इलेक्ट्रॉनिक्स में गणितीय तरीके: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणितीय विधियाँ इलेक्ट्रॉनिक्स के अध्ययन के अभिन्न अंग हैं।
गणितीय विधियाँ इलेक्ट्रॉनिक्स के अध्ययन के अभिन्न अंग हैं।
'''होते हैं। [[लाप्लास रूपांतरण]] कंप्यूटिंग आरएल।'''


== इलेक्ट्रॉनिक्स में गणित ==
== इलेक्ट्रॉनिक्स में गणित ==
Line 35: Line 33:


== सिग्नल विश्लेषण ==
== सिग्नल विश्लेषण ==
* फूरियर विश्लेषण। किसी [[ लहर ]] वेवफ़ॉर्म को उसकी घटक फ़्रीक्वेंसी में डिकॉन्स्ट्रक्ट करना; यह भी देखें: [[फूरियर प्रमेय]], [[फूरियर रूपांतरण]]।
* फूरियर विश्लेषण। किसी [[ लहर |लहर]] वेवफ़ॉर्म को उसकी घटक फ़्रीक्वेंसी में डिकॉन्स्ट्रक्ट करना; यह भी देखें: [[फूरियर प्रमेय]], [[फूरियर रूपांतरण]]।
* निक्विस्ट-शैनन नमूनाकरण प्रमेय।
* निक्विस्ट-शैनन नमूनाकरण प्रमेय।
* [[सूचना सिद्धांत]]। किसी भी प्रणाली द्वारा सूचना को कैसे प्रेषित या संसाधित किया जा सकता है, इस पर मूलभूत सीमाएँ निर्धारित करता है।
* [[सूचना सिद्धांत]]। किसी भी प्रणाली द्वारा सूचना को कैसे प्रेषित या संसाधित किया जा सकता है, इस पर मूलभूत सीमाएँ निर्धारित करता है।

Revision as of 14:29, 7 April 2023

गणितीय विधियाँ इलेक्ट्रॉनिक्स के अध्ययन के अभिन्न अंग हैं।

इलेक्ट्रॉनिक्स में गणित

इलेक्ट्रॉनिक्स इंजीनियरिंग करियर में सामान्यतः गणना (एकल और बहुभिन्नरूपी कैलकुलस), जटिल विश्लेषण, डिफरेंशियल इक्वेशन (साधारण डिफरेंशियल इक्वेशन और [[आंशिक विभेदक समीकरण]] दोनों), रैखिक बीजगणित और संभावना सम्मिलित हैं। फूरियर विश्लेषण और जेड-ट्रांसफॉर्म भी ऐसे विषय हैं जो सामान्यतः विद्युत अभियन्त्रण कार्यक्रमों में सम्मिलित होते हैं। लाप्लास रूपांतरण कंप्यूटिंग आरएलसी नेटवर्क व्यवहार को आसान बना सकता है।

मूल अनुप्रयोग

सभी विद्युत नेटवर्कों पर अनेक विद्युत नियम लागू होते हैं। इसमे सम्मिलित है

  • फैराडे का प्रेरण का नियम: तार के तार के चुंबकीय वातावरण में कोई भी बदलाव कॉइल में विद्युत (ईएमएफ) को प्रेरित करेगा।
  • गॉस का नियम: बंद सतह से निकलने वाले विद्युत प्रवाह का योग परमिटिटिविटी द्वारा विभाजित आवेश के बराबर होता है।
  • किरचॉफ के परिपथ नियम या किरचॉफ का वर्तमान नियम: एक नोड में प्रवेश करने वाली सभी धाराओं का योग नोड छोड़ने वाली सभी धाराओं के योग के बराबर है या जंक्शन पर कुल वर्तमान का योग शून्य है
  • किरचॉफ के परिपथ नियम या किरचॉफ का विद्युत नियम: परिपथ के चारों ओर विद्युत संभावित अंतर का निर्देशित योग शून्य होना चाहिए।
  • ओम का नियम: प्रतिरोधक के सिरों पर विद्युत इसके प्रतिरोध और निरंतर तापमान पर इसके माध्यम से बहने वाली धारा का गुणनफल होता है।
  • नॉर्टन की प्रमेय: विद्युत स्रोतों और प्रतिरोधों का कोई भी दो-टर्मिनल संग्रह विद्युतीय रूप से एकल प्रतिरोधक के साथ समानांतर में आदर्श वर्तमान स्रोत के बराबर है।
  • थेवेनिन का प्रमेय: विद्युत स्रोतों और प्रतिरोधों का कोई भी दो-टर्मिनल संयोजन विद्युत रूप से एकल प्रतिरोधक के साथ श्रृंखला में एकल विद्युत स्रोत के बराबर होता है।
  • मिलमैन की प्रमेय: समानांतर में शाखाओं के सिरों पर विद्युत कुल समतुल्य चालकता से विभाजित प्रत्येक शाखा में बहने वाली धाराओं के योग के बराबर है।
  • प्रतिरोधक परिपथों का विश्लेषण भी देखें।

परिपथ विश्लेषण अज्ञात चर के लिए रैखिक प्रणालियों को हल करने की विधियों का अध्ययन है।

  • परिपथ विश्लेषण

अवयव

वर्तमान में उपयोग किए जाने वाले कई इलेक्ट्रॉनिक घटक हैं और उन सभी के अपने उपयोग और विशेष नियम और उपयोग की विधियाँ हैं।

जटिल संख्या और जटिल विश्लेषण

यदि आप संधारित्र पर विद्युत लागू करते हैं, तो यह उपकरण के अंदर विद्युत क्षेत्र के रूप में विद्युत आवेश को संग्रहीत करके 'चार्ज' करता है। इसका मतलब यह है कि जबकि संधारित्र में विद्युत प्रारंभ में छोटा रहता है, तो बड़ा प्रवाह प्रवाहित होता है। बाद में, वर्तमान प्रवाह छोटा होता है क्योंकि क्षमता भर जाती है, और पूरे उपकरण में विद्युत बढ़ जाता है। इलेक्ट्रिकल इंजीनियरिंग में सिग्नल प्रोसेसिंग, पावर इलेक्ट्रॉनिक्स, कंट्रोल प्रणाली और अन्य जैसे क्षेत्रों में जटिल विश्लेषण विधियां भी महत्वपूर्ण हैं

एक प्रेरक में समान यद्यपि विपरीत स्थिति उत्पन्न होती है; चुंबकीय क्षेत्र उत्पन्न होने पर लागू विद्युत निम्न धारा के साथ उच्च रहता है, और बाद में चुंबकीय क्षेत्र अधिकतम होने पर उच्च धारा के साथ छोटा हो जाता है।

इन दो प्रकार के उपकरणों के विद्युत और प्रवाह इसलिए चरण से बाहर हैं, वे एक साथ नहीं उठते और गिरते हैं जैसा कि साधारण प्रतिरोधक नेटवर्क करते हैं। गणितीय मॉडल जो इस स्थिति से मेल खाता है वह जटिल संख्याओं का है, जिसमें संग्रहीत ऊर्जा का वर्णन करने के लिए काल्पनिक घटक का उपयोग किया जाता है।

सिग्नल विश्लेषण

  • फूरियर विश्लेषण। किसी लहर वेवफ़ॉर्म को उसकी घटक फ़्रीक्वेंसी में डिकॉन्स्ट्रक्ट करना; यह भी देखें: फूरियर प्रमेय, फूरियर रूपांतरण
  • निक्विस्ट-शैनन नमूनाकरण प्रमेय।
  • सूचना सिद्धांत। किसी भी प्रणाली द्वारा सूचना को कैसे प्रेषित या संसाधित किया जा सकता है, इस पर मूलभूत सीमाएँ निर्धारित करता है।


श्रेणी:इलेक्ट्रॉनिक इंजीनियरिंग श्रेणी:अनुप्रयुक्त गणित