup>(''y''))}}। गाल्वा संयोजन की मूल गुण को लागू करने से अब यह निष्कर्ष निकाला जा सकता है {{math| ''f'' <sup>∗</sup>(''x'') ≤  ''f'' <sup>∗</sup>(''y'')}}। परन्तु यह सिर्फ यही दर्शाता है {{math| ''f'' <sup>∗</sup>}} किन्हीं भी दो अवयवों के क्रम को बनाए रखता है, अर्थात यह एकदिष्ट है। फिर से, इसी तरह के तर्क से एकरसता पैदा होती है {{math| ''f''<sub>∗</sub>}}। इस प्रकार एकरसता को स्पष्ट रूप से परिभाषा में सम्मिलित करने की आवश्यकता नहीं है। यद्यपि , एकदिष्टिकिटी का उल्लेख करने से गाल्वा संयोजन की दो वैकल्पिक धारणाओं के विषय में भ्रम से बचने में मदद मिलती है। | ||
गाल्वा संयोजन की एक और बुनियादी गुण यह तथ्य है कि {{math| ''f''<sub>∗</sub>( ''f'' <sup>∗</sup>( ''f''<sub>∗</sub>(''x''))) {{=}}  ''f''<sub>∗</sub>(''x'')}}, सभी के लिए {{mvar|x}} में {{mvar|B}}। स्पष्ट रूप से हम पाते हैं | गाल्वा संयोजन की एक और बुनियादी गुण यह तथ्य है कि {{math| ''f''<sub>∗</sub>( ''f'' <sup>∗</sup>( ''f''<sub>∗</sub>(''x''))) {{=}}  ''f''<sub>∗</sub>(''x'')}}, सभी के लिए {{mvar|x}} में {{mvar|B}}। स्पष्ट रूप से हम पाते हैं | ||
Line 139: | Line 139: | ||
== गाल्वा संयोजन का अस्तित्व और विशिष्टता == | == गाल्वा संयोजन का अस्तित्व और विशिष्टता == | ||
गाल्वा संयोजन की एक और महत्वपूर्ण गुण यह है कि निम्नतर आसन्न सीमा (क्रम थ्योरी) को संरक्षित करते हैं जो कि एक फलन के अपने प्रांत के भीतर मौजूद हैं। दैनिक रूप से, उच्चतर अनुलग्न सभी मौजूदा [[सबसे कम]] को संरक्षित करते हैं। इन गुणों से, कोई भी तुरंत आसन्नों की एकरसता का निष्कर्ष निकाल सकता है। आसन्न फंक्टर प्रमेय (क्रम सिद्धांत) कहता है कि कुछ मामलों में व्युत्क्रमणीय निहितार्थ भी मान्य है: विशेष रूप से, पूर्ण लैटिस के बीच कोई मैपिंग जो सभी सुपरमा को संरक्षित करता है, गाल्वा संयोजन का निचला आसन्न है। | |||
इस स्थिति में, | इस स्थिति में, गाल्वा संयोजन की एक महत्वपूर्ण विशेषता यह है कि एक संलग्न दूसरे को विशिष्ट रूप से निर्धारित करता है। इसलिए उपरोक्त बयान को मजबूत करने के लिए यह गारंटी दी जा सकती है कि पूर्ण जाली के बीच कोई सर्वोच्च-संरक्षित मानचित्र एक अद्वितीय गाल्वा संयोजन का निचला हिस्सा है। इस अद्वितीयता को प्राप्त करने की मुख्य विशेषता निम्नलिखित है: प्रत्येक के लिए {{mvar|x}} में {{mvar|A}}, {{math| ''f'' <sup>∗</sup>(''x'')}} सबसे कम अवयव है {{mvar|y}} का {{mvar|B}} ऐसा है कि {{math|''x'' ≤  ''f''<sub>∗</sub>(''y'')}}। वास्तव में, प्रत्येक के लिए {{mvar|y}} में {{mvar|B}}, {{math| ''f''<sub>∗</sub>(''y'')}} सबसे बड़ा है {{mvar|x}} में {{mvar|A}} ऐसा है कि {{math| ''f'' <sup>∗</sup>(''x'') ≤ ''y''}}। एक निश्चित गाल्वा संयोजन का अस्तित्व अब संबंधित सबसे कम या सबसे बड़े अवयवों के अस्तित्व का अर्थ है, चाहे संबंधित क्रमित समुच्चय किसी पूर्णता (क्रम सिद्धांत) को संतुष्ट करते हों। इस प्रकार, जब गाल्वा संयोजन का एक उच्चतर संलग्नक दिया जाता है, तो दूसरे उच्चतर संलग्नक को इसी गुण के माध्यम से परिभाषित किया जा सकता है। | ||
दूसरी ओर, कुछ एकदिष्ट फलन {{math| ''f'' }} यदि और मात्र यदि फॉर्म का प्रत्येक समुच्चय है तो एक निचला आसन्न है {{math|{ ''x'' ∈ ''A'' {{!}}  ''f'' (''x'') ≤ ''b'' },}} के लिए {{mvar|b}} में {{mvar|B}}, सबसे बड़ा अवयव होता है। दोबारा, यह उच्चतर आसन्न के लिए दोहरा हो सकता है। | दूसरी ओर, कुछ एकदिष्ट फलन {{math| ''f'' }} यदि और मात्र यदि फॉर्म का प्रत्येक समुच्चय है तो एक निचला आसन्न है {{math|{ ''x'' ∈ ''A'' {{!}}  ''f'' (''x'') ≤ ''b'' },}} के लिए {{mvar|b}} में {{mvar|B}}, सबसे बड़ा अवयव होता है। दोबारा, यह उच्चतर आसन्न के लिए दोहरा हो सकता है। |
Revision as of 13:25, 8 May 2023
गणित में, विशेष रूप से क्रम सिद्धांत में, गाल्वा संयोजन दो आंशिक रूप से क्रमित समुच्चय (क्रमित समुच्चय) के बीच एक विशेष संगति (सामान्यतः) होता है। गाल्वा संयोजन विभिन्न गणितीय सिद्धांतों में अनुप्रयोग खोजते हैं। वे उपसमूहों और क्षेत्र विस्तार के बीच संगति के विषय में गाल्वा सिद्धांत के मौलिक प्रमेय को सामान्यीकृत करते हैं, जिसे फ्रांसीसी गणितज्ञ इवरिस्टे गाल्वा द्वारा खोजा गया था।
गाल्वा संयोजन को पहले से क्रमित किए गए समुच्चय या पहले से क्रमित किए गए वर्ग पर भी परिभाषित किया जा सकता है; यह लेख क्रमित समुच्चयों के सामान्य स्थिति को प्रस्तुत करता है। साहित्य में गाल्वा संयोजन की दो निकट संबंधी धारणाएँ हैं। इस लेख में, हम उन्हें (एकदिष्ट) गाल्वा संयोजन और एंटीटोन गाल्वा संयोजन के रूप में संदर्भित करेंगे।
सम्मिलित क्रमित समुच्चयों के बीच एक क्रम समरूपता की तुलना में गाल्वा संयोजन अपेक्षाकृत दुर्बल है, परन्तु प्रत्येक गाल्वा संयोजन कुछ उप-क्रमित समुच्चयों के समरूपता को जन्म देता है, जैसा कि नीचे बताया जाएगा। गाल्वा संगति शब्द का प्रयोग कभी-कभी विशेषण गाल्वा संयोजन के अर्थ में किया जाता है; यह मात्र एक क्रम समरूपता है (या द्वैत क्रम समरूपता, इस पर निर्भर करता है कि क्या हम एकदिष्ट या एंटीटोन गाल्वा संयोजन लेते हैं)।
परिभाषाएँ
(एकदिष्ट) गाल्वा संयोजन
बता दें कि (A, ≤) और (B, ≤) दो आंशिक रूप से क्रमित किए गए समुच्चय हैं। इन क्रमित समुच्चयों के बीच एक एकदिष्ट गाल्वा संयोजन में दो एकदिष्ट फलन होते हैं[1] फलन (गणित): F : A → B और G : B → A, जैसे कि A में सभी a और B में b के लिए, अपने निकट
- F(a) ≤ b है यदि और मात्र यदि a ≤ G(b) a ≤ G(b)।
इस स्थिति में, F को G का निचला संलग्नक कहा जाता है और G को F का उच्चतर संलग्नक कहा जाता है। स्मरणीय रूप से, उच्चतर /निचली शब्दावली से तात्पर्य है जहां फलन अनुप्रयोग ≤ के सापेक्ष प्रकट होता है।[2] आसन्न शब्द इस तथ्य को संदर्भित करता है कि एकदिष्ट गाल्वा संयोजन श्रेणी सिद्धांत में आसन्न प्रकार्यक के संलग्नक की विशेष स्थिति हैं जैसा कि नीचे चर्चा की गई है। यहाँ अन्य शब्दावली का सामना निम्न (उत्तर. उच्चतर) आसन्न के लिए बाएँ आसन्न (उत्तर दाएँ संलग्न) से होता है।
गाल्वा संयोजन का एक आवश्यक गुण यह है कि गाल्वा संयोजन का एक उच्चतर / निचला संलग्नक विशिष्ट दूसरे को निर्धारित करता है:
- F(a) a ≤ G() के साथ कम से कम अवयव है , और
- G(b) F() ≤ b सबसे बड़ा अवयव है।
इसका एक परिणाम यह है कि यदि F या G व्युत्क्रमणीय है,[clarification needed] तो प्रत्येक दूसरे का व्युत्क्रम है, अर्थात F = G −1।
निम्नतर आसन्न के साथ गाल्वा संयोजन दिया गया F और उच्चतर आसन्न G, हम फलन संरचना पर विचार कर सकते हैं GF : A → A, जिसे संबद्ध संवरक संक्रियक के रूप में जाना जाता है, और FG : B → B, संबद्ध मूल संक्रियक के रूप में जाना जाता है। दोनों एकदिष्ट और इदम्पोटेंट हैं, और हमारे निकट A में सभी a के लिए a ≤ GF(a) और B में सभी के लिए b FG(b) ≤ b सभी के लिए है।
A में B का गाल्वा सम्मिलन एक गाल्वा संयोजन है जिसमें मूल संक्रियक FG B तत्समक फलन है , और इसलिए G, A के संवृत अवयवों GF [A] के समुच्चय पर B का एक क्रम समरूपता है।[3]
एंटीटोन गाल्वा संयोजन
उपरोक्त परिभाषा आज कई अनुप्रयोगों में सामान्य है, और जाली (क्रम) और प्रांत सिद्धांत में प्रमुख है। यद्यपि गाल्वा सिद्धांत में मूल धारणा थोड़ी अलग है। इस वैकल्पिक परिभाषा में, एक गाल्वा संयोजन एंटीटोन की एक संलग्नक है, अर्थात क्रम-उत्क्रमणीय, फलन F : A → B और G : B → A दो क्रमित A और B के बीच, जैसे कि
- b ≤ F(a) यदि और मात्र यदि a ≤ G(b)।
इस संस्करण में F और G की समरूपता उच्चतर और निम्नतर के बीच के अंतर को समाप्त कर देती है, और दो फलनों को तब आसन्न के अतिरिक्त ध्रुवीकरण कहा जाता है।[4] चूंकि प्रत्येक ध्रुवता विशिष्ट रूप से दूसरे को निर्धारित करती है
- F(a) सबसे बड़ा अवयव है b साथ a ≤ G(b), और
- G(b) सबसे बड़ा अवयव है a साथ b ≤ F(a)।
रचनाएँ GF : A → A और FG : B → B संबंधित क्लोजर संक्रियक हैं; वे गुण के साथ नीरस आदर्श नक्शे हैं a ≤ GF(a) सभी के लिए a में A और b ≤ FG(b) सभी के लिए b में B।
गाल्वा संयोजन की दो परिभाषाओं के निहितार्थ बहुत समान हैं, क्योंकि एंटीटोन गाल्वा संयोजन के बीच है A और B के बीच मात्र एक एकदिष्ट गाल्वा संयोजन है A और द्वैत (क्रम सिद्धांत) Bop का B। गाल्वा संयोजन पर नीचे दिए गए सभी बयान इस प्रकार आसानी से एंटीटोन गाल्वा संयोजन के बयानों में परिवर्तित किए जा सकते हैं।
उदाहरण
एकदिष्ट गाल्वा संयोजन
पावर समुच्चय; निहितार्थ और संयोजन
क्रम-सैद्धांतिक उदाहरण के लिए, आइए U कुछ समुच्चय (गणित) हो, और चलो A और B दोनों का सत्ता स्थापित हो U, [[उपसमुच्चय समावेशन]] द्वारा क्रमित। एक निश्चित उपसमुच्चय चुनें L का U। फिर नक्शे F और G, कहाँ F(M ) = L ∩ M, और G(N ) = N ∪ (U \ L), के साथ एक एकदिष्ट गाल्वा संयोजन बनाएं F निचला आसन्न होना। एक समान गाल्वा संयोजन जिसका निचला आसन्न मीट (न्यूनतम) ऑपरेशन द्वारा दिया गया है, किसी भी हेटिंग बीजगणित में पाया जा सकता है। विशेष रूप से, यह किसी भी बूलियन बीजगणित (संरचना) में मौजूद है, जहां दो मैपिंग द्वारा वर्णित किया जा सकता है F(x) = (a ∧ x) और G( y) = ( y ∨ ¬a) = (a ⇒ y)। तार्किक शब्दों में: से निहितार्थ a के साथ संयोजन का उपरी संलग्नक है a ।
जाली
गाल्वा संयोजन के लिए और दिलचस्प उदाहरण पूर्णता (क्रम सिद्धांत) पर लेख में वर्णित हैं। मोटे तौर पर बोलते हुए, यह पता चला है कि सामान्य फलन ∨ और ∧ विकर्ण मानचित्र के निम्नतर और उच्चतर हिस्से हैं X → X × X। आंशिक क्रम के सबसे कम और सबसे बड़े अवयव अद्वितीय फलन के निम्नतर और उच्चतर संलग्नक ों द्वारा दिए गए हैं X → {1}. आगे जाकर, पूर्ण जालकों को भी उपयुक्त संलग्नकों के अस्तित्व द्वारा अभिलक्षित किया जा सकता है। ये विचार क्रम थ्योरी में गाल्वा संयोजन की सर्वव्यापकता का कुछ आभास देते हैं।
सकर्मक समूह क्रियाएं
होने देना G समूह क्रिया ग्रुप एक्शन#कार्रवाइयों के प्रकार पर X और कुछ बिंदु चुनें x में X। विचार करना
युक्त ब्लॉक का समुच्चय x। आगे, चलो के उपसमूहों से मिलकर बनता है G जिसमें ग्रुप एक्शन#ऑर्बिट्स और स्टेबलाइजर्स सम्मिलित हैं x।
फिर, संगति :
एक एकदिष्ट, इंजेक्शन फलन | एक-से-एक गाल्वा संयोजन है।[5] एक उपप्रमेय के रूप में, कोई यह स्थापित कर सकता है कि द्विगुणित सकर्मक क्रियाओं में तुच्छ लोगों (एकल या संपूर्ण) के अलावा कोई ब्लॉक नहीं है X): यह स्टेबलाइजर्स में अधिकतम होने के कारण होता है G उस स्थिति में। आगे की चर्चा के लिए 2-सकर्मक समूह देखें।
छवि और प्रतिलोम छवि
यदि f : X → Y एक फलन (गणित) है, फिर किसी भी उपसमुच्चय के लिए M का X हम छवि बना सकते हैं (गणित) F(M ) = f M = { f (m) | m ∈ M} और किसी भी उपसमुच्चय के लिए N का Y हम उलटी छवि बना सकते हैं G(N ) = f −1N = {x ∈ X | f (x) ∈ N}. तब F और G के पावर समुच्चय के बीच एक एकदिष्ट गाल्वा संयोजन बनाते हैं X और का पावर समुच्चय Y, दोनों समावेशन ⊆ द्वारा क्रमित हैं। इस स्थिति में एक और संलग्न संलग्नक ी है: एक उपसमुच्चय के लिए M का X, परिभाषित करना H(M) = {y ∈ Y | f −1{y} ⊆ M}. तब G और H के पावर समुच्चय के बीच एक एकदिष्ट गाल्वा संयोजन बनाते हैं Y और का पावर समुच्चय X। पहले गाल्वा संयोजन में, G उच्चतर संलग्नक है, जबकि दूसरे गाल्वा संयोजन में यह निम्नतर संलग्नक के रूप में कार्य करता है।
बीजगणितीय वस्तुओं (जैसे समूह (गणित)) के बीच एक अंश समूह की स्थिति में, इस संयोजन को जाली प्रमेय कहा जाता है: के उपसमूह G के उपसमूहों से कनेक्ट करें G/N, और उपसमूहों पर क्लोजर संक्रियक G द्वारा दिया गया है H = HN।
स्पैन और क्लोजर
कुछ गणितीय वस्तु उठाओ X जिसमें एक अंतर्निहित समुच्चय है, उदाहरण के लिए एक समूह, अंगूठी (गणित), सदिश स्थल इत्यादि। किसी भी उपसमुच्चय के लिए S का X, होने देना F(S ) का सबसे छोटा विषय हो X उसमें सम्मिलित है S, अर्थात उपसमूह, उपसमूह या रैखिक उपस्थान द्वारा उत्पन्न S। किसी भी विषय के लिए U का X, होने देना G(U ) का अंतर्निहित समुच्चय हो U। (हम भी ले सकते हैं X एक टोपोलॉजिकल स्पेस होने दें F(S ) का क्लोजर (टोपोलॉजी)। S, और के सबऑब्जेक्ट्स के रूप में लें X के संवृत उपसमुच्चय X।) अब F और G के उपसमुच्चय के बीच एक एकदिष्ट गाल्वा संयोजन बनाते हैं X और के विषय X, यदि दोनों को समावेशन द्वारा क्रमित किया गया है। F निचला सन्निकट है।
वाक्यविन्यास और शब्दार्थ
विलियम लॉवरे की एक बहुत ही सामान्य टिप्पणी[6] यह है कि वाक्य रचना और शब्दार्थ आसन्न हैं: take A सभी तार्किक सिद्धांतों (स्वयंसिद्धीकरण) का समुच्चय होना, और B सभी गणितीय संरचनाओं के समुच्चय का पावर समुच्चय। एक सिद्धांत के लिए T ∈ A, होने देना Mod(T ) स्वयंसिद्धों को संतुष्ट करने वाली सभी संरचनाओं का समुच्चय हो T ; गणितीय संरचनाओं के एक समुच्चय के लिए S ∈ B, होने देना Th(S ) कम से कम स्वयंसिद्ध हों जो अनुमानित हों S (पहले क्रम के तर्क में, यह उन वाक्यों का समूह है जो सभी संरचनाओं में सत्य हैं S)। हम तब कह सकते हैं Mod(T ) का उपसमुच्चय है S यदि और मात्र यदि T तार्किक रूप से तात्पर्य है Th(S ): स्मरणीय्स प्रकार्यक Mod और सिंटैक्स प्रकार्यक Th एक एकदिष्ट गाल्वा संयोजन बनाते हैं, जिसमें शब्दार्थ उच्चतर आसन्न होता है।
एंटीटोन गाल्वा संयोजन
गाल्वा थ्योरी
प्रेरक उदाहरण गाल्वा सिद्धांत से आता है: मान लीजिए L/K एक फील्ड एक्सटेंशन है। होने देना A के सभी उपक्षेत्रों का समुच्चय हो L जिसमें सम्मिलित है K, समावेशन ⊆ द्वारा क्रमित। यदि E ऐसा ही एक सबफील्ड है, लिखो Gal(L/E) फील्ड ऑटोमोर्फिज्म के समूह के लिए L जो धारण करता है E हल किया गया। होने देना B के उपसमूहों का समुच्चय हो Gal(L/K), समावेशन ⊆ द्वारा क्रमित। ऐसे उपसमूह के लिए G, परिभाषित करना Fix(G) सभी अवयवों से युक्त क्षेत्र होना L जो सभी अवयवों द्वारा तय किए गए हैं G। फिर नक्शे E ↦ Gal(L/E) और G ↦ Fix(G) एक एंटीटोन गाल्वा संयोजन बनाते हैं।
बीजगणितीय टोपोलॉजी: रिक्त स्थान को कवर करना
अनुरूप रूप से, एक पथ-जुड़ा स्थलीय स्थान दिया गया X, मौलिक समूह के उपसमूहों के बीच एक एंटीटोन गाल्वा संयोजन है π1(X) और पाथ-कनेक्टेड अंतरिक्ष को कवर करना ऑफ़ X। विशेष रूप से, यदि X अर्ध-स्थानीय रूप से मात्र जुड़ा हुआ है, फिर प्रत्येक उपसमूह के लिए G का π1(X), के साथ एक कवरिंग स्पेस है G इसके मौलिक समूह के रूप में।
रेखीय बीजगणित: विनाशक और ऑर्थोगोनल पूरक
एक आंतरिक उत्पाद स्थान दिया गया V, हम ओर्थोगोनल पूरक बना सकते हैं F(X ) किसी भी उप-स्थान का X का V। यह उप-स्थानों के समुच्चय के बीच एक एंटीटोन गाल्वा संयोजन उत्पन्न करता है V और स्वयं, समावेशन द्वारा क्रमित; दोनों ध्रुवताएं बराबर हैं F।
एक सदिश स्थान दिया गया है V और एक उपसमुच्चय X का V हम इसके विनाशक को परिभाषित कर सकते हैं F(X ), दोहरे स्थान के सभी अवयवों से मिलकर V ∗ का V जो गायब हो जाता है X। इसी प्रकार, एक उपसमुच्चय दिया है Y का V ∗, हम इसके सर्वनाश को परिभाषित करते हैं G(Y ) = { x ∈ V | φ(x) = 0 ∀φ ∈ Y }. यह उपसमुच्चय के बीच एक एंटीटोन गाल्वा संयोजन देता है V और के उपसमुच्चय V ∗।
बीजगणितीय ज्यामिति
बीजगणितीय ज्यामिति में, बहुपदों के समुच्चय और उनके शून्य समुच्चय के बीच का संबंध एंटीटोन गाल्वा संयोजन है।
एक प्राकृतिक संख्या तय करें n और एक क्षेत्र (गणित) K और जाने A बहुपद वलय के सभी उपसमुच्चयों का समुच्चय हो K[X1, ..., Xn] समावेशन द्वारा क्रमित ⊆, और चलो B के सभी उपसमूहों का समुच्चय हो K n समावेश ⊆ द्वारा क्रमित। यदि S बहुपदों का एक समूह है, बीजगणितीय ज्यामिति#Affine किस्मों को शून्य के रूप में परिभाषित करें
बहुपदों के एक बहुपद के उभयनिष्ठ मूल का समुच्चय S। यदि U का उपसमुच्चय है K n, परिभाषित करना I(U ) लुप्त हो रहे बहुपदों के आदर्श (रिंग थ्योरी) के रूप में U, वह है
तब V और मैं एक एंटीटोन गाल्वा संयोजन बनाता हूं।
संवृत चालू K n जरिस्की टोपोलॉजी में क्लोजर है, और यदि फील्ड है K बीजगणितीय रूप से संवृत क्षेत्र है, तो बहुपद वलय पर संवृत होने से उत्पन्न आदर्श के एक आदर्श का रेडिकल है S।
अधिक सामान्यतः , एक क्रमविनिमेय अंगूठी दी जाती है R (अनिवार्य रूप से एक बहुपद अंगूठी), अंगूठी में कट्टरपंथी आदर्शों और बीजगणितीय ज्यामिति की उप-किस्मों के बीच एक एंटीटोन गाल्वा संयोजन है#Affine किस्मों Spec(R)।
अधिक सामान्यतः , रिंग में आदर्शों और संबंधित बीजगणितीय ज्यामिति #Affine किस्मों की उपयोजनाओं के बीच एक एंटीटोन गाल्वा संयोजन होता है।
बाइनरी संबंधों से उत्पन्न होने वाले पावर समुच्चय पर संयोजन
कल्पना करना X और Y मनमाना समुच्चय और एक द्विआधारी संबंध हैं R ऊपर X और Y दिया हुआ है। किसी उपसमुच्चय के लिए M का X, हम परिभाषित करते हैं F(M ) = { y ∈ Y | mRy ∀m ∈ M }. इसी तरह, किसी उपसमुच्चय के लिए N का Y, परिभाषित करना G(N ) = { x ∈ X | xRn ∀n ∈ N }. तब F और G के पावर समुच्चय के बीच एक एंटीटोन गाल्वा संयोजन प्राप्त करें X और Y, दोनों समावेशन ⊆ द्वारा क्रमित हैं।[7] समरूपता तक पावर समुच्चय के बीच सभी एंटीटोन गाल्वा संयोजन इस तरह से उत्पन्न होते हैं। यह कॉन्सेप्ट लैटिस पर बेसिक प्रमेय से आता है।[8] औपचारिक अवधारणा विश्लेषण में द्विआधारी संबंधों से उत्पन्न होने वाले गाल्वा संयोजन के सिद्धांत और अनुप्रयोगों का अध्ययन किया जाता है। वह फ़ील्ड गणितीय डेटा विश्लेषण के लिए गाल्वा संयोजन का उपयोग करता है। संबंधित साहित्य में गाल्वा संयोजन के लिए कई एल्गोरिदम पाए जा सकते हैं, उदाहरण के लिए।[9]
गुण
निम्नलिखित में, हम एक (एकदिष्ट) गाल्वा संयोजन पर विचार करते हैं f = ( f ∗, f∗), कहाँ {{math| f ∗ : A → B}जैसा कि ऊपर प्रस्तुत किया गया है } निचला संलग्नक है। कुछ सहायक और शिक्षाप्रद बुनियादी गुणों को तुरंत प्राप्त किया जा सकता है। गाल्वा संयोजन की परिभाषित गुण से, f ∗(x) ≤ f ∗(x) के बराबर है x ≤ f∗( f ∗(x)), सभी के लिए x में A। इसी तरह के तर्क से (या मात्र द्वैत (क्रम सिद्धांत) को लागू करके), कोई यह पाता है f ∗( f∗(y)) ≤ y, सभी के लिए y में B। इन गुणों का वर्णन संयुक्त कह कर किया जा सकता है f ∗∘ f∗ अपस्फीतिकारक है, जबकि f∗∘ f ∗ मुद्रास्फीति (या व्यापक) है।
अब विचार करें x, y ∈ A ऐसा है कि x ≤ y। फिर उपरोक्त का उपयोग करके प्राप्त करता है x ≤ f∗( f ∗(y))। गाल्वा संयोजन की मूल गुण को लागू करने से अब यह निष्कर्ष निकाला जा सकता है f ∗(x) ≤ f ∗(y)। परन्तु यह सिर्फ यही दर्शाता है f ∗ किन्हीं भी दो अवयवों के क्रम को बनाए रखता है, अर्थात यह एकदिष्ट है। फिर से, इसी तरह के तर्क से एकरसता पैदा होती है f∗। इस प्रकार एकरसता को स्पष्ट रूप से परिभाषा में सम्मिलित करने की आवश्यकता नहीं है। यद्यपि , एकदिष्टिकिटी का उल्लेख करने से गाल्वा संयोजन की दो वैकल्पिक धारणाओं के विषय में भ्रम से बचने में मदद मिलती है।
गाल्वा संयोजन की एक और बुनियादी गुण यह तथ्य है कि f∗( f ∗( f∗(x))) = f∗(x), सभी के लिए x में B। स्पष्ट रूप से हम पाते हैं
- f∗( f ∗( f∗(x))) ≥ f∗(x)।
क्योंकि f∗∘ f ∗ स्फीतिकारक है जैसा कि ऊपर दिखाया गया है। दूसरी ओर, चूंकि f ∗∘ f∗ अपस्फीतिकारक है, जबकि f∗ एकदिष्टिक है, कोई पाता है
- f∗( f ∗( f∗(x))) ≤ f∗(x)।
यह वांछित समानता दिखाता है। इसके अलावा, हम इस गुण का उपयोग यह निष्कर्ष निकालने के लिए कर सकते हैं
- f ∗( f∗( f ∗( f∗(x)))) = f ∗( f∗(x))
और
- f∗( f ∗( f∗( f ∗(x)))) = f∗( f ∗(x))
अर्थात।, f ∗∘ f∗ और f∗∘ f ∗ निष्पाप हैं।
यह दिखाया जा सकता है (प्रमाण के लिए ब्लीथ या एर्ने देखें) कि एक फलन f एक निचला (प्रतिक्रिया उच्चतर ) आसन्न है यदि और मात्र यदि f एक अवशिष्ट मानचित्रण (प्रतिक्रिया अवशिष्ट मानचित्रण) है। इसलिए, अवशिष्ट मानचित्रण और एकदिष्ट गाल्वा संयोजन की धारणा अनिवार्य रूप से समान है।
क्लोजर संक्रियक और गाल्वा संयोजन
उपरोक्त निष्कर्षों को निम्नानुसार संक्षेपित किया जा सकता है: गाल्वा संयोजन के लिए, समग्र f∗∘ f ∗ एकदिष्ट है (एकदिष्ट फलनों का सम्मिश्रण होने के नाते), स्फीतिकारी और निष्क्रिय है। यह बताता है कि f∗∘ f ∗ वास्तव में एक क्लोजर संक्रियक है A। दैनिक रूप से, f ∗∘ f∗ एकदिष्ट, डिफ्लेशनरी और इडेम्पोटेंट है। ऐसे मैपिंग को कभी-कभी मूल संक्रियक कहा जाता है। फ़्रेम और लोकेशंस के संदर्भ में, समग्र f∗∘ f ∗ द्वारा प्रेरित नाभिक कहा जाता है f । नाभिक प्रेरित फ्रेम समरूपता; लोकेल के एक उपसमुच्चय को सबलोकेल कहा जाता है यदि यह एक नाभिक द्वारा दिया जाता है।
बातचीत (तर्क), कोई क्लोजर संक्रियक c किसी क्रमित समुच्चय पर A निम्नतर सन्निकट के साथ गाल्वा संयोजन को जन्म देता है f ∗ का मात्र प्रतिबंध है c की छवि के लिए c (अर्थात क्लोजर सिस्टम की विशेषण मैपिंग के रूप में c(A))। उच्चतर संलग्नक f∗ तब के समावेशन मानचित्र द्वारा दिया जाता है c(A) में A, जो प्रत्येक संवृत अवयव को स्वयं के लिए मैप करता है, जिसे एक अवयव माना जाता है A। इस तरह, क्लोजर संक्रियक्स और गाल्वा संयोजनों को बारीकी से संबंधित देखा जाता है, प्रत्येक दूसरे के एक उदाहरण को निर्दिष्ट करता है। इसी तरह के निष्कर्ष मूल संक्रियकों के लिए सही हैं।
उपरोक्त विचार यह भी दिखाते हैं कि संवृत अवयव A (अवयव x साथ f∗( f ∗(x)) = x) मूल संक्रियक की सीमा के भीतर अवयवों के लिए मैप किए गए हैं f ∗∘ f∗, और इसके विपरीत।
गाल्वा संयोजन का अस्तित्व और विशिष्टता
गाल्वा संयोजन की एक और महत्वपूर्ण गुण यह है कि निम्नतर आसन्न सीमा (क्रम थ्योरी) को संरक्षित करते हैं जो कि एक फलन के अपने प्रांत के भीतर मौजूद हैं। दैनिक रूप से, उच्चतर अनुलग्न सभी मौजूदा सबसे कम को संरक्षित करते हैं। इन गुणों से, कोई भी तुरंत आसन्नों की एकरसता का निष्कर्ष निकाल सकता है। आसन्न फंक्टर प्रमेय (क्रम सिद्धांत) कहता है कि कुछ मामलों में व्युत्क्रमणीय निहितार्थ भी मान्य है: विशेष रूप से, पूर्ण लैटिस के बीच कोई मैपिंग जो सभी सुपरमा को संरक्षित करता है, गाल्वा संयोजन का निचला आसन्न है।
इस स्थिति में, गाल्वा संयोजन की एक महत्वपूर्ण विशेषता यह है कि एक संलग्न दूसरे को विशिष्ट रूप से निर्धारित करता है। इसलिए उपरोक्त बयान को मजबूत करने के लिए यह गारंटी दी जा सकती है कि पूर्ण जाली के बीच कोई सर्वोच्च-संरक्षित मानचित्र एक अद्वितीय गाल्वा संयोजन का निचला हिस्सा है। इस अद्वितीयता को प्राप्त करने की मुख्य विशेषता निम्नलिखित है: प्रत्येक के लिए x में A, f ∗(x) सबसे कम अवयव है y का B ऐसा है कि x ≤ f∗(y)। वास्तव में, प्रत्येक के लिए y में B, f∗(y) सबसे बड़ा है x में A ऐसा है कि f ∗(x) ≤ y। एक निश्चित गाल्वा संयोजन का अस्तित्व अब संबंधित सबसे कम या सबसे बड़े अवयवों के अस्तित्व का अर्थ है, चाहे संबंधित क्रमित समुच्चय किसी पूर्णता (क्रम सिद्धांत) को संतुष्ट करते हों। इस प्रकार, जब गाल्वा संयोजन का एक उच्चतर संलग्नक दिया जाता है, तो दूसरे उच्चतर संलग्नक को इसी गुण के माध्यम से परिभाषित किया जा सकता है।
दूसरी ओर, कुछ एकदिष्ट फलन f यदि और मात्र यदि फॉर्म का प्रत्येक समुच्चय है तो एक निचला आसन्न है { x ∈ A | f (x) ≤ b }, के लिए b में B, सबसे बड़ा अवयव होता है। दोबारा, यह उच्चतर आसन्न के लिए दोहरा हो सकता है।
गाल्वा संयोजन morphisms के रूप में
गाल्वा संयोजन क्रमित समुच्चयों के बीच मैपिंग का एक दिलचस्प वर्ग भी प्रदान करता है जिसका उपयोग क्रमित समुच्चयों की श्रेणी (गणित) प्राप्त करने के लिए किया जा सकता है। विशेष रूप से, गाल्वा संयोजन बनाना संभव है: दिए गए गाल्वा संयोजन ( f ∗, f∗) पोज़ के बीच A और B और (g∗, g∗) बीच में B और C, समग्र (g∗ ∘ f ∗, f∗ ∘ g∗) भी गाल्वा संयोजन है। जब पूर्ण जाली की श्रेणियों पर विचार किया जाता है, तो इसे सभी सुपरमा (या, वैकल्पिक रूप से, इन्फिमा) को संरक्षित करने वाले मैपिंग पर विचार करने के लिए सरल बनाया जा सकता है। अपने द्वैत के लिए पूर्ण जाली का मानचित्रण, ये श्रेणियां ऑटो द्वैत (श्रेणी सिद्धांत) प्रदर्शित करती हैं, जो अन्य द्वैत प्रमेयों को प्राप्त करने के लिए काफी मौलिक हैं। अधिक विशेष प्रकार के morphisms जो दूसरी दिशा में आसन्न मैपिंग को प्रेरित करते हैं वे morphisms हैं जिन्हें सामान्यतः पूर्ण Heyting बीजगणित (या लोकेल) के लिए माना जाता है।
श्रेणी सिद्धांत से संबंध
प्रत्येक आंशिक रूप से क्रमित समुच्चय को प्राकृतिक तरीके से एक श्रेणी के रूप में देखा जा सकता है: x से y तक एक अद्वितीय रूपवाद है यदि और मात्र यदि x ≤ y। एक एकदिष्ट गाल्वा संयोजन तब आंशिक रूप से क्रमित समुच्चय से उत्पन्न होने वाली दो श्रेणियों के बीच आसन्न प्रकार्यक की एक संलग्नक ी के अलावा कुछ भी नहीं है। इस संदर्भ में, उच्चतर संलग्नक दाहिनी ओर है जबकि निचला संलग्नक बाएं आसन्न है। यद्यपि , इस शब्दावली को गाल्वा संयोजन के लिए टाला जाता है, क्योंकि एक समय था जब क्रमित समुच्चयों को दोहरी शैली में श्रेणियों में बदल दिया गया था, अर्थात विपरीत दिशा में इशारा करते हुए आकारिकी के साथ। इससे बाएँ और दाएँ सन्निकटों से संबंधित एक पूरक अंकन हुआ, जो आज अस्पष्ट है।
प्रोग्रामिंग के सिद्धांत में अनुप्रयोग
प्रोग्रामिंग भाषाओं की अमूर्त व्याख्या के सिद्धांत में अमूर्तता के कई रूपों का वर्णन करने के लिए गाल्वा संयोजन का उपयोग किया जा सकता है।[10][11]
टिप्पणियाँ
- ↑ Monotonicity follows from the following condition. See the discussion of the properties. It is only explicit in the definition to distinguish it from the alternative antitone definition. One can also define Galois connections as a pair of monotone functions that satisfy the laxer condition that for all x in A, x ≤ g( f (x)) and for all y in B, f (g(y)) ≤ y.
- ↑ Gierz, p. 23
- ↑ Bistarelli, Stefano (2004). सॉफ्ट कंस्ट्रेंट सॉल्विंग एंड प्रोग्रामिंग के लिए सेमीरिंग्स. Lecture Notes in Computer Science. Vol. 2962. Springer-Verlag. p. 102. arXiv:cs/0208008. doi:10.1007/978-3-540-25925-1_8. ISBN 3-540-21181-0. ISSN 0302-9743.
- ↑ Galatos, p. 145
- ↑ See Alperin, Bell, Groups and Representations (GTM 162), p. 32
- ↑ William Lawvere, Adjointness in foundations, Dialectica, 1969, available here. The notation is different nowadays; an easier introduction by Peter Smith in these lecture notes, which also attribute the concept to the article cited.
- ↑ Birkhoff, 1st edition (1940): §32, 3rd edition (1967): Ch. V, §7 and §8
- ↑ Ganter, B. and Wille, R. Formal Concept Analysis -- Mathematical Foundations, Springer (1999), ISBN 978-3-540-627715
- ↑ Ganter, B. and Obiedkov, S. Conceptual Exploration, Springer (2016), ISBN 978-3-662-49290-1
- ↑ Patrick Cousot; Radhia Cousot (Jan 1977). "Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints" (PDF). Proc. 4th ACM Symp. on Principles of Programming Languages (POPL). pp. 238–252.
For a counterexample for the false theorem in Sect.7 (p.243 top right), see: Jochen Burghardt; Florian Kammüller; Jeff W. Sanders (Dec 2000). Isomorphism of Galois Embeddings (Technical report). Vol. 122. GMD. p. 9-14. ISSN 1435-2702. (However the original article only considers complete lattices) - ↑ Patrick Cousot; Radhia Cousot (Jan 1979). "Systematic Design of Program Analysis Frameworks" (PDF). Proc. 6th ACM Symp. on Principles of Programming Languages (POPL). ACM Press. pp. 269–282.
संदर्भ
The following books and survey articles include गाल्वा connections using the monotone definition:
- Brian A। Davey and Hilary A। Priestley: Introduction to Lattices and Order, Cambridge University Press, 2002।
- Gerhard Gierz, Karl H। Hofmann, Klaus Keimel, Jimmie D। Lawson, Michael W। Mislove, Dana S। Scott: Continuous Lattices and Domains, Cambridge University Press, 2003।
- Marcel Erné, Jürgen Koslowski, Austin Melton, George E। Strecker, A primer on गाल्वा connections, in: Proceedings of the 1991 Summer Conference on General Topology and Applications in Honor of Mary Ellen Rudin and Her Work, Annals of the New York Academy of Sciences, Vol। 704, 1993, pp। 103–125। (Freely available online in various file formats PS।GZ PS, it presents many examples and results, as well as notes on the different notations and definitions that arose in this area।)
Some publications using the original (antitone) definition:
- Mac Lane, Saunders (September 1998). Categories for the Working Mathematician (Second ed.). Springer. ISBN 0-387-98403-8.
- Thomas Scott Blyth, Lattices and Ordered Algebraic Structures, Springer, 2005, ISBN 1-85233-905-5।
- Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono (2007), Residuated Lattices। An Algebraic Glimpse at Substructural Logics, Elsevier, ISBN 978-0-444-52141-5।
- Garrett Birkhoff: Lattice Theory, Amer। Math। Soc। Coll। Pub।, Vol 25, 1940
- Ore, Øystein (1944), "Galois Connexions", Transactions of the American Mathematical Society, 55 (3): 493–513, doi:10.2307/1990305, JSTOR 1990305