क्वार्टिक इंटरेक्शन: Difference between revisions
(Created page with "{{Short description|Quantum field theory with four-point interactions}} क्वांटम क्षेत्र सिद्धांत में, क्वार...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Quantum field theory with four-point interactions}} | {{Short description|Quantum field theory with four-point interactions}} | ||
[[ क्वांटम क्षेत्र सिद्धांत ]] में, क्वार्टिक | [[ क्वांटम क्षेत्र सिद्धांत ]] में, क्वार्टिक (चतुर्थक) अन्तःक्रिया एक प्रकार की आत्म-ऊर्जा है | एक अदिष्ट क्षेत्र में आत्म-बातचीत। [[चार-फर्मियन इंटरैक्शन]] (चार उप-परमाणु कण अन्तःक्रिया) के विषय के तहत अन्य प्रकार के क्वार्टिक (चतुर्थक) अन्तःक्रिया मिल सकते हैं। शास्त्रीय मुक्त [[अदिश क्षेत्र]] <math>\varphi</math> क्लेन-गॉर्डन समीकरण को संतुष्ट करता है। यदि एक अदिश क्षेत्र को निरूपित किया जाता है <math>\varphi</math>, एक संभावित ऊर्जा शब्द जोड़कर एक क्वार्टिक (चतुर्थक) अन्तःक्रिया का प्रतिनिधित्व किया जाता है <math>({\lambda}/{4!}) \varphi^4</math>[[लाग्रंगियन घनत्व]] के लिए। [[युग्मन स्थिरांक]] <math>\lambda</math> 4-आयामी [[ अंतरिक्ष समय ]] में आयामहीन है। | ||
यह लेख उपयोग करता है <math>(+, -, -, -)</math> | यह लेख उपयोग करता है <math>(+, -, -, -)</math> मिंकोव्स्की अंतरिक्ष के लिए [[मापीय हस्ताक्षर]]। | ||
== एक वास्तविक अदिश क्षेत्र के लिए | == एक वास्तविक अदिश क्षेत्र के लिए लाग्रंगियन == | ||
क्वार्टिक | क्वार्टिक (चतुर्थक) अन्तःक्रिया वाले [[वास्तविक संख्या]] अदिश क्षेत्र के लिए लाग्रंगियन (फ़ील्ड थ्योरी) है | ||
:<math>\mathcal{L}(\varphi)=\frac{1}{2} [\partial^\mu \varphi \partial_\mu \varphi -m^2 \varphi^2] -\frac{\lambda}{4!} \varphi^4.</math> | :<math>\mathcal{L}(\varphi)=\frac{1}{2} [\partial^\mu \varphi \partial_\mu \varphi -m^2 \varphi^2] -\frac{\lambda}{4!} \varphi^4.</math> | ||
इस | इस लाग्रंगियन के पास एक वैश्विक Z है<sub>2</sub> समरूपता मानचित्रण <math>\varphi\to-\varphi</math>. | ||
== एक जटिल अदिश क्षेत्र के लिए | == एक जटिल अदिश क्षेत्र के लिए लाग्रंगियन == | ||
एक सम्मिश्र संख्या अदिश क्षेत्र के लिए | एक सम्मिश्र संख्या अदिश क्षेत्र के लिए लाग्रंगियन को निम्नानुसार प्रेरित किया जा सकता है। दो अदिश क्षेत्रों के लिए <math>\varphi_1</math> और <math>\varphi_2</math> लाग्रंगियन का रूप है | ||
:<math> \mathcal{L}(\varphi_1,\varphi_2) = | :<math> \mathcal{L}(\varphi_1,\varphi_2) = | ||
\frac{1}{2} [ \partial_\mu \varphi_1 \partial^\mu \varphi_1 - m^2 \varphi_1^2] | \frac{1}{2} [ \partial_\mu \varphi_1 \partial^\mu \varphi_1 - m^2 \varphi_1^2] | ||
Line 22: | Line 22: | ||
इस जटिल अदिश क्षेत्र के संदर्भ में व्यक्त किया गया, उपरोक्त लैग्रैंगियन बन जाता है | इस जटिल अदिश क्षेत्र के संदर्भ में व्यक्त किया गया, उपरोक्त लैग्रैंगियन बन जाता है | ||
:<math>\mathcal{L}(\phi)=\partial^\mu \phi^* \partial_\mu \phi -m^2 \phi^* \phi -\lambda (\phi^* \phi)^2,</math> | :<math>\mathcal{L}(\phi)=\partial^\mu \phi^* \partial_\mu \phi -m^2 \phi^* \phi -\lambda (\phi^* \phi)^2,</math> | ||
जो वास्तविक अदिश क्षेत्रों के SO(2) | जो वास्तविक अदिश क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है <math>\varphi_1, \varphi_2</math>, जैसा कि जटिल क्षेत्र का विस्तार करके देखा जा सकता है <math>\phi</math> वास्तविक और काल्पनिक भागों में। | ||
साथ <math>N</math> वास्तविक अदिश क्षेत्र, हमारे पास हो सकता है a <math>\varphi^4</math> एक [[वैश्विक समरूपता]] [[विशेष ऑर्थोगोनल समूह]] के साथ | साथ <math>N</math> वास्तविक अदिश क्षेत्र, हमारे पास हो सकता है a <math>\varphi^4</math> एक [[वैश्विक समरूपता]] [[विशेष ऑर्थोगोनल समूह]] के साथ प्रतिरूप | SO(N) समरूपता लाग्रंगियन द्वारा दी गई | ||
:<math>\mathcal{L}(\varphi_1,...,\varphi_N)=\frac{1}{2} [\partial^\mu \varphi_a \partial_\mu \varphi_a - m^2 \varphi_a \varphi_a] -\frac{1}{4} \lambda (\varphi_a \varphi_a)^2, \quad a=1,...,N.</math> | :<math>\mathcal{L}(\varphi_1,...,\varphi_N)=\frac{1}{2} [\partial^\mu \varphi_a \partial_\mu \varphi_a - m^2 \varphi_a \varphi_a] -\frac{1}{4} \lambda (\varphi_a \varphi_a)^2, \quad a=1,...,N.</math> | ||
जटिल क्षेत्र को वास्तविक और काल्पनिक भागों में विस्तारित करने से पता चलता है कि यह वास्तविक | जटिल क्षेत्र को वास्तविक और काल्पनिक भागों में विस्तारित करने से पता चलता है कि यह वास्तविक अदिष्ट क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है। | ||
उपरोक्त सभी | उपरोक्त सभी प्रतिरूपों में, युग्मन स्थिरांक <math>\lambda</math> सकारात्मक होना चाहिए, क्योंकि अन्यथा क्षमता नीचे असीमित होगी, और कोई स्थिर निर्वात नहीं होगा। इसके अलावा, नीचे चर्चा की गई [[फेनमैन अभिन्न मार्ग]] रूप से परिभाषित नहीं होगी। 4 आयामों में, <math>\phi^4</math> सिद्धांतों में [[लैंडौ स्तंभ]] है। इसका मतलब है कि उच्च-ऊर्जा पैमाने पर सीमा के बिना, [[पुनर्सामान्यीकरण]] सिद्धांत को [[क्वांटम क्षुद्रता]] प्रदान करेगा। <math>\phi^4</math> h> प्रतिरूप ग्रिफिथ्स-साइमन वर्ग से संबंधित है,<ref>{{Cite journal |last1=Simon |first1=Barry |last2=Griffiths |first2=Robert B. |date=1973-06-01 |title=The (φ4)2 field theory as a classical Ising model |url=https://doi.org/10.1007/BF01645626 |journal=Communications in Mathematical Physics |language=en |volume=33 |issue=2 |pages=145–164 |doi=10.1007/BF01645626 |s2cid=123201243 |issn=1432-0916}}</ref> जिसका अर्थ है कि इसे एक निश्चित प्रकार के बिंदुरेख पर [[आइसिंग मॉडल|आइसिंग प्रतिरूप]] के यादृच्छिक चर के अभिसरण के रूप में भी प्रदर्शित किया जा सकता है। दोनों की तुच्छता <math>\phi^4</math> प्रतिरूप और ईज़िंग प्रतिरूप <math>d\geq 4</math> एक ग्राफिकल प्रतिनिधित्व के माध्यम से दिखाया जा सकता है जिसे यादृच्छिक वर्तमान विस्तार के रूप में जाना जाता है।<ref>{{Cite journal |last1=Aizenman |first1=Michael |last2=Duminil-Copin |first2=Hugo |date=2021-07-01 |title=Marginal triviality of the scaling limits of critical 4D Ising and $\phi_4^4$ models |url=http://arxiv.org/abs/1912.07973 |journal=Annals of Mathematics |volume=194 |issue=1 |doi=10.4007/annals.2021.194.1.3 |arxiv=1912.07973 |s2cid=209386716 |issn=0003-486X}}</ref> | ||
Line 78: | Line 78: | ||
=== असतत समरूपता का स्वत: टूटना === | === असतत समरूपता का स्वत: टूटना === | ||
सबसे सरल सापेक्षतावादी प्रणाली जिसमें हम सहज समरूपता को तोड़ते हुए देख सकते हैं, वह एक एकल | सबसे सरल सापेक्षतावादी प्रणाली जिसमें हम सहज समरूपता को तोड़ते हुए देख सकते हैं, वह एक एकल अदिष्ट क्षेत्र है <math>\varphi</math> लाग्रंगियन के साथ | ||
:<math>\mathcal{L}(\varphi) = \frac{1}{2} (\partial \varphi)^2 + \frac{1}{2}\mu^2 \varphi^2 - \frac{1}{4} \lambda \varphi^4 \equiv \frac{1}{2} (\partial \varphi)^2 - V(\varphi), </math> | :<math>\mathcal{L}(\varphi) = \frac{1}{2} (\partial \varphi)^2 + \frac{1}{2}\mu^2 \varphi^2 - \frac{1}{4} \lambda \varphi^4 \equiv \frac{1}{2} (\partial \varphi)^2 - V(\varphi), </math> | ||
कहाँ <math> \mu^2 > 0</math> और | कहाँ <math> \mu^2 > 0</math> और | ||
Line 86: | Line 86: | ||
अब हम इस न्यूनतम लेखन के क्षेत्र का विस्तार करते हैं | अब हम इस न्यूनतम लेखन के क्षेत्र का विस्तार करते हैं | ||
:<math> \varphi(x) = v + \sigma(x), </math> | :<math> \varphi(x) = v + \sigma(x), </math> | ||
और | और लाग्रंगियन में प्रतिस्थापित करने पर हमें मिलता है | ||
:<math> \mathcal{L}(\varphi) = | :<math> \mathcal{L}(\varphi) = | ||
\underbrace{-\frac{\mu^4}{4\lambda}}_{\text{unimportant constant}} | \underbrace{-\frac{\mu^4}{4\lambda}}_{\text{unimportant constant}} | ||
+ \underbrace{\frac{1}{2} [( \partial \sigma)^2 - (\sqrt{2}\mu)^2 \sigma^2 ]}_{\text{massive scalar field}} | + \underbrace{\frac{1}{2} [( \partial \sigma)^2 - (\sqrt{2}\mu)^2 \sigma^2 ]}_{\text{massive scalar field}} | ||
+ \underbrace{ (-\lambda v \sigma^3 - \frac{\lambda}{4} \sigma^4) }_{\text{self-interactions}}. </math> | + \underbrace{ (-\lambda v \sigma^3 - \frac{\lambda}{4} \sigma^4) }_{\text{self-interactions}}. </math> | ||
जहां हम देखते हैं कि | जहां हम देखते हैं कि अदिष्ट <math>\sigma</math> अब एक सकारात्मक द्रव्यमान शब्द है। | ||
निर्वात अपेक्षा मूल्यों के संदर्भ में सोचने से हमें यह समझने में मदद मिलती है कि जब समरूपता अनायास टूट जाती है तो क्या होता है। | निर्वात अपेक्षा मूल्यों के संदर्भ में सोचने से हमें यह समझने में मदद मिलती है कि जब समरूपता अनायास टूट जाती है तो क्या होता है। | ||
मूल | मूल लाग्रंगियन के तहत अपरिवर्तनीय था <math>Z_2</math> समरूपता <math> \varphi \rightarrow -\varphi</math>. तब से | ||
:<math> \langle \Omega | \varphi | \Omega \rangle = \pm \sqrt{ \frac{6\mu^2}{\lambda} }</math> | :<math> \langle \Omega | \varphi | \Omega \rangle = \pm \sqrt{ \frac{6\mu^2}{\lambda} }</math> | ||
दोनों मिनिमा हैं, दो अलग-अलग वैकुआ होने चाहिए: <math>|\Omega_\pm \rangle</math> साथ | दोनों मिनिमा हैं, दो अलग-अलग वैकुआ होने चाहिए: <math>|\Omega_\pm \rangle</math> साथ | ||
Line 100: | Line 100: | ||
के बाद से <math>Z_2</math> समरूपता लेता है <math> \varphi \rightarrow -\varphi</math>, इसे अवश्य लेना चाहिए <math> | \Omega_+ \rangle \leftrightarrow | \Omega_- \rangle </math> भी। | के बाद से <math>Z_2</math> समरूपता लेता है <math> \varphi \rightarrow -\varphi</math>, इसे अवश्य लेना चाहिए <math> | \Omega_+ \rangle \leftrightarrow | \Omega_- \rangle </math> भी। | ||
सिद्धांत के लिए दो संभावित रिक्तिकाएं समतुल्य हैं, लेकिन एक को चुनना होगा। | सिद्धांत के लिए दो संभावित रिक्तिकाएं समतुल्य हैं, लेकिन एक को चुनना होगा। | ||
हालांकि ऐसा लगता है कि नए | हालांकि ऐसा लगता है कि नए लाग्रंगियनe में <math>Z_2</math> समरूपता गायब हो गई है, यह अब भी है, लेकिन यह अब कार्य करता है | ||
<math> \sigma \rightarrow -\sigma - 2v. </math> | <math> \sigma \rightarrow -\sigma - 2v. </math> | ||
यह अनायास टूटी हुई समरूपता की एक सामान्य विशेषता है: निर्वात उन्हें तोड़ देता है, लेकिन वे वास्तव में लैग्रैंगियन में नहीं टूटे हैं, बस छिपे हुए हैं, और अक्सर केवल एक गैर-रैखिक तरीके से महसूस किए जाते हैं।<ref>Schwartz, Quantum Field Theory and the Standard Model, Chapter 28.1</ref> | यह अनायास टूटी हुई समरूपता की एक सामान्य विशेषता है: निर्वात उन्हें तोड़ देता है, लेकिन वे वास्तव में लैग्रैंगियन में नहीं टूटे हैं, बस छिपे हुए हैं, और अक्सर केवल एक गैर-रैखिक तरीके से महसूस किए जाते हैं।<ref>Schwartz, Quantum Field Theory and the Standard Model, Chapter 28.1</ref> | ||
Line 128: | Line 128: | ||
== यह भी देखें == | == यह भी देखें == | ||
* | * अदिष्ट क्षेत्र सिद्धांत | ||
* क्वांटम तुच्छता | * क्वांटम तुच्छता | ||
* लैंडौ पोल | * लैंडौ पोल |
Revision as of 18:59, 14 April 2023
क्वांटम क्षेत्र सिद्धांत में, क्वार्टिक (चतुर्थक) अन्तःक्रिया एक प्रकार की आत्म-ऊर्जा है | एक अदिष्ट क्षेत्र में आत्म-बातचीत। चार-फर्मियन इंटरैक्शन (चार उप-परमाणु कण अन्तःक्रिया) के विषय के तहत अन्य प्रकार के क्वार्टिक (चतुर्थक) अन्तःक्रिया मिल सकते हैं। शास्त्रीय मुक्त अदिश क्षेत्र क्लेन-गॉर्डन समीकरण को संतुष्ट करता है। यदि एक अदिश क्षेत्र को निरूपित किया जाता है , एक संभावित ऊर्जा शब्द जोड़कर एक क्वार्टिक (चतुर्थक) अन्तःक्रिया का प्रतिनिधित्व किया जाता है लाग्रंगियन घनत्व के लिए। युग्मन स्थिरांक 4-आयामी अंतरिक्ष समय में आयामहीन है।
यह लेख उपयोग करता है मिंकोव्स्की अंतरिक्ष के लिए मापीय हस्ताक्षर।
एक वास्तविक अदिश क्षेत्र के लिए लाग्रंगियन
क्वार्टिक (चतुर्थक) अन्तःक्रिया वाले वास्तविक संख्या अदिश क्षेत्र के लिए लाग्रंगियन (फ़ील्ड थ्योरी) है
इस लाग्रंगियन के पास एक वैश्विक Z है2 समरूपता मानचित्रण .
एक जटिल अदिश क्षेत्र के लिए लाग्रंगियन
एक सम्मिश्र संख्या अदिश क्षेत्र के लिए लाग्रंगियन को निम्नानुसार प्रेरित किया जा सकता है। दो अदिश क्षेत्रों के लिए और लाग्रंगियन का रूप है
जिसे एक जटिल अदिश क्षेत्र का परिचय देते हुए अधिक संक्षिप्त रूप से लिखा जा सकता है के रूप में परिभाषित
इस जटिल अदिश क्षेत्र के संदर्भ में व्यक्त किया गया, उपरोक्त लैग्रैंगियन बन जाता है
जो वास्तविक अदिश क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है , जैसा कि जटिल क्षेत्र का विस्तार करके देखा जा सकता है वास्तविक और काल्पनिक भागों में।
साथ वास्तविक अदिश क्षेत्र, हमारे पास हो सकता है a एक वैश्विक समरूपता विशेष ऑर्थोगोनल समूह के साथ प्रतिरूप | SO(N) समरूपता लाग्रंगियन द्वारा दी गई
जटिल क्षेत्र को वास्तविक और काल्पनिक भागों में विस्तारित करने से पता चलता है कि यह वास्तविक अदिष्ट क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है।
उपरोक्त सभी प्रतिरूपों में, युग्मन स्थिरांक सकारात्मक होना चाहिए, क्योंकि अन्यथा क्षमता नीचे असीमित होगी, और कोई स्थिर निर्वात नहीं होगा। इसके अलावा, नीचे चर्चा की गई फेनमैन अभिन्न मार्ग रूप से परिभाषित नहीं होगी। 4 आयामों में, सिद्धांतों में लैंडौ स्तंभ है। इसका मतलब है कि उच्च-ऊर्जा पैमाने पर सीमा के बिना, पुनर्सामान्यीकरण सिद्धांत को क्वांटम क्षुद्रता प्रदान करेगा। h> प्रतिरूप ग्रिफिथ्स-साइमन वर्ग से संबंधित है,[1] जिसका अर्थ है कि इसे एक निश्चित प्रकार के बिंदुरेख पर आइसिंग प्रतिरूप के यादृच्छिक चर के अभिसरण के रूप में भी प्रदर्शित किया जा सकता है। दोनों की तुच्छता प्रतिरूप और ईज़िंग प्रतिरूप एक ग्राफिकल प्रतिनिधित्व के माध्यम से दिखाया जा सकता है जिसे यादृच्छिक वर्तमान विस्तार के रूप में जाना जाता है।[2]
फेनमैन अभिन्न परिमाणीकरण
फेनमैन आरेख विस्तार फेनमैन पथ अभिन्न सूत्रीकरण से भी प्राप्त किया जा सकता है।[3] φ में बहुपदों के समय क्रमित निर्वात प्रत्याशा मूल्य, जिसे n-कण ग्रीन के कार्यों के रूप में जाना जाता है, सभी संभावित क्षेत्रों को एकीकृत करके निर्मित किया जाता है, बिना किसी बाहरी क्षेत्र के निर्वात अपेक्षा मान द्वारा सामान्य किया जाता है,
इन सभी ग्रीन के कार्यों को जनरेटिंग फ़ंक्शन में जे (एक्स) φ (एक्स) में घातांक का विस्तार करके प्राप्त किया जा सकता है
समय को काल्पनिक बनाने के लिए एक बाती घुमाव लागू किया जा सकता है। हस्ताक्षर को (++++) में बदलने के बाद एक φ देता है4 4-आयामी यूक्लिडियन अंतरिक्ष पर सांख्यिकीय यांत्रिकी अभिन्न,
आम तौर पर, यह नियत संवेग वाले कणों के प्रकीर्णन पर लागू होता है, जिस स्थिति में, फूरियर रूपांतरण उपयोगी होता है, इसके बदले देता है
कहाँ डिराक डेल्टा समारोह है।
इस कार्यात्मक अभिन्न का मूल्यांकन करने के लिए मानक चाल इसे घातीय कारकों के उत्पाद के रूप में लिखना है, योजनाबद्ध रूप से,
दूसरे दो घातीय कारकों को शक्ति श्रृंखला के रूप में विस्तारित किया जा सकता है, और इस विस्तार के संयोजन को रेखांकन के रूप में दर्शाया जा सकता है। λ = 0 के साथ अभिन्न को अनंत रूप से कई प्राथमिक गॉसियन इंटीग्रल के उत्पाद के रूप में माना जा सकता है, और परिणाम को फेनमैन आरेखों के योग के रूप में व्यक्त किया जा सकता है, जिसकी गणना निम्नलिखित फेनमैन नियमों का उपयोग करके की जाती है:
- प्रत्येक क्षेत्र एन-पॉइंट यूक्लिडियन ग्रीन के फ़ंक्शन को ग्राफ़ में एक बाहरी रेखा (आधा किनारा) द्वारा दर्शाया गया है, और गति पी के साथ जुड़ा हुआ है।
- प्रत्येक शीर्ष को एक कारक -λ द्वारा दर्शाया जाता है।
- दिए गए क्रम में λk, n बाहरी रेखाओं और k शीर्षों वाले सभी आरेख इस प्रकार बनाए गए हैं कि प्रत्येक शीर्ष में प्रवाहित होने वाला संवेग शून्य है। प्रत्येक आंतरिक रेखा को एक कारक 1/(q2 + मी2), जहाँ q उस रेखा से बहने वाला संवेग है।
- कोई भी अप्रतिबंधित क्षण सभी मूल्यों पर एकीकृत होते हैं।
- परिणाम को एक समरूपता कारक द्वारा विभाजित किया जाता है, जो कि ग्राफ़ की रेखाओं और शीर्षों को इसकी कनेक्टिविटी को बदले बिना पुनर्व्यवस्थित करने के तरीकों की संख्या है।
- निर्वात बुलबुले वाले ग्राफ़ शामिल न करें, बिना किसी बाहरी रेखा वाले कनेक्टेड सबग्राफ़।
अंतिम नियम द्वारा विभाजित करने के प्रभाव को ध्यान में रखता है . मिन्कोव्स्की-स्पेस फेनमैन नियम समान हैं, सिवाय इसके कि प्रत्येक शीर्ष द्वारा दर्शाया गया है , जबकि प्रत्येक आंतरिक रेखा को एक कारक i/(q2</सुप>-एम2 + i ε), जहां ε शब्द मिन्कोव्स्की-स्पेस गॉसियन इंटीग्रल कन्वर्ज बनाने के लिए आवश्यक छोटे विक रोटेशन का प्रतिनिधित्व करता है।
नवीनीकरण
अप्रतिबंधित गति पर अभिन्न, जिसे लूप इंटीग्रल कहा जाता है, फेनमैन ग्राफ में आमतौर पर विचलन होता है। यह आम तौर पर रेनॉर्मलाइज़ेशन द्वारा नियंत्रित किया जाता है, जो लैग्रेंजियन के लिए अलग-अलग काउंटर-टर्म्स को इस तरह से जोड़ने की एक प्रक्रिया है कि मूल लैग्रेंजियन और प्रतिवाद ्स से निर्मित आरेख परिमित हैं।[4] प्रक्रिया में एक पुनर्सामान्यीकरण पैमाना पेश किया जाना चाहिए, और युग्मन स्थिरांक और द्रव्यमान इस पर निर्भर हो जाते हैं। यह वह निर्भरता है जो पहले उल्लेख किए गए लन्दौ ध्रुव की ओर ले जाती है, और इसके लिए आवश्यक है कि कटऑफ को परिमित रखा जाए। वैकल्पिक रूप से, यदि कटऑफ़ को अनंत तक जाने की अनुमति दी जाती है, तो लैंडौ पोल से बचा जा सकता है, यदि पुन: सामान्यीकृत युग्मन शून्य तक चलता है, सिद्धांत क्वांटम तुच्छता प्रदान करता है।[5]
स्वतःस्फूर्त समरूपता टूटना
एक दिलचस्प विशेषता तब हो सकती है जब एम2 ऋणात्मक हो जाता है, लेकिन λ के साथ अभी भी धनात्मक है। इस मामले में, निर्वात में दो सबसे कम-ऊर्जा वाले राज्य होते हैं, जिनमें से प्रत्येक अनायास Z को तोड़ देता है2 मूल सिद्धांत की वैश्विक समरूपता। इससे डोमेन दीवार (स्ट्रिंग सिद्धांत) जैसे दिलचस्प सामूहिक राज्यों की उपस्थिति होती है। O(2) सिद्धांत में, रिक्तिका एक वृत्त पर स्थित होगी, और किसी एक का चुनाव अनायास ही O(2) समरूपता को तोड़ देगा। एक निरंतर टूटी हुई समरूपता एक गोल्डस्टोन बोसोन की ओर ले जाती है। इस प्रकार की सहज समरूपता टूटना हिग्स तंत्र का आवश्यक घटक है।[6]
असतत समरूपता का स्वत: टूटना
सबसे सरल सापेक्षतावादी प्रणाली जिसमें हम सहज समरूपता को तोड़ते हुए देख सकते हैं, वह एक एकल अदिष्ट क्षेत्र है लाग्रंगियन के साथ
कहाँ और
के संबंध में क्षमता को कम करना ओर जाता है
अब हम इस न्यूनतम लेखन के क्षेत्र का विस्तार करते हैं
और लाग्रंगियन में प्रतिस्थापित करने पर हमें मिलता है
जहां हम देखते हैं कि अदिष्ट अब एक सकारात्मक द्रव्यमान शब्द है।
निर्वात अपेक्षा मूल्यों के संदर्भ में सोचने से हमें यह समझने में मदद मिलती है कि जब समरूपता अनायास टूट जाती है तो क्या होता है। मूल लाग्रंगियन के तहत अपरिवर्तनीय था समरूपता . तब से
दोनों मिनिमा हैं, दो अलग-अलग वैकुआ होने चाहिए: साथ
के बाद से समरूपता लेता है , इसे अवश्य लेना चाहिए भी। सिद्धांत के लिए दो संभावित रिक्तिकाएं समतुल्य हैं, लेकिन एक को चुनना होगा। हालांकि ऐसा लगता है कि नए लाग्रंगियनe में समरूपता गायब हो गई है, यह अब भी है, लेकिन यह अब कार्य करता है यह अनायास टूटी हुई समरूपता की एक सामान्य विशेषता है: निर्वात उन्हें तोड़ देता है, लेकिन वे वास्तव में लैग्रैंगियन में नहीं टूटे हैं, बस छिपे हुए हैं, और अक्सर केवल एक गैर-रैखिक तरीके से महसूस किए जाते हैं।[7]
सटीक समाधान
प्रपत्र में लिखे गए सिद्धांत की गति के समीकरण के सटीक शास्त्रीय समाधानों का एक सेट मौजूद है
जो द्रव्यमान रहित के लिए लिखा जा सकता है, मामले के रूप में[8]
साथ एक जैकोबी अण्डाकार समारोह और दो एकीकरण स्थिरांक, बशर्ते निम्नलिखित फैलाव संबंध हो
दिलचस्प बात यह है कि हमने एक द्रव्यमान रहित समीकरण के साथ शुरुआत की थी लेकिन सटीक समाधान एक बड़े पैमाने पर समाधान के लिए एक फैलाव संबंध के साथ एक लहर का वर्णन करता है। जब द्रव्यमान शब्द शून्य नहीं होता है तो प्राप्त होता है
अब फैलाव संबंध होने के नाते
अंत में, समरूपता को तोड़ने के मामले में किसी के पास है
प्राणी और निम्नलिखित फैलाव संबंध धारण करता है
ये तरंग समाधान दिलचस्प हैं, भले ही हमने एक गलत द्रव्यमान चिह्न के साथ एक समीकरण के साथ शुरू किया, फैलाव संबंध सही है। इसके अलावा, जैकोबी समारोह कोई वास्तविक शून्य नहीं है और इसलिए क्षेत्र कभी भी शून्य नहीं होता है, लेकिन एक दिए गए स्थिर मान के चारों ओर घूमता है जिसे प्रारंभ में समरूपता के सहज टूटने का वर्णन करने के लिए चुना जाता है।
अद्वितीयता का प्रमाण प्रदान किया जा सकता है यदि हम ध्यान दें कि फॉर्म में समाधान खोजा जा सकता है प्राणी . फिर, आंशिक अंतर समीकरण एक सामान्य अंतर समीकरण बन जाता है जो जैकोबी अंडाकार समारोह को परिभाषित करता है उचित फैलाव संबंध को संतुष्ट करना।
यह भी देखें
- अदिष्ट क्षेत्र सिद्धांत
- क्वांटम तुच्छता
- लैंडौ पोल
- पुनर्सामान्यीकरण
- हिग्स तंत्र
- गोल्डस्टोन बोसोन
- कोलमैन-वेनबर्ग क्षमता
संदर्भ
- ↑ Simon, Barry; Griffiths, Robert B. (1973-06-01). "The (φ4)2 field theory as a classical Ising model". Communications in Mathematical Physics (in English). 33 (2): 145–164. doi:10.1007/BF01645626. ISSN 1432-0916. S2CID 123201243.
- ↑ Aizenman, Michael; Duminil-Copin, Hugo (2021-07-01). "Marginal triviality of the scaling limits of critical 4D Ising and $\phi_4^4$ models". Annals of Mathematics. 194 (1). arXiv:1912.07973. doi:10.4007/annals.2021.194.1.3. ISSN 0003-486X. S2CID 209386716.
- ↑ A general reference for this section is Ramond, Pierre (2001-12-21). Field Theory: A Modern Primer (Second ed.). USA: Westview Press. ISBN 0-201-30450-3..
- ↑ See the previous reference, or for more detail, Itzykson, Zuber; Zuber, Jean-Bernard (2006-02-24). Quantum Field Theory. Dover..
- ↑ D. J. E. Callaway (1988). "Triviality Pursuit: Can Elementary Scalar Particles Exist?". Physics Reports. 167 (5): 241–320. Bibcode:1988PhR...167..241C. doi:10.1016/0370-1573(88)90008-7.
- ↑ A basic description of spontaneous symmetry breaking may be found in the previous two references, or most other Quantum Field Theory books.
- ↑ Schwartz, Quantum Field Theory and the Standard Model, Chapter 28.1
- ↑ Marco Frasca (2011). "शास्त्रीय स्केलर फील्ड समीकरणों का सटीक समाधान". Journal of Nonlinear Mathematical Physics. 18 (2): 291–297. arXiv:0907.4053. Bibcode:2011JNMP...18..291F. doi:10.1142/S1402925111001441. S2CID 17314344.
अग्रिम पठन
- 't Hooft, G., "The Conceptual Basis of Quantum Field Theory" (online version).