मिलनोर संख्या: Difference between revisions

From Vigyanwiki
No edit summary
Line 31: Line 31:


== उदाहरण ==
== उदाहरण ==
यहां हम दो वेरिएबल्स में कुछ काम किए गए उदाहरण देते हैं। केवल एक के साथ काम करना बहुत आसान है और तकनीकों के बारे में पता नहीं चलता है, जबकि तीन चर के साथ काम करना काफी मुश्किल हो सकता है। दो अच्छी संख्या है। साथ ही हम बहुपदों से चिपके रहते हैं। यदि f केवल [[होलोमॉर्फिक फ़ंक्शन]] है और बहुपद नहीं है, तो हम f के घात श्रेणी विस्तार के साथ काम कर सकते थे।
यहां हम दो चर राशियों में किए गए कुछ कार्यों का उदाहरण देते हैं। एक चर के साथ कार्य करना अधिक सरल है और तकनीकों के विषय में ज्ञात नहीं होता है किन्तु इसके विपरीत तीन चर राशियों के साथ कार्य करना अधिक जटिल हो सकता है। दो अच्छी संख्या है। साथ ही हम बहुपदों से चिपके रहते हैं। यदि f केवल [[होलोमॉर्फिक फ़ंक्शन]] है और बहुपद नहीं है, तो हम f के घात श्रेणी विस्तार के साथ काम कर सकते थे।


=== 1 ===
=== 1 ===

Revision as of 19:54, 1 May 2023

गणित में, और विशेष रूप से विलक्षणता सिद्धांत, जॉन मिल्नोर के नाम पर मिलनोर संख्या, एक कार्य रोगाणु का एक अपरिवर्तनीय है।

अगर f एक जटिल-मूल्यवान होलोमोर्फिक रोगाणु (गणित) है तो f की मिलनोर संख्या, जिसे μ(f) कहा जाता है, या तो एक गैर-नकारात्मक पूर्णांक है, या अनंत है . इसे अंतर ज्यामिति इनवेरिएंट (गणित) और एक अमूर्त बीजगणित इनवेरिएंट दोनों माना जा सकता है। यही कारण है कि यह बीजगणितीय ज्यामिति और विलक्षणता सिद्धांत में एक महत्वपूर्ण भूमिका निभाता है।

बीजगणितीय परिभाषा

एक होलोमोर्फिक जटिल संख्या रोगाणु पर विचार करें (गणित)

और द्वारा निरूपित करें सभी कार्यात्मक रोगाणुओं का वलय (गणित)। .

फ़ंक्शन का प्रत्येक स्तर एक जटिल हाइपरसफेस है , इसलिए हम कॉल करेंगे एक बीजगणितीय विविधता का एक हाइपरसफेस एकवचन बिंदु।

मान लें कि यह एक पृथक विलक्षणता है: होलोमोर्फिक मैपिंग के मामले में हम कहते हैं कि एक हाइपरसफेस विलक्षणता पर एकवचन है अगर इसकी ढाल पर शून्य है , एक विलक्षण बिंदु को अलग कर दिया जाता है यदि यह पर्याप्त रूप से छोटे पड़ोस (गणित) में एकमात्र एकवचन बिंदु है। विशेष रूप से, ढाल की बहुलता

Hilbert's_Zero Places Set#Analytic_Zero Places Set_(Rueckert's_Zero Places Set)|Rueckert's Zero Places Set के एक अनुप्रयोग द्वारा परिमित है। यह नंबर विलक्षणता की मिलनोर संख्या है पर .

ध्यान दें कि ग्रेडिएंट की बहुलता परिमित है यदि और केवल यदि मूल f का पृथक विलक्षणता महत्वपूर्ण बिंदु है।

ज्यामितीय व्याख्या

मिलनोर मूल रूप से[1] पुर: निम्नलिखित तरीके से ज्यामितीय शब्दों में। सभी फाइबर मूल्यों के लिए के करीब वास्तविक आयाम के कई गुना विलक्षण हैं . एक छोटी खुली डिस्क के साथ उनका प्रतिच्छेदन पर केंद्रित है एक चिकना बहुरूपी है मिलनोर फाइबर कहा जाता है। डिफियोमोर्फिज्म तक पर निर्भर नहीं है या अगर वे काफी छोटे हैं। यह मिलनोर मानचित्र के तंतु के लिए भी भिन्न है।

द मिल्नोर फाइबर आयाम का एक सहज कई गुना है और वेज योग के समान होमोटॉपी है क्षेत्रों . कहने का मतलब यह है कि इसकी मध्य बेट्टी संख्या है मिलनोर संख्या के बराबर है और इसमें आयाम में एक बिंदु की समरूपता (गणित) से कम है . उदाहरण के लिए, प्रत्येक विलक्षण बिंदु के पास एक जटिल समतल वक्र गुलाब (टोपोलॉजी) के लिए मिलनोर फाइबर होमोटोपिक है। की एक कील मंडलियां (मिल्नोर संख्या एक स्थानीय संपत्ति है, इसलिए अलग-अलग एकवचन बिंदुओं पर इसके अलग-अलग मान हो सकते हैं)।

इस प्रकार हमारे पास समानताएं हैं

मीलनोर संख्या = गोलों की संख्या में कील योग = मध्य की बेट्टी संख्या = एक सतत मानचित्रण की डिग्री पर = ढाल की बहुलता

मिल्नोर संख्या को देखने का एक अन्य तरीका गड़बड़ी सिद्धांत है। हम कहते हैं कि एक बिंदु एक पतित विलक्षण बिंदु है, या कि f में एक पतित विलक्षणता है अगर एक विलक्षण बिंदु है और दूसरे क्रम के सभी आंशिक डेरिवेटिव के हेसियन मैट्रिक्स में शून्य निर्धारक है :

हम मानते हैं कि f में 0 पर एक पतित विलक्षणता है। हम इस पतित विलक्षणता की बहुलता के बारे में यह सोचकर बोल सकते हैं कि कितने बिंदु असीम रूप से चिपके हुए हैं। यदि हम अब गड़बड़ी सिद्धांत को एक निश्चित स्थिर तरीके से f की छवि 0 पर पृथक पतित विलक्षणता अन्य पृथक विलक्षणताओं में विभाजित कर देंगे जो गैर-पतित हैं! ऐसी पृथक गैर-पतित विलक्षणताओं की संख्या उन बिंदुओं की संख्या होगी जो असीम रूप से चिपकी हुई हैं।

संक्षेप में, हम एक अन्य फलन जर्म जी लेते हैं जो मूल बिंदु पर गैर-एकवचन है और नए फलन जर्म h := f + εg पर विचार करते हैं जहां ε बहुत छोटा है। जब ε = 0 तब h = f। फलन h को मोर्स सिद्धांत#f का औपचारिक विकास कहा जाता है। एच की विलक्षणताओं की गणना करना बहुत कठिन है, और वास्तव में यह कम्प्यूटेशनल रूप से असंभव हो सकता है। अंकों की यह संख्या जो असीम रूप से चिपकी हुई है, f की यह स्थानीय बहुलता, f की मिलनोर संख्या है।

आगे का योगदान[2] विरूपण सिद्धांत के स्थान के आयाम के संदर्भ में मिल्नोर संख्या को अर्थ दें, यानी मिल्नोर संख्या विकृतियों के पैरामीटर स्थान का न्यूनतम आयाम है जो प्रारंभिक विलक्षणता के बारे में सभी जानकारी लेती है।

उदाहरण

यहां हम दो चर राशियों में किए गए कुछ कार्यों का उदाहरण देते हैं। एक चर के साथ कार्य करना अधिक सरल है और तकनीकों के विषय में ज्ञात नहीं होता है किन्तु इसके विपरीत तीन चर राशियों के साथ कार्य करना अधिक जटिल हो सकता है। दो अच्छी संख्या है। साथ ही हम बहुपदों से चिपके रहते हैं। यदि f केवल होलोमॉर्फिक फ़ंक्शन है और बहुपद नहीं है, तो हम f के घात श्रेणी विस्तार के साथ काम कर सकते थे।

1

0 पर एक गैर-पतित विलक्षणता के साथ एक कार्य रोगाणु पर विचार करें, कहते हैं . जैकोबियन आदर्श न्यायपूर्ण है . हम अगले स्थानीय बीजगणित की गणना करते हैं:

यह देखने के लिए कि यह सत्य क्यों है, हम हैडामार्ड की लेम्मा का उपयोग कर सकते हैं जो कहती है कि हम कोई भी फलन लिख सकते हैं जैसा

कुछ स्थिर कश्मीर और कार्यों के लिए और में (जहां भी या या दोनों बिल्कुल शून्य हो सकते हैं)। तो, x और y के मॉड्यूलो कार्यात्मक गुणक, हम एच को एक स्थिरांक के रूप में लिख सकते हैं। निरंतर कार्यों का स्थान 1 द्वारा फैला हुआ है, इसलिए यह इस प्रकार है कि μ(f) = 1. यह जांचना आसान है कि 0 पर गैर-पतित एकवचन के साथ किसी भी फ़ंक्शन जर्म जी के लिए हमें μ(g) = 1 मिलता है।

ध्यान दें कि इस विधि को एक गैर-एकवचन फ़ंक्शन जर्म g पर लागू करने से हमें μ(g) = 0 मिलता है।

2

होने देना , तब

तो इस मामले में .

3

कोई दिखा सकता है कि अगर तब इसे इस तथ्य से समझाया जा सकता है कि x-अक्ष के प्रत्येक बिंदु पर f एकवचन है।

वर्सल विकृति

मान लीजिए f परिमित मिलनोर संख्या μ और स्थानीय बीजगणित के लिए एक सदिश समष्टि (रैखिक बीजगणित) के रूप में माना जाता है। तब f का एक मिनिवर्सल विरूपण किया जाता है

कहाँ .

ये विकृतियाँ (या विकास(कार्य)) विज्ञान के अधिकांश क्षेत्रों में रुचि रखते हैं।[citation needed]

अपरिवर्तन

हम तुल्यता वर्गों के निर्माण के लिए एक साथ कार्य करने वाले कीटाणुओं को एकत्र कर सकते हैं। एक मानक तुल्यता है A-तुल्यता|A-तुल्यता। हम कहते हैं कि दो रोगाणु कार्य करते हैं ए-समतुल्य हैं यदि वहाँ डिफियोमोर्फिज्म रोगाणु मौजूद हैं और ऐसा है कि : फ़ंक्शन के डोमेन और फ़ंक्शन की श्रेणी दोनों में चर का एक भिन्न परिवर्तन मौजूद है जो f से g तक ले जाता है।

अगर एफ और जी ए-समतुल्य हैं तो μ(f) = μ(g)।

फिर भी, मिलनॉर संख्या कार्यात्मक रोगाणुओं के लिए एक पूर्ण अपरिवर्तनीय प्रदान नहीं करती है, अर्थात इसका विलोम गलत है: μ(f) = μ(g) के साथ फ़ंक्शन रोगाणु f और g मौजूद हैं जो A-समतुल्य नहीं हैं। इसे देखने के लिए विचार करें और . अपने पास लेकिन एफ और जी स्पष्ट रूप से ए-समतुल्य नहीं हैं क्योंकि एफ का हेसियन मैट्रिक्स शून्य के बराबर है जबकि जी का नहीं है (और हेसियन का रैंक ए-इनवेरिएंट है, जैसा कि देखना आसान है)।

संदर्भ

  1. Milnor, John (1969). कॉम्प्लेक्स हाइपरसर्फ्स के एकवचन बिंदु. Annals of Mathematics Studies. Princeton University Press.
  2. Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N. (1988). अलग-अलग मानचित्रों की विलक्षणता. Vol. 2. Birkhäuser.