इलेक्ट्रॉनिक्स में गणितीय तरीके: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणितीय | गणितीय विधियाँ इलेक्ट्रॉनिक्स के अध्ययन के अभिन्न अंग हैं। | ||
'''न के अभिन्न अंग हैं।''' | |||
== इलेक्ट्रॉनिक्स में गणित == | == इलेक्ट्रॉनिक्स में गणित == | ||
[[इलेक्ट्रॉनिक्स इंजीनियरिंग]] करियर में | [[इलेक्ट्रॉनिक्स इंजीनियरिंग]] करियर में सामान्यतः [[गणना]] (एकल और [[बहुभिन्नरूपी कैलकुलस]]), [[जटिल विश्लेषण]], डिफरेंशियल इक्वेशन (साधारण डिफरेंशियल इक्वेशन और [[आंशिक [[विभेदक समीकरण]]]] दोनों), रैखिक बीजगणित और [[संभावना]] सम्मिलित हैं। [[फूरियर विश्लेषण]] और [[जेड को बदलने|जेड-ट्रांसफॉर्म]] भी ऐसे विषय हैं जो सामान्यतः [[विद्युत अभियन्त्रण]] कार्यक्रमों में सम्मिलित होते हैं। [[लाप्लास रूपांतरण]] कंप्यूटिंग आरएलसी नेटवर्क व्यवहार को आसान बना सकता है। | ||
== मूल अनुप्रयोग == | == मूल अनुप्रयोग == | ||
सभी विद्युत नेटवर्कों पर अनेक विद्युत नियम लागू होते हैं। इसमे | सभी विद्युत नेटवर्कों पर अनेक विद्युत नियम लागू होते हैं। इसमे सम्मिलित है | ||
*फैराडे का प्रेरण का नियम: तार के तार के चुंबकीय वातावरण में कोई भी बदलाव कॉइल में वोल्टेज (ईएमएफ) को प्रेरित करेगा। | *फैराडे का प्रेरण का नियम: तार के तार के चुंबकीय वातावरण में कोई भी बदलाव कॉइल में वोल्टेज (ईएमएफ) को प्रेरित करेगा। | ||
*गॉस का नियम|गॉस का नियम: बंद सतह से निकलने वाले विद्युत प्रवाह का योग परमिटिटिविटी द्वारा विभाजित आवेश के बराबर होता है। | *गॉस का नियम|गॉस का नियम: बंद सतह से निकलने वाले विद्युत प्रवाह का योग परमिटिटिविटी द्वारा विभाजित आवेश के बराबर होता है। | ||
Line 21: | Line 23: | ||
== अवयव == | == अवयव == | ||
वर्तमान में उपयोग किए जाने वाले कई इलेक्ट्रॉनिक घटक हैं और उन सभी के अपने उपयोग और विशेष नियम और उपयोग | वर्तमान में उपयोग किए जाने वाले कई इलेक्ट्रॉनिक घटक हैं और उन सभी के अपने उपयोग और विशेष नियम और उपयोग की विधियाँ हैं। | ||
*[[इलेक्ट्रॉनिक उपकरण]] | *[[इलेक्ट्रॉनिक उपकरण]] |
Revision as of 14:06, 7 April 2023
गणितीय विधियाँ इलेक्ट्रॉनिक्स के अध्ययन के अभिन्न अंग हैं।
न के अभिन्न अंग हैं।
इलेक्ट्रॉनिक्स में गणित
इलेक्ट्रॉनिक्स इंजीनियरिंग करियर में सामान्यतः गणना (एकल और बहुभिन्नरूपी कैलकुलस), जटिल विश्लेषण, डिफरेंशियल इक्वेशन (साधारण डिफरेंशियल इक्वेशन और [[आंशिक विभेदक समीकरण]] दोनों), रैखिक बीजगणित और संभावना सम्मिलित हैं। फूरियर विश्लेषण और जेड-ट्रांसफॉर्म भी ऐसे विषय हैं जो सामान्यतः विद्युत अभियन्त्रण कार्यक्रमों में सम्मिलित होते हैं। लाप्लास रूपांतरण कंप्यूटिंग आरएलसी नेटवर्क व्यवहार को आसान बना सकता है।
मूल अनुप्रयोग
सभी विद्युत नेटवर्कों पर अनेक विद्युत नियम लागू होते हैं। इसमे सम्मिलित है
- फैराडे का प्रेरण का नियम: तार के तार के चुंबकीय वातावरण में कोई भी बदलाव कॉइल में वोल्टेज (ईएमएफ) को प्रेरित करेगा।
- गॉस का नियम|गॉस का नियम: बंद सतह से निकलने वाले विद्युत प्रवाह का योग परमिटिटिविटी द्वारा विभाजित आवेश के बराबर होता है।
- किरचॉफ के सर्किट नियम#किरचॉफ का वर्तमान नियम|किरचॉफ का वर्तमान नियम: एक नोड में प्रवेश करने वाली सभी धाराओं का योग नोड छोड़ने वाली सभी धाराओं के योग के बराबर है या जंक्शन पर कुल वर्तमान का योग शून्य है
- किरचॉफ के सर्किट नियम#किरचॉफ का वोल्टेज नियम|किरचॉफ का वोल्टेज नियम: सर्किट के चारों ओर विद्युत संभावित अंतर का निर्देशित योग शून्य होना चाहिए।
- ओम का नियम: प्रतिरोधक के सिरों पर वोल्टेज इसके प्रतिरोध और इसके माध्यम से बहने वाली धारा का गुणनफल होता है। निरंतर तापमान पर।
- नॉर्टन की प्रमेय: वोल्टेज स्रोतों और प्रतिरोधों का कोई भी दो-टर्मिनल संग्रह विद्युतीय रूप से एकल प्रतिरोधक के साथ समानांतर में आदर्श वर्तमान स्रोत के बराबर है।
- थेवेनिन का प्रमेय: वोल्टेज स्रोतों और प्रतिरोधों का कोई भी दो-टर्मिनल संयोजन विद्युत रूप से एकल प्रतिरोधक के साथ श्रृंखला में एकल वोल्टेज स्रोत के बराबर होता है।
- मिलमैन की प्रमेय: समानांतर में शाखाओं के सिरों पर वोल्टेज कुल समतुल्य चालकता से विभाजित प्रत्येक शाखा में बहने वाली धाराओं के योग के बराबर है।
- प्रतिरोधक परिपथों का विश्लेषण भी देखें।
सर्किट विश्लेषण अज्ञात चर के लिए रैखिक प्रणालियों को हल करने के तरीकों का अध्ययन है।
- सर्किट विश्लेषण
अवयव
वर्तमान में उपयोग किए जाने वाले कई इलेक्ट्रॉनिक घटक हैं और उन सभी के अपने उपयोग और विशेष नियम और उपयोग की विधियाँ हैं।
जटिल संख्या और जटिल विश्लेषण
यदि आप संधारित्र पर वोल्टेज लागू करते हैं, तो यह डिवाइस के अंदर विद्युत क्षेत्र के रूप में विद्युत आवेश को संग्रहीत करके 'चार्ज' करता है। इसका मतलब यह है कि जबकि संधारित्र में वोल्टेज शुरू में छोटा रहता है, बड़ा करंट प्रवाहित होता है। बाद में, वर्तमान प्रवाह छोटा होता है क्योंकि क्षमता भर जाती है, और पूरे उपकरण में वोल्टेज बढ़ जाता है। इलेक्ट्रिकल इंजीनियरिंग में सिग्नल प्रोसेसिंग, पावर इलेक्ट्रॉनिक्स, कंट्रोल सिस्टम और अन्य जैसे क्षेत्रों में जटिल विश्लेषण विधियां भी महत्वपूर्ण हैं
एक प्रारंभ करनेवाला में समान हालांकि विपरीत स्थिति होती है; चुंबकीय क्षेत्र उत्पन्न होने पर लागू वोल्टेज निम्न धारा के साथ उच्च रहता है, और बाद में चुंबकीय क्षेत्र अधिकतम होने पर उच्च धारा के साथ छोटा हो जाता है।
इन दो प्रकार के उपकरणों के वोल्टेज और करंट इसलिए चरण से बाहर हैं, वे एक साथ नहीं उठते और गिरते हैं जैसा कि साधारण प्रतिरोधक नेटवर्क करते हैं। गणितीय मॉडल जो इस स्थिति से मेल खाता है वह जटिल संख्याओं का है, जिसमें संग्रहीत ऊर्जा का वर्णन करने के लिए काल्पनिक घटक का उपयोग किया जाता है।
सिग्नल विश्लेषण
- फूरियर विश्लेषण। किसी लहर वेवफ़ॉर्म को उसकी घटक फ़्रीक्वेंसी में डिकॉन्स्ट्रक्ट करना; यह भी देखें: फूरियर प्रमेय, फूरियर रूपांतरण।
- निक्विस्ट-शैनन नमूनाकरण प्रमेय।
- सूचना सिद्धांत। किसी भी प्रणाली द्वारा सूचना को कैसे प्रेषित या संसाधित किया जा सकता है, इस पर मूलभूत सीमाएँ निर्धारित करता है।
श्रेणी:इलेक्ट्रॉनिक इंजीनियरिंग
श्रेणी:अनुप्रयुक्त गणित