लम्बवत रिकॉर्डिंग: Difference between revisions
(Created page with "{{short description|Magnetic disk drive recording technology}} {{Use dmy dates|date=January 2016}} लंबवत रिकॉर्डिंग (या लंबवत च...") |
m (Abhishek moved page लंबवत रिकॉर्डिंग to लम्बवत रिकॉर्डिंग without leaving a redirect) |
(No difference)
|
Revision as of 16:08, 27 April 2023
लंबवत रिकॉर्डिंग (या लंबवत चुंबकीय रिकॉर्डिंग, पीएमआर), जिसे पारंपरिक चुंबकीय रिकॉर्डिंग (सीएमआर) के रूप में भी जाना जाता है, चुंबकीय मीडिया, विशेष रूप से हार्ड डिस्क पर डेटा रिकॉर्डिंग के लिए एक तकनीक है। यह पहली बार 1976 में जापान में तोहोकू विश्वविद्यालय के तत्कालीन प्रोफेसर मौसम-स्थिति इवासाकी द्वारा लाभप्रद साबित हुआ था, और पहली बार व्यावसायिक रूप से 2005 में लागू किया गया था। नैनोस्केल आयामों में अनुदैर्ध्य चुंबकीय रिकॉर्डिंग (एलएमआर) पर पीएमआर का अभूतपूर्व लाभ दिखाते हुए पहला उद्योग-मानक प्रदर्शन 1998 में आईबीएम अल्माडेन रिसर्च सेंटर में डेटा स्टोरेज सिस्टम्स सेंटर (DSSC) के शोधकर्ताओं के सहयोग से बनाया गया था - एक राष्ट्रीय विज्ञान संस्था (NSF) इंजीनियरिंग रिसर्च सेंटर (ERCs) ) करनेगी मेलों विश्वविद्याल (CMU) में।[1]
लाभ
लंबवत रिकॉर्डिंग पारंपरिक अनुदैर्ध्य रिकॉर्डिंग के कंप्यूटर भंडारण घनत्व से तीन गुना से अधिक वितरित कर सकती है।[2] 1986 में, मैक्सेल ने लंबवत रिकॉर्डिंग का उपयोग करके एक फ्लॉपी डिस्क की घोषणा की जो स्टोर कर सकती थी 100 kB per inch (39 kB/cm).[3] 1989 में 2.88 एमबी क्षमता (ईडी या अतिरिक्त-उच्च घनत्व) की अनुमति देने के लिए लंबवत रिकॉर्डिंग को बाद में तोशिबा द्वारा 3.5 फ्लॉपी डिस्क में उपयोग किया गया था, लेकिन वे बाज़ार में सफल होने में विफल रहे। लगभग 2005 से, हार्ड डिस्क ड्राइव के लिए तकनीक का उपयोग शुरू हो गया है। अनुदैर्ध्य रिकॉर्डिंग के साथ हार्ड डिस्क प्रौद्योगिकी की अनुमानित सीमा है 100 to 200 gigabit per square inch (16 to 31 Gb/cm2) Superparamagnetism के कारण, हालांकि यह अनुमान लगातार बदल रहा है। लम्बवत् रिकॉर्डिंग की भविष्यवाणी की जाती है ताकि सूचना घनत्व लगभग तक हो सके 1,000 Gbit/in2 (160 Gbit/cm2).[4] As of August 2010[update], के घनत्व के साथ ड्राइव करता है 667 Gb/in2 (103.4 Gb/cm2) व्यावसायिक रूप से उपलब्ध थे। 2016 में व्यावसायिक रूप से उपलब्ध घनत्व कम से कम था 1,300 Gb/in2 (200 Gb/cm2).[5] 2021 के अंत में उच्चतम घनत्व वाली सीगेट डिस्क उपभोक्ता-लक्षित 2.5 बाराकुडा थी। इस्तेमाल किया है 1,307 Gb/in2 (202.6 Gb/cm2)[6] घनत्व। उपयोग किए गए निर्माता से अन्य डिस्क 1,155 Gb/in2 (179.0 Gb/cm2) और 1,028 Gb/in2 (159.3 Gb/cm2).
प्रौद्योगिकी
चुंबकीय सूचना भंडारण मीडिया को डिजाइन करने में मुख्य चुनौती सुपरपरामैग्नेटिक सीमा के कारण होने वाले थर्मल उतार-चढ़ाव के बावजूद माध्यम के चुंबकीयकरण को बनाए रखना है। यदि ऊष्मीय ऊर्जा बहुत अधिक है, तो माध्यम के एक क्षेत्र में चुंबकीयकरण को उलटने के लिए पर्याप्त ऊर्जा हो सकती है, जिससे वहां संग्रहीत डेटा नष्ट हो जाता है। एक चुंबकीय क्षेत्र के चुंबकीयकरण को उलटने के लिए आवश्यक ऊर्जा चुंबकीय क्षेत्र के आकार और सामग्री की चुंबकीय जबरदस्ती के समानुपाती होती है। चुंबकीय क्षेत्र जितना बड़ा होता है और सामग्री की चुंबकीय ज़बरदस्ती जितनी अधिक होती है, माध्यम उतना ही अधिक स्थिर होता है। इस प्रकार, किसी दिए गए तापमान और ज़बरदस्ती पर चुंबकीय क्षेत्र के लिए न्यूनतम आकार होता है। यदि यह कोई छोटा है तो स्थानीय तापीय उतार-चढ़ाव से अनायास डी-मैग्नेटाइज होने की संभावना है। लंबवत रिकॉर्डिंग उच्च ज़बरदस्ती सामग्री का उपयोग करती है क्योंकि सिर का लेखन क्षेत्र लंबवत ज्यामिति में माध्यम में अधिक कुशलता से प्रवेश करता है।
लंबवत रिकॉर्डिंग के लाभ के लिए लोकप्रिय स्पष्टीकरण यह है कि यह चुंबकीय तत्वों के ध्रुवों को संरेखित करके उच्च भंडारण घनत्व प्राप्त करता है, जो डिस्क प्लैटर की सतह पर लंबवत रूप से बिट्स का प्रतिनिधित्व करते हैं, जैसा कि चित्रण में दिखाया गया है। इस पूरी तरह से सटीक व्याख्या में, बिट्स को इस तरीके से संरेखित करने से प्लेटर क्षेत्र कम लगता है, जो आवश्यक होता अगर उन्हें अनुदैर्ध्य रूप से रखा जाता। इसका मतलब है कि कोशिकाओं को थाली पर एक साथ रखा जा सकता है, इस प्रकार चुंबकीय तत्वों की संख्या में वृद्धि हो सकती है जिन्हें किसी दिए गए क्षेत्र में संग्रहीत किया जा सकता है। सच्ची तस्वीर थोड़ी अधिक जटिल है, भंडारण माध्यम के रूप में चुंबकीय रूप से मजबूत (उच्च ज़बरदस्ती) सामग्री के उपयोग के साथ करना। यह संभव है क्योंकि लंबवत व्यवस्था में चुंबकीय प्रवाह को हार्ड चुंबकीय मीडिया फिल्मों के नीचे एक चुंबकीय रूप से नरम (और अपेक्षाकृत मोटी) अंडरलेयर के माध्यम से निर्देशित किया जाता है (कुल डिस्क संरचना को काफी जटिल और मोटा कर देता है)। इस चुंबकीय रूप से नरम अंडरलेयर को प्रभावी ढंग से राइट हेड का एक हिस्सा माना जा सकता है, जिससे राइट हेड अधिक कुशल हो जाता है, इस प्रकार अनुदैर्ध्य हेड्स के लिए अनिवार्य रूप से समान हेड सामग्री के साथ एक मजबूत राइट फील्ड ग्रेडिएंट का उत्पादन करना संभव हो जाता है, और इसलिए उपयोग की अनुमति देता है। उच्च ज़बरदस्ती चुंबकीय भंडारण माध्यम। एक उच्च ज़बरदस्ती माध्यम स्वाभाविक रूप से ऊष्मीय रूप से अधिक स्थिर होता है, क्योंकि स्थिरता बिट (या चुंबकीय अनाज) मात्रा के उत्पाद के समानुपाती होती है, जो कि यूनिएक्सियल अनिसोट्रॉपी स्थिर K है।u, जो बदले में एक उच्च चुंबकीय ज़बरदस्ती वाली सामग्री के लिए अधिक है।
2000 के दशक की शुरुआत में, तीन महत्वपूर्ण कारक एक साथ आए, जिसने लंबवत रिकॉर्डिंग को अनुदैर्ध्य रिकॉर्डिंग की क्षमताओं से अधिक करने की अनुमति दी और व्यावसायिक सफलता का नेतृत्व किया।[8] सबसे पहले, अनाज के बीच एक ऑक्साइड-पृथक्करण विनिमय-विराम के साथ मीडिया का विकास।[9] दूसरा, अनाज के बीच विनिमय-युग्मन के स्तर को नियंत्रित करने के लिए मीडिया पर एक पतली 'टोपी' का उपयोग[10] और माध्यम की मोटाई के माध्यम से स्विचिंग के प्रसार को बढ़ाने के लिए।[11] तीसरा, माइकल मल्लारी द्वारा आविष्कृत ट्रेलिंग-शील्ड हेड का परिचय। इस हेड ने साधारण पोल हेड की तुलना में उच्च फ़ील्ड ग्रेडिएंट और अधिक अनुकूल फ़ील्ड कोण प्रदान किए।[12]
कार्यान्वयन
वर्टिमाग सिस्टम्स कॉर्पोरेशन, मिनेसोटा विश्वविद्यालय के प्रोफेसर जैक जूडी द्वारा स्थापित। इवासाकी के सहयोगी के रूप में, 1984 में पहली लंबवत डिस्क ड्राइव, हेड और डिस्क का निर्माण किया। आईबीएम पीसी में प्रमुख कंप्यूटर निर्माताओं के लिए 5 एमबी हटाने योग्य फ्लॉपी ड्राइव का प्रदर्शन किया गया। वर्टिमाग 1985 के पीसी क्रैश के दौरान कारोबार से बाहर हो गया।
तोशिबा ने 2005 में इस तकनीक का उपयोग करके पहली व्यावसायिक रूप से उपलब्ध डिस्क ड्राइव (1.8) का उत्पादन किया।[13] उसके तुरंत बाद जनवरी 2006 में, सीगेट प्रौद्योगिकी ने अपने पहले आकार के लैपटॉप की शिपिंग शुरू की 2.5-inch (64 mm) लंबवत रिकॉर्डिंग तकनीक का उपयोग कर हार्ड ड्राइव, सीगेट मोमेंटस 5400.3। सीगेट ने उस समय यह भी घोषणा की थी कि 2006 के अंत तक इसके अधिकांश हार्ड डिस्क स्टोरेज डिवाइस नई तकनीक का उपयोग करेंगे।
अप्रैल 2006 में, सीगेट ने पहले 3.5 इंच लंबवत रिकॉर्डिंग हार्ड ड्राइव, चीता 15K.5 की शिपिंग शुरू की, जिसमें 300GB तक स्टोरेज था, जो 15,000 आरपीएम पर चल रहा था और 73 की डेटा सिग्नलिंग दर के साथ अपने पूर्ववर्तियों की तुलना में 30% बेहतर प्रदर्शन का दावा करता है। -125 मेगाबाइट प्रति सेकंड | एमबीटी/एस।
अप्रैल 2006 में, सीगेट ने बाराकुडा 7200.10 की एक श्रृंखला की घोषणा की 3.5-inch (89 mm) 750 जीबी की अधिकतम क्षमता के साथ लंबवत रिकॉर्डिंग का उपयोग करने वाले एचडीडी। अप्रैल 2006 के अंत में ड्राइव की शिपिंग शुरू हुई।
हिताची लिमिटेड ने 20 जीबी माइक्रोड्राइव की घोषणा की। लंबवत रिकॉर्डिंग पर आधारित हिताची का पहला लैपटॉप ड्राइव (2.5-इंच) 2006 के मध्य में उपलब्ध हुआ, जिसकी अधिकतम क्षमता 160 जीबी थी।
जून 2006 में तोशीबा ने ए 2.5-inch (64 mm) अगस्त में बड़े पैमाने पर उत्पादन के साथ 200-जीबी क्षमता की हार्ड ड्राइव, प्रभावी रूप से मोबाइल स्टोरेज क्षमता के मानक को बढ़ा रही है।
जुलाई 2006 में, पश्चिमी डिजिटल ने अपने डब्ल्यूडी स्कॉर्पियो के बड़े पैमाने पर उत्पादन की घोषणा की 2.5-inch (64 mm) 80 जीबी-प्रति-प्लैटर घनत्व प्राप्त करने के लिए WD-डिज़ाइन और निर्मित लंबवत चुंबकीय रिकॉर्डिंग (PMR) तकनीक का उपयोग कर हार्ड ड्राइव।
अगस्त 2006 में द्रोह ने इसका विस्तार किया 2.5-inch (64 mm) लाइनअप में लंबवत रिकॉर्डिंग का उपयोग करने वाले सीरियल एटीए मॉडल शामिल हैं, जो 160GB क्षमता तक की पेशकश करते हैं।
दिसंबर 2006 में तोशिबा ने कहा कि इसका नया 100 जीबी टू-प्लैटर एचडीडी लंबवत चुंबकीय रिकॉर्डिंग (पीएमआर) पर आधारित है और इसे 1.8 इंच के छोटे फॉर्म फैक्टर में डिजाइन किया गया था।[14] दिसंबर 2006 में Fujitsu ने अपनी MHX2300BT श्रृंखला की घोषणा की 2.5-inch (64 mm) हार्ड डिस्क ड्राइव, 250 और 300 जीबी की क्षमता के साथ।
जनवरी 2007 में हिताची लिमिटेड ने पहली 1-टेराबाइट हार्ड ड्राइव की घोषणा की[15] प्रौद्योगिकी का उपयोग करते हुए, जिसे उन्होंने अप्रैल 2007 में वितरित किया।[16] जुलाई 2008 में सीगेट टेक्नोलॉजी ने PMR तकनीक का उपयोग करते हुए 1.5 टेराबाइट SATA हार्ड ड्राइव की घोषणा की।
जनवरी 2009 में वेस्टर्न डिजिटल ने PMR तकनीक का उपयोग करते हुए पहली 2.0 टेराबाइट SATA हार्ड ड्राइव की घोषणा की।
फरवरी 2009 में सीगेट टेक्नोलॉजी ने पहली 7,200rpm 2.0 टेराबाइट SATA हार्ड ड्राइव की घोषणा की, जिसमें SATA 2 या SAS 2.0 इंटरफ़ेस के विकल्प के साथ PMR तकनीक का उपयोग किया गया था।
यह भी देखें
संदर्भ
- ↑ S. Khizroev, M. Kryder, Y. Ikeda, K. Rubin, P. Arnett, M. Best, D. A. Thompson, "Recording heads with trackwidths suitable for 100 Gbit/in2 density, "IEEE Trans. Magn., 35 (5), 2544–6 (1999)[1] Archived 14 December 2013 at the Wayback Machine
- ↑ Merritt, Rick (26 September 2005). "हार्ड ड्राइव लंबवत चलते हैं". EE Times.
- ↑ Bateman, Selby (March 1986). "मास स्टोरेज का भविष्य". COMPUTE!. No. 70. COMPUTE! Publications. p. 23. Retrieved 7 October 2018.
- ↑ "Hitachi News Release – Hitachi achieves nanotechnology milestone for quadrupling terabyte hard drive". Archived from the original on 28 April 2017. Retrieved 20 February 2008.
- ↑ "Seagate Barracuda Compute SATA 2.5" Product Manual, October 2016" (PDF). Retrieved 9 May 2021.
- ↑ "BarraCuda 4TB, 5TB (2.5) Product Manual" (PDF). 30 September 2020. Retrieved 29 October 2021.
- ↑ R. Wood, "Future hard disk drive systems", JMMM, Vol. 321, No. 6, pp. 555-561, Mar. 2009,
- ↑ "2005: PERPENDICULAR MAGNETIC RECORDING ARRIVES", Computer History Museum, Data Storage Milestone, 2005
- ↑ "Magnetic Recording Media", 1.5.3 Encyclopedia of Physical Science and Technology (Third Edition), 2003
- ↑ Y. Sonobe, K.K. Tham, T. Umezawa, C. Takasu, J.A. Dumaya, P.Y. Leo, "Effect of continuous layer in CGC perpendicular recording media", JMMM, Vol. 303, No. 2, pp. Pages 292-295, 2006
- ↑ R. H. Victora, X. Shen, "Exchange coupled composite media for perpendicular magnetic recording," IEEE Trans. Magn., vol. 41, no. 10, pp. 2828-2833, Oct. 2005
- ↑ "Perpendicular Magnetic Recording Technology" white paper, HGST Nov 2007
- ↑ "First Perpendicular Recording HDD – Toshiba Press Release". Archived from the original on 14 April 2009. Retrieved 16 March 2008.
- ↑ "AppleInsider | Briefly: Foxconn to build 1.5m MBPs; 100GB iPod drive". Archived from the original on 8 December 2006. Retrieved 6 December 2006.
- ↑ "PC World – Hitachi Introduces 1-Terabyte Hard Drive". Archived from the original on 12 January 2007. Retrieved 10 January 2007.
- ↑ "Hitachi gets its one terabyte Deskstar 7K1000 drives out the door – Engadget". Archived from the original on 17 September 2017. Retrieved 8 September 2017.
बाहरी संबंध
- "Get Perpendicular" A Flash animation and song explaining perpendicular recording from Hitachi Research
- Perpendicular Magnetic Recording (Hardcover) by Sakhrat Khizroev, Dmitri Litvinov: ISBN 1-4020-2662-5