क्वार्टिक इंटरेक्शन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Quantum field theory with four-point interactions}}
{{Short description|Quantum field theory with four-point interactions}}
[[ क्वांटम क्षेत्र सिद्धांत ]] में, क्वार्टिक (चतुर्थक) अन्तःक्रिया एक प्रकार की आत्म-ऊर्जा है | एक अदिष्ट क्षेत्र में आत्म-बातचीत। [[चार-फर्मियन इंटरैक्शन]] (चार उप-परमाणु कण अन्तःक्रिया) के विषय के तहत अन्य प्रकार के क्वार्टिक (चतुर्थक) अन्तःक्रिया मिल सकते हैं। शास्त्रीय मुक्त [[अदिश क्षेत्र]] <math>\varphi</math> क्लेन-गॉर्डन समीकरण को संतुष्ट करता है। यदि एक अदिश क्षेत्र को निरूपित किया जाता है <math>\varphi</math>, एक संभावित ऊर्जा शब्द जोड़कर एक क्वार्टिक (चतुर्थक) अन्तःक्रिया का प्रतिनिधित्व किया जाता है <math>({\lambda}/{4!}) \varphi^4</math>[[लाग्रंगियन घनत्व]] के लिए। [[युग्मन स्थिरांक]] <math>\lambda</math> 4-आयामी [[ अंतरिक्ष समय | आकाशीय समय]] में आयामहीन है।
[[ क्वांटम क्षेत्र सिद्धांत | क्वांटम क्षेत्र सिद्धांत]] में, क्वार्टिक (चतुर्थक) अन्तःक्रिया एक प्रकार की आत्म-ऊर्जा है और अदिष्ट क्षेत्र में आत्म-बातचीत है। [[चार-फर्मियन इंटरैक्शन]] (चार उप-परमाणु कण अन्तःक्रिया) के विषय के अनुसार अन्य प्रकार के क्वार्टिक (चतुर्थक) अन्तःक्रिया मिल सकती हैं। मौलिक मुक्त [[अदिश क्षेत्र]] <math>\varphi</math> क्लेन-गॉर्डन समीकरण को संतुष्ट करता है। यदि अदिश क्षेत्र को निरूपित किया जाता है <math>\varphi</math>, तो संभावित ऊर्जा शब्द जोड़कर क्वार्टिक (चतुर्थक) अन्तःक्रिया का प्रतिनिधित्व किया जाता है <math>({\lambda}/{4!}) \varphi^4</math>[[लाग्रंगियन घनत्व]] के लिए [[युग्मन स्थिरांक]] <math>\lambda</math> 4-आयामी [[ अंतरिक्ष समय |आकाशीय समय]] में आयामहीन है।


यह लेख उपयोग करता है <math>(+, -, -, -)</math> मिंकोव्स्की आकाशीय के लिए [[मापीय हस्ताक्षर]]
यह लेख उपयोग करता है, कि <math>(+, -, -, -)</math>यह मिंकोव्स्की आकाशीय के लिए [[मापीय हस्ताक्षर|मापीय अंकित अंक]] है।


== एक वास्तविक अदिश क्षेत्र के लिए लाग्रंगियन ==
== एक वास्तविक अदिश क्षेत्र के लिए लाग्रंगियन ==
क्वार्टिक (चतुर्थक) अन्तःक्रिया वाले [[वास्तविक संख्या]] अदिश क्षेत्र के लिए लाग्रंगियन (फ़ील्ड थ्योरी) है
क्वार्टिक (चतुर्थक) अन्तःक्रिया वाले [[वास्तविक संख्या]] अदिश क्षेत्र के लिए लाग्रंगियन (क्षेत्र सिद्धांत) है।
:<math>\mathcal{L}(\varphi)=\frac{1}{2} [\partial^\mu \varphi \partial_\mu \varphi -m^2 \varphi^2] -\frac{\lambda}{4!} \varphi^4.</math>
:<math>\mathcal{L}(\varphi)=\frac{1}{2} [\partial^\mu \varphi \partial_\mu \varphi -m^2 \varphi^2] -\frac{\lambda}{4!} \varphi^4.</math>
इस लाग्रंगियन के पास एक वैश्विक Z है<sub>2</sub> समरूपता मानचित्रण <math>\varphi\to-\varphi</math>.
इस लाग्रंगियन के पास वैश्विक Z<sub>2</sub> है, समरूपता मानचित्रण <math>\varphi\to-\varphi</math>.


== एक जटिल अदिश क्षेत्र के लिए लाग्रंगियन ==
== एक जटिल अदिश क्षेत्र के लिए लाग्रंगियन ==


एक सम्मिश्र संख्या अदिश क्षेत्र के लिए लाग्रंगियन को निम्नानुसार प्रेरित किया जा सकता है। दो अदिश क्षेत्रों के लिए <math>\varphi_1</math> और <math>\varphi_2</math> लाग्रंगियन का रूप है
एक सम्मिश्र संख्या अदिश क्षेत्र के लिए लाग्रंगियन को निम्नानुसार प्रेरित किया जा सकता है। दो अदिश क्षेत्रों के लिए <math>\varphi_1</math> और <math>\varphi_2</math> लाग्रंगियन का रूप है।
:<math> \mathcal{L}(\varphi_1,\varphi_2) =
:<math> \mathcal{L}(\varphi_1,\varphi_2) =
\frac{1}{2} [ \partial_\mu \varphi_1 \partial^\mu \varphi_1 - m^2 \varphi_1^2]
\frac{1}{2} [ \partial_\mu \varphi_1 \partial^\mu \varphi_1 - m^2 \varphi_1^2]
Line 17: Line 17:
- \frac{1}{4} \lambda (\varphi_1^2 + \varphi_2^2)^2,
- \frac{1}{4} \lambda (\varphi_1^2 + \varphi_2^2)^2,
</math>
</math>
जिसे एक जटिल अदिश क्षेत्र का परिचय देते हुए अधिक संक्षिप्त रूप से लिखा जा सकता है <math>\phi</math> के रूप में परिभाषित
जिसे जटिल अदिश क्षेत्र का परिचय देते हुए अधिक संक्षिप्त रूप से लिखा जा सकता है, और यह <math>\phi</math> के रूप में परिभाषित है।
:<math> \phi \equiv \frac{1}{\sqrt{2}} (\varphi_1 + i \varphi_2), </math>
:<math> \phi \equiv \frac{1}{\sqrt{2}} (\varphi_1 + i \varphi_2), </math>
:<math> \phi^* \equiv \frac{1}{\sqrt{2}} (\varphi_1 - i \varphi_2). </math>
:<math> \phi^* \equiv \frac{1}{\sqrt{2}} (\varphi_1 - i \varphi_2). </math>
इस जटिल अदिश क्षेत्र के संदर्भ में व्यक्त किया गया, उपरोक्त लैग्रैंगियन बन जाता है
इस जटिल अदिश क्षेत्र के संदर्भ में व्यक्त किया गया कि, उपरोक्त लैग्रैंगियन बन जाता है।
:<math>\mathcal{L}(\phi)=\partial^\mu \phi^* \partial_\mu \phi -m^2 \phi^* \phi -\lambda (\phi^* \phi)^2,</math>
:<math>\mathcal{L}(\phi)=\partial^\mu \phi^* \partial_\mu \phi -m^2 \phi^* \phi -\lambda (\phi^* \phi)^2,</math>
जो वास्तविक अदिश क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है <math>\varphi_1, \varphi_2</math>, जैसा कि जटिल क्षेत्र का विस्तार करके देखा जा सकता है <math>\phi</math> वास्तविक और काल्पनिक भागों में।
वास्तविक अदिश क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है <math>\varphi_1, \varphi_2</math>, जैसा कि वास्तविक और काल्पनिक भागों में जटिल क्षेत्र का विस्तार करके देखा जा सकता है। <math>\phi</math>  


साथ <math>N</math> वास्तविक अदिश क्षेत्र, हमारे पास हो सकता है a <math>\varphi^4</math> एक [[वैश्विक समरूपता]] [[विशेष ऑर्थोगोनल समूह]] के साथ प्रतिरूप | SO(N) समरूपता लाग्रंगियन द्वारा दी गई
साथ मे <math>N</math> वास्तविक अदिश क्षेत्र, हमारे पास हो सकता है, और यह a <math>\varphi^4</math> [[वैश्विक समरूपता]] [[विशेष ऑर्थोगोनल समूह]] के साथ प्रतिरूप है | SO(N) समरूपता लाग्रंगियन द्वारा दी गई है।


:<math>\mathcal{L}(\varphi_1,...,\varphi_N)=\frac{1}{2} [\partial^\mu \varphi_a \partial_\mu \varphi_a - m^2 \varphi_a \varphi_a] -\frac{1}{4} \lambda (\varphi_a \varphi_a)^2, \quad a=1,...,N.</math>
:<math>\mathcal{L}(\varphi_1,...,\varphi_N)=\frac{1}{2} [\partial^\mu \varphi_a \partial_\mu \varphi_a - m^2 \varphi_a \varphi_a] -\frac{1}{4} \lambda (\varphi_a \varphi_a)^2, \quad a=1,...,N.</math>
जटिल क्षेत्र को वास्तविक और काल्पनिक भागों में विस्तारित करने से पता चलता है कि यह वास्तविक अदिष्ट क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है।
जटिल क्षेत्र को वास्तविक और काल्पनिक भागों में विस्तारित करने से पता चलता है, कि यह वास्तविक अदिष्ट क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है।


उपरोक्त सभी प्रतिरूपों में, युग्मन स्थिरांक <math>\lambda</math> सकारात्मक होना चाहिए, क्योंकि अन्यथा क्षमता नीचे असीमित होगी, और कोई स्थिर निर्वात नहीं होगा। इसके अलावा, नीचे चर्चा की गई [[फेनमैन अभिन्न मार्ग]] रूप से परिभाषित नहीं होगी। 4 आयामों में, <math>\phi^4</math> सिद्धांतों में [[लैंडौ स्तंभ]] है। इसका मतलब है कि उच्च-ऊर्जा स्तर पर सीमा के बिना, [[पुनर्सामान्यीकरण]] सिद्धांत को [[क्वांटम क्षुद्रता]] प्रदान करेगा। <math>\phi^4</math> h> प्रतिरूप ग्रिफिथ्स-साइमन वर्ग से वर्णनित है,<ref>{{Cite journal |last1=Simon |first1=Barry |last2=Griffiths |first2=Robert B. |date=1973-06-01 |title=The (φ4)2 field theory as a classical Ising model |url=https://doi.org/10.1007/BF01645626 |journal=Communications in Mathematical Physics |language=en |volume=33 |issue=2 |pages=145–164 |doi=10.1007/BF01645626 |s2cid=123201243 |issn=1432-0916}}</ref> जिसका अर्थ है कि इसे एक निश्चित प्रकार के बिंदुरेख  पर [[आइसिंग मॉडल|आइसिंग प्रतिरूप]] के अनियमित वर्तमान के अभिसरण के रूप में भी प्रदर्शित किया जा सकता है। दोनों की तुच्छता <math>\phi^4</math> प्रतिरूप और आईसिंग प्रतिरूप <math>d\geq 4</math> एक बिंदुरेखािकल प्रतिनिधित्व के माध्यम से दिखाया जा सकता है जिसे अनियमित वर्तमान विस्तार के रूप में जाना जाता है।<ref>{{Cite journal |last1=Aizenman |first1=Michael |last2=Duminil-Copin |first2=Hugo |date=2021-07-01 |title=Marginal triviality of the scaling limits of critical 4D Ising and $\phi_4^4$ models |url=http://arxiv.org/abs/1912.07973 |journal=Annals of Mathematics |volume=194 |issue=1 |doi=10.4007/annals.2021.194.1.3 |arxiv=1912.07973 |s2cid=209386716 |issn=0003-486X}}</ref>
उपरोक्त सभी प्रतिरूपों में, युग्मन स्थिरांक <math>\lambda</math> सकारात्मक होना चाहिए, क्योंकि अन्यथा क्षमता नीचे असीमित होगी, और कोई स्थिर निर्वात नहीं होगा। इसके अतिरिक्त, नीचे चर्चा की गई [[फेनमैन अभिन्न मार्ग]] रूप से परिभाषित नहीं होगी। 4 आयामों में, <math>\phi^4</math> सिद्धांतों में [[लैंडौ स्तंभ]] है। इसका कारण है कि उच्च-ऊर्जा स्तर पर सीमा के बिना, [[पुनर्सामान्यीकरण]] सिद्धांत को [[क्वांटम क्षुद्रता]] प्रदान करेगा। <math>\phi^4</math> h> प्रतिरूप ग्रिफिथ्स-साइमन वर्ग से वर्णनित है,<ref>{{Cite journal |last1=Simon |first1=Barry |last2=Griffiths |first2=Robert B. |date=1973-06-01 |title=The (φ4)2 field theory as a classical Ising model |url=https://doi.org/10.1007/BF01645626 |journal=Communications in Mathematical Physics |language=en |volume=33 |issue=2 |pages=145–164 |doi=10.1007/BF01645626 |s2cid=123201243 |issn=1432-0916}}</ref> जिसका अर्थ है कि इसे निश्चित प्रकार के बिंदुरेखा पर [[आइसिंग मॉडल|आइसिंग प्रतिरूप]] के अनियमित वर्तमान के अभिसरण के रूप में भी प्रदर्शित किया जा सकता है। दोनों की तुच्छता <math>\phi^4</math> प्रतिरूप और आईसिंग प्रतिरूप <math>d\geq 4</math> एक बिंदुरेखा प्रतिनिधित्व के माध्यम से दिखाया जा सकता है, जिसे अनियमित वर्तमान विस्तार के रूप में जाना जाता है।<ref>{{Cite journal |last1=Aizenman |first1=Michael |last2=Duminil-Copin |first2=Hugo |date=2021-07-01 |title=Marginal triviality of the scaling limits of critical 4D Ising and $\phi_4^4$ models |url=http://arxiv.org/abs/1912.07973 |journal=Annals of Mathematics |volume=194 |issue=1 |doi=10.4007/annals.2021.194.1.3 |arxiv=1912.07973 |s2cid=209386716 |issn=0003-486X}}</ref>




Line 38: Line 38:


:<math>\langle\Omega|\mathcal{T}\{{\phi}(x_1)\cdots {\phi}(x_n)\}|\Omega\rangle=\frac{\int \mathcal{D}\phi \phi(x_1)\cdots \phi(x_n) e^{i\int d^4x \left({1\over 2}\partial^\mu \phi \partial_\mu \phi -{m^2 \over 2}\phi^2-{\lambda\over 4!}\phi^4\right)}}{\int \mathcal{D}\phi e^{i\int d^4x \left({1\over 2}\partial^\mu \phi \partial_\mu \phi -{m^2 \over 2}\phi^2-{\lambda\over 4!}\phi^4\right)}}.</math>
:<math>\langle\Omega|\mathcal{T}\{{\phi}(x_1)\cdots {\phi}(x_n)\}|\Omega\rangle=\frac{\int \mathcal{D}\phi \phi(x_1)\cdots \phi(x_n) e^{i\int d^4x \left({1\over 2}\partial^\mu \phi \partial_\mu \phi -{m^2 \over 2}\phi^2-{\lambda\over 4!}\phi^4\right)}}{\int \mathcal{D}\phi e^{i\int d^4x \left({1\over 2}\partial^\mu \phi \partial_\mu \phi -{m^2 \over 2}\phi^2-{\lambda\over 4!}\phi^4\right)}}.</math>
इन सभी ग्रीन के कार्यों को उत्पादक कार्य में जे (एक्स) φ (एक्स) में घातांक का विस्तार करके प्राप्त किया जा सकता है
इन सभी ग्रीन के कार्यों को उत्पादक कार्य में J(एक्स) φ (एक्स) में घातांक का विस्तार करके प्राप्त किया जा सकता है
:<math>Z[J] =\int \mathcal{D}\phi e^{i\int d^4x \left({1\over 2}\partial^\mu \phi \partial_\mu \phi -{m^2 \over 2}\phi^2-{\lambda\over 4!}\phi^4+J\phi\right)} = Z[0] \sum_{n=0}^{\infty} \frac{1}{n!} \langle\Omega|\mathcal{T}\{{\phi}(x_1)\cdots {\phi}(x_n)\}|\Omega\rangle.</math>
:<math>Z[J] =\int \mathcal{D}\phi e^{i\int d^4x \left({1\over 2}\partial^\mu \phi \partial_\mu \phi -{m^2 \over 2}\phi^2-{\lambda\over 4!}\phi^4+J\phi\right)} = Z[0] \sum_{n=0}^{\infty} \frac{1}{n!} \langle\Omega|\mathcal{T}\{{\phi}(x_1)\cdots {\phi}(x_n)\}|\Omega\rangle.</math>
समय को काल्पनिक बनाने के लिए एक बाती घुमाव लागू किया जा सकता है। हस्ताक्षर को (++++) में बदलने के बाद एक φ देता है<sup>4</sup> 4-आयामी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन आकाशीय]] पर [[सांख्यिकीय यांत्रिकी]] अभिन्न,
समय को काल्पनिक बनाने के लिए पट्टी नियमित आवर्तन प्रयुक्त किया जा सकता है। अंकित अंक को (++++) में बदलने के बाद φ देता है<sup>4</sup> 4-आयामी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन आकाशीय]] पर [[सांख्यिकीय यांत्रिकी]] अभिन्न है,


:<math>Z[J]=\int \mathcal{D}\phi e^{-\int d^4x \left({1\over 2}(\nabla\phi)^2+{m^2 \over 2}\phi^2+{\lambda\over 4!}\phi^4+J\phi\right)}.</math>
:<math>Z[J]=\int \mathcal{D}\phi e^{-\int d^4x \left({1\over 2}(\nabla\phi)^2+{m^2 \over 2}\phi^2+{\lambda\over 4!}\phi^4+J\phi\right)}.</math>
आम तौर पर, यह नियत संवेग वाले कणों के प्रकीर्णन पर लागू होता है, जिस स्थिति में, [[फूरियर परिवर्तन]] उपयोगी होता है, इसके बदले देता है
सामान्यतः, यह नियत संवेग वाले कणों के प्रकीर्णन पर प्रयुक्त होता है, जिस स्थिति में, [[फूरियर परिवर्तन]] उपयोगी होता है और वह इसको बदले देता है
:<math>\tilde{Z}[\tilde{J}]=\int \mathcal{D}\tilde\phi e^{-\int d^4p \left({1\over 2}(p^2+m^2)\tilde\phi^2-\tilde{J}\tilde\phi+{\lambda\over 4!}{\int {d^4p_1 \over (2\pi)^4}{d^4p_2 \over (2\pi)^4}{d^4p_3 \over (2\pi)^4}\delta(p-p_1-p_2-p_3)\tilde\phi(p)\tilde\phi(p_1)\tilde\phi(p_2)\tilde\phi(p_3)}\right)}.</math>
:<math>\tilde{Z}[\tilde{J}]=\int \mathcal{D}\tilde\phi e^{-\int d^4p \left({1\over 2}(p^2+m^2)\tilde\phi^2-\tilde{J}\tilde\phi+{\lambda\over 4!}{\int {d^4p_1 \over (2\pi)^4}{d^4p_2 \over (2\pi)^4}{d^4p_3 \over (2\pi)^4}\delta(p-p_1-p_2-p_3)\tilde\phi(p)\tilde\phi(p_1)\tilde\phi(p_2)\tilde\phi(p_3)}\right)}.</math>
कहाँ <math>\delta(x)</math> [[डिराक डेल्टा कार्य]] है।
<math>\delta(x)</math> [[डिराक डेल्टा कार्य]] है।


इस [[कार्यात्मक अभिन्न]] का मूल्यांकन करने के लिए मानक चाल इसे घातीय कारकों के उत्पाद के रूप में लिखना है, योजनाबद्ध रूप से,
इस [[कार्यात्मक अभिन्न]] का मूल्यांकन करने के लिए मानक चाल इसे घातीय कारकों के उत्पाद मे योजनाबद्ध रूप से के रूप में लिखना है,
:<math>\tilde{Z}[\tilde{J}]=\int \mathcal{D}\tilde\phi \prod_p \left[e^{-(p^2+m^2)\tilde\phi^2/2} e^{-\lambda/4!\int {d^4p_1 \over (2\pi)^4}{d^4p_2 \over (2\pi)^4}{d^4p_3 \over (2\pi)^4}\delta(p-p_1-p_2-p_3)\tilde\phi(p)\tilde\phi(p_1)\tilde\phi(p_2)\tilde\phi(p_3)} e^{\tilde{J}\tilde\phi}\right].</math>
:<math>\tilde{Z}[\tilde{J}]=\int \mathcal{D}\tilde\phi \prod_p \left[e^{-(p^2+m^2)\tilde\phi^2/2} e^{-\lambda/4!\int {d^4p_1 \over (2\pi)^4}{d^4p_2 \over (2\pi)^4}{d^4p_3 \over (2\pi)^4}\delta(p-p_1-p_2-p_3)\tilde\phi(p)\tilde\phi(p_1)\tilde\phi(p_2)\tilde\phi(p_3)} e^{\tilde{J}\tilde\phi}\right].</math>
दूसरे दो घातीय कारकों को शक्ति श्रृंखला के रूप में विस्तारित किया जा सकता है, और इस विस्तार के संयोजन को रेखांकन के रूप में दर्शाया जा सकता है। λ = 0 के साथ अभिन्न को अनंत रूप से कई प्राथमिक सामान्य वितरण अंगभूत के उत्पाद के रूप में माना जा सकता है, और परिणाम को [[फेनमैन आरेखों]] के योग के रूप में व्यक्त किया जा सकता है, जिसकी गणना निम्नलिखित फेनमैन नियमों का उपयोग करके की जाती है:
दूसरे दो घातीय कारकों को शक्ति श्रृंखला के रूप में विस्तारित किया जा सकता है, और इस विस्तार के संयोजन को रेखांकन के रूप में दर्शाया जा सकता है। λ = 0 के साथ अभिन्न को अनंत रूप से कई प्राथमिक सामान्य वितरण अंगभूत के उत्पाद के रूप में माना जा सकता है, और परिणाम को [[फेनमैन आरेखों]] के योग के रूप में व्यक्त किया जा सकता है, जिसकी गणना निम्नलिखित फेनमैन नियमों का उपयोग करके की जाती है:


* प्रत्येक क्षेत्र <math>\tilde{\phi}(p)</math> एन-बिंदु यूक्लिडियन ग्रीन के कार्य को बिंदुरेख  में एक बाहरी रेखा (आधा किनारा) द्वारा दर्शाया गया है, और गति पी के साथ जुड़ा हुआ है।
* प्रत्येक क्षेत्र <math>\tilde{\phi}(p)</math> N-बिंदु यूक्लिडियन ग्रीन के कार्य को बिंदुरेखा में एक बाहरी रेखा (आधा किनारा) द्वारा दर्शाया गया है, और गति P के साथ जुड़ा हुआ है।
* प्रत्येक शीर्ष को एक कारक -λ द्वारा दर्शाया जाता है।
* प्रत्येक शीर्ष को एक कारक -λ द्वारा दर्शाया जाता है।
* दिए गए क्रम में λ<sup>k</sup>, n बाहरी रेखाओं और k शीर्षों वाले सभी आरेख इस प्रकार बनाए गए हैं कि प्रत्येक शीर्ष में प्रवाहित होने वाला संवेग शून्य है। प्रत्येक आंतरिक रेखा को एक कारक 1/(q<sup>2</sup> + ''m''<sup>2</sup>), जहाँ q उस रेखा से बहने वाला संवेग है।
* दिए गए क्रम में λ<sup>k</sup>, n बाहरी रेखाओं और k शीर्षों वाले सभी आरेख इस प्रकार बनाए गए हैं, कि प्रत्येक शीर्ष में प्रवाहित होने वाला संवेग शून्य है। प्रत्येक आंतरिक रेखा को एक कारक 1/(q<sup>2</sup> + ''m''<sup>2</sup>), जहाँ q उस रेखा से बहने वाला संवेग है।
* कोई भी अप्रतिबंधित क्षण सभी मूल्यों पर एकीकृत होते हैं।
* कोई भी अप्रतिबंधित क्षण सभी मूल्यों पर एकीकृत होते हैं।
* परिणाम को एक समरूपता कारक द्वारा विभाजित किया जाता है, जो कि बिंदुरेख  की रेखाओं और शीर्षों को इसकी संयोजकता को बदले बिना पुनर्व्यवस्थित करने के तरीकों की संख्या है।
* परिणाम को समरूपता कारक द्वारा विभाजित किया जाता है, जो कि बिंदुरेखा की रेखाओं और शीर्षों को इसकी संयोजकता को बदले बिना पुनर्व्यवस्थित करने के विधियों की संख्या है।
* निर्वात असत्य वाले बिंदुरेख  शामिल न करें, बिना किसी बाहरी रेखा वाले संबद्ध सूक्ष्म बिंदुरेख
* निर्वात असत्य वाले बिंदुरेखा सम्मिलित न करें, बिना किसी बाहरी रेखा वाले संबद्ध सूक्ष्म बिंदुरेखा


अंतिम नियम द्वारा विभाजित करने के प्रभाव को ध्यान में रखता है <math>\tilde{Z}[0]</math>. मिन्कोव्स्की-आकाशीय फेनमैन नियम समान हैं, सिवाय इसके कि प्रत्येक शीर्ष द्वारा दर्शाया गया है <math>-i\lambda</math>, जबकि प्रत्येक आंतरिक रेखा को एक कारक i/(q2-m2 + i ε), जहां मिन्कोव्स्की-आकाशीय गॉसियन अभिन्न अभिसरण बनाने के लिए आवश्यक छोटे पट्टी नियमित आवर्तन का प्रतिनिधित्व करता है।
अंतिम नियम द्वारा विभाजित करने के प्रभाव को ध्यान में रखता है <math>\tilde{Z}[0]</math>. मिन्कोव्स्की-आकाशीय फेनमैन नियम समान हैं, सिवाय इसके कि प्रत्येक शीर्ष द्वारा दर्शाया गया है <math>-i\lambda</math>, जबकि प्रत्येक आंतरिक रेखा को कारक के रूप मे i/(q2-m2 + i ε), जहां मिन्कोव्स्की-आकाशीय गॉसियन अभिन्न अभिसरण बनाने के लिए आवश्यक छोटे पट्टी नियमित आवर्तन का प्रतिनिधित्व करता है।


[[File:ScalarFR.jpg|center|488px]]
[[File:ScalarFR.jpg|center|488px]]


== नवीनीकरण ==
== पुनर्सामान्यीकरण ==
{{main|पुनर्सामान्यीकरण}}
{{main|पुनर्सामान्यीकरण}}


अप्रतिबंधित गति पर अभिन्न, जिसे परिपथ   अंगभूत कहा जाता है, फेनमैन बिंदुरेखा में आमतौर पर विचलन होता है। यह आम तौर पर पुनर्सामान्यीकरण, द्वारा नियंत्रित किया जाता है, जो लैग्रेंजियन के लिए अलग-अलग प्रति-शर्तें को इस तरह से जोड़ने की एक प्रक्रिया है कि मूल लैग्रेंजियन और [[ प्रतिवाद ]] से निर्मित आरेख परिमित हैं।<ref>See the previous reference, or for more detail, {{cite book|last1=Itzykson|first1=Zuber|last2=Zuber|first2=Jean-Bernard|title=Quantum Field Theory|publisher=Dover|date=2006-02-24}}.</ref> प्रक्रिया में एक पुनर्सामान्यीकरण स्तर पेश किया जाना चाहिए, और युग्मन स्थिरांक और द्रव्यमान इस पर निर्भर हो जाते हैं। यह वह निर्भरता है जो पहले उल्लेख किए गए लन्दौ ध्रुव की ओर ले जाती है, और इसके लिए आवश्यक है कि अंतिम को परिमित रखा जाए। वैकल्पिक रूप से, यदि अंतिम को अनंत तक जाने की अनुमति दी जाती है, तो लैंडौ पोल से बचा जा सकता है, यदि पुन: सामान्यीकृत युग्मन शून्य तक चलता है, सिद्धांत क्वांटम तुच्छता प्रदान करता है।<ref name="TrivPurs">{{cite journal| author=D. J. E. Callaway| author-link=David J E Callaway| year=1988
अप्रतिबंधित गति पर अभिन्न, जिसे परिपथ अंगभूत कहा जाता है, फेनमैन बिंदुरेखा में सामान्यतः विचलन होता है। यह सामान्यतः पुनर्सामान्यीकरण, द्वारा नियंत्रित किया जाता है, जो लैग्रेंजियन के लिए अलग-अलग प्रति-शर्तें को इस तरह से जोड़ने की प्रक्रिया है कि मूल लैग्रेंजियन और [[ प्रतिवाद |प्रतिवाद]] से निर्मित आरेख परिमित हैं।<ref>See the previous reference, or for more detail, {{cite book|last1=Itzykson|first1=Zuber|last2=Zuber|first2=Jean-Bernard|title=Quantum Field Theory|publisher=Dover|date=2006-02-24}}.</ref> प्रक्रिया में पुनर्सामान्यीकरण स्तर प्रस्तुत किया जाना चाहिए, और युग्मन स्थिरांक और द्रव्यमान इस पर निर्भर हो जाते हैं। यह वह निर्भरता है जो पहले उल्लेख किए गए लन्दौ ध्रुव की ओर ले जाती है, और इसके लिए आवश्यक है कि अंतिम को परिमित रखा जाए। वैकल्पिक रूप से, यदि अंतिम को अनंत तक जाने की अनुमति दी जाती है, तो लैंडौ पोल से बचा जा सकता है, यदि पुन: सामान्यीकृत युग्मन शून्य तक चलता है, सिद्धांत क्वांटम तुच्छता प्रदान करता है।<ref name="TrivPurs">{{cite journal| author=D. J. E. Callaway| author-link=David J E Callaway| year=1988
| title=Triviality Pursuit: Can Elementary Scalar Particles Exist?| journal=[[Physics Reports]]
| title=Triviality Pursuit: Can Elementary Scalar Particles Exist?| journal=[[Physics Reports]]
|volume=167| issue=5 | pages=241–320| doi=10.1016/0370-1573(88)90008-7
|volume=167| issue=5 | pages=241–320| doi=10.1016/0370-1573(88)90008-7
Line 74: Line 74:
{{main|सहज समरूपता विभंजन}}
{{main|सहज समरूपता विभंजन}}


एक दिलचस्प विशेषता तब हो सकती है जब M<sup>2</sup> ऋणात्मक हो जाता है, लेकिन λ के साथ अभी भी धनात्मक है। इस मामले में, निर्वात में दो सबसे कम-ऊर्जा वाले राज्य होते हैं, जिनमें से प्रत्येक अनायास Z<sub>2</sub> को तोड़ देता है मूल सिद्धांत की वैश्विक समरूपता। इससे [[क्षेत्र रुकावट ( श्रृंखला सिद्धांत)]] जैसे दिलचस्प सामूहिक अवस्था की उपस्थिति होती है। O(2) सिद्धांत में, रिक्तिका एक वृत्त पर स्थित होगी, और किसी एक का चुनाव अनायास ही O(2) समरूपता को तोड़ देगा। एक निरंतर टूटी हुई समरूपता एक [[गोल्डस्टोन बोसोन]] की ओर ले जाती है। इस प्रकार की सहज समरूपता टूटना [[हिग्स तंत्र]] का आवश्यक घटक है।<ref>A basic description of spontaneous symmetry breaking may be found in the previous two references, or most other Quantum Field Theory books.</ref>
एक रोचक विशेषता तब हो सकती है जब M<sup>2</sup> ऋणात्मक हो जाता है, किन्तु λ के साथ अभी भी धनात्मक है। इस स्थितियों में, निर्वात में दो सबसे कम-ऊर्जा वाले क्षेत्र होते हैं, जिनमें से प्रत्येक अनायास Z<sub>2</sub> को तोड़ देता है, जो मूल सिद्धांत की वैश्विक समरूपता है। इससे [[क्षेत्र रुकावट ( श्रृंखला सिद्धांत)]] जैसे रोचक सामूहिक अवस्था की उपस्थिति होती है। O(2) सिद्धांत में, रिक्तिका वृत्त पर स्थित होगी, और किसी एक का चुनाव अनायास ही O(2) समरूपता को तोड़ देगा। निरंतर टूटी हुई समरूपता [[गोल्डस्टोन बोसोन]] की ओर ले जाती है। इस प्रकार की सहज समरूपता टूटना [[हिग्स तंत्र]] का आवश्यक घटक है।<ref>A basic description of spontaneous symmetry breaking may be found in the previous two references, or most other Quantum Field Theory books.</ref>


=== असतत समरूपता का स्वत: टूटना ===
=== असतत समरूपता का स्वत: टूटना ===
सबसे सरल सापेक्षतावादी प्रणाली जिसमें हम सहज समरूपता को तोड़ते हुए देख सकते हैं, वह एक एकल अदिष्ट क्षेत्र है <math>\varphi</math> लाग्रंगियन के साथ
लाग्रंगियन के साथ वह एकल अदिष्ट क्षेत्र है <math>\varphi</math> जिसे सबसे सरल सापेक्षतावादी प्रणाली मे हम सहज समरूपता को तोड़ते हुए देख सकते हैं,  
:<math>\mathcal{L}(\varphi) = \frac{1}{2} (\partial \varphi)^2 + \frac{1}{2}\mu^2 \varphi^2 - \frac{1}{4} \lambda \varphi^4 \equiv \frac{1}{2} (\partial \varphi)^2 - V(\varphi), </math>
:<math>\mathcal{L}(\varphi) = \frac{1}{2} (\partial \varphi)^2 + \frac{1}{2}\mu^2 \varphi^2 - \frac{1}{4} \lambda \varphi^4 \equiv \frac{1}{2} (\partial \varphi)^2 - V(\varphi), </math>
कहाँ <math> \mu^2 > 0</math> और
कहाँ <math> \mu^2 > 0</math> और
Line 92: Line 92:
जहां हम देखते हैं कि अदिष्ट <math>\sigma</math> अब एक सकारात्मक द्रव्यमान शब्द है।
जहां हम देखते हैं कि अदिष्ट <math>\sigma</math> अब एक सकारात्मक द्रव्यमान शब्द है।


निर्वात अपेक्षा मूल्यों के संदर्भ में सोचने से हमें यह समझने में मदद मिलती है कि जब समरूपता अनायास टूट जाती है तो क्या होता है। मूल लाग्रंगियन के तहत अपरिवर्तनीय था <math>Z_2</math> समरूपता <math> \varphi \rightarrow -\varphi</math>. तब से
निर्वात अपेक्षा मूल्यों के संदर्भ में सोचने से हमें यह समझने में सहायता मिलती है कि जब समरूपता अनायास टूट जाती है तो क्या होता है। मूल लाग्रंगियन के अनुसार अपरिवर्तनीय था और <math>Z_2</math> समरूपता था<math> \varphi \rightarrow -\varphi</math>. तब से
:<math> \langle \Omega | \varphi | \Omega \rangle = \pm \sqrt{ \frac{6\mu^2}{\lambda} }</math>
:<math> \langle \Omega | \varphi | \Omega \rangle = \pm \sqrt{ \frac{6\mu^2}{\lambda} }</math>
दोनों मिनिमा हैं, दो अलग-अलग शून्य स्थान होने चाहिए: <math>|\Omega_\pm \rangle</math> साथ
दोनों न्यूनतम हैं, औरदो अलग-अलग शून्य स्थान होने चाहिए: <math>|\Omega_\pm \rangle</math>के साथ
:<math> \langle \Omega_\pm | \varphi | \Omega_\pm \rangle = \pm \sqrt{ \frac{6\mu^2}{\lambda} }. </math>
:<math> \langle \Omega_\pm | \varphi | \Omega_\pm \rangle = \pm \sqrt{ \frac{6\mu^2}{\lambda} }. </math>
के बाद से <math>Z_2</math> समरूपता लेता है <math> \varphi \rightarrow -\varphi</math>, इसे अवश्य लेना चाहिए <math> | \Omega_+ \rangle \leftrightarrow | \Omega_-  \rangle </math> भी। सिद्धांत के लिए दो संभावित रिक्तिकाएं समतुल्य हैं, लेकिन एक को चुनना होगा। हालांकि ऐसा लगता है कि नए लाग्रंगियनe में <math>Z_2</math> समरूपता गायब हो गई है, यह अब भी है, लेकिन यह अब कार्य करता है
के बाद से <math>Z_2</math> समरूपता लेता है <math> \varphi \rightarrow -\varphi</math>, और इसे अवश्य लेना चाहिए <math> | \Omega_+ \rangle \leftrightarrow | \Omega_-  \rangle </math> भी। सिद्धांत के लिए दो संभावित रिक्तिकाएं समतुल्य हैं, किन्तु एक को चुनना होगा। चूंकि ऐसा लगता है कि नए लाग्रंगियन में <math>Z_2</math> समरूपता गायब हो गई है,किन्तु यह अब भी है, और यह अब कार्य करता है <math> \sigma \rightarrow -\sigma - 2v. </math> यह अनायास टूटी हुई समरूपता की सामान्य विशेषता है: निर्वात उन्हें तोड़ देता है, किन्तु वे वास्तव में लैग्रैंगियन में नहीं टूटे हैं, बस छिपे हुए हैं, और अधिकांशतः केवल गैर-रैखिक तरीके से अनुभूत किए जाते हैं।<ref>Schwartz, Quantum Field Theory and the Standard Model, Chapter 28.1</ref>
<math> \sigma \rightarrow -\sigma - 2v. </math> यह अनायास टूटी हुई समरूपता की एक सामान्य विशेषता है: निर्वात उन्हें तोड़ देता है, लेकिन वे वास्तव में लैग्रैंगियन में नहीं टूटे हैं, बस छिपे हुए हैं, और अक्सर केवल एक गैर-रैखिक तरीके से महसूस किए जाते हैं।<ref>Schwartz, Quantum Field Theory and the Standard Model, Chapter 28.1</ref>




== सटीक समाधान ==
== स्पष्ट समाधान ==


प्रपत्र में लिखे गए सिद्धांत की गति के समीकरण के सटीक शास्त्रीय समाधानों का एक समुच्चय मौजूद है
प्रपत्र में लिखे गए सिद्धांत की गति के समीकरण के स्पष्ट मौलिक समाधानों का एक समुच्चय उपस्थित है
:<math> \partial^2\varphi+\mu_0^2\varphi+\lambda\varphi^3=0</math>
:<math> \partial^2\varphi+\mu_0^2\varphi+\lambda\varphi^3=0</math>
जो द्रव्यमान रहित के लिए लिखा जा सकता है, <math>\mu_0=0</math> मामले के रूप में<ref name=asf2>{{cite journal|author=Marco Frasca|author-link=Marco Frasca|year=2011|title=शास्त्रीय स्केलर फील्ड समीकरणों का सटीक समाधान|journal=[[Journal of Nonlinear Mathematical Physics]]|volume=18|issue= 2|pages=291–297|doi=10.1142/S1402925111001441|bibcode=2011JNMP...18..291F|arxiv=0907.4053|s2cid=17314344 }}</ref>
जो द्रव्यमान रहित के लिए लिखा जा सकता है, <math>\mu_0=0</math> स्थितियों के रूप में<ref name=asf2>{{cite journal|author=Marco Frasca|author-link=Marco Frasca|year=2011|title=शास्त्रीय स्केलर फील्ड समीकरणों का सटीक समाधान|journal=[[Journal of Nonlinear Mathematical Physics]]|volume=18|issue= 2|pages=291–297|doi=10.1142/S1402925111001441|bibcode=2011JNMP...18..291F|arxiv=0907.4053|s2cid=17314344 }}</ref>
:<math>\varphi(x) = \pm\mu\left(\frac{2}{\lambda}\right)^{1\over 4}{\rm sn}(p\cdot x+\theta,i),</math>
:<math>\varphi(x) = \pm\mu\left(\frac{2}{\lambda}\right)^{1\over 4}{\rm sn}(p\cdot x+\theta,i),</math>
साथ <math>\, \rm sn\!</math> एक जैकोबी दीर्घवृत्तीय समारोह और <math>\,\mu,\theta</math> दो एकीकरण स्थिरांक, किन्तु निम्नलिखित मे [[विक्षेपण संबंध|विक्षेपण वर्णन]] हो
साथ <math>\, \rm sn\!</math> जैकोबी दीर्घवृत्तीय फलन और <math>\,\mu,\theta</math> दो एकीकरण स्थिरांक है, परन्तु निम्नलिखित मे [[विक्षेपण संबंध|विक्षेपण वर्णन]] हो
:<math>p^2=\mu^2\left(\frac{\lambda}{2}\right)^{1\over 2}.</math>
:<math>p^2=\mu^2\left(\frac{\lambda}{2}\right)^{1\over 2}.</math>
दिलचस्प बात यह है कि हमने एक द्रव्यमान रहित समीकरण के साथ शुरुआत की थी लेकिन सटीक समाधान एक बड़े स्तर पर समाधान के लिए एक विक्षेपण वर्णन के साथ एक लहर का वर्णन करता है। जब द्रव्यमान शब्द शून्य नहीं होता है तो प्राप्त होता है
रोचक बात यह है कि हमने एक द्रव्यमान रहित समीकरण के साथ शुरुआत की थी किन्तु स्पष्ट समाधान बड़े स्तर पर समाधान के लिए विक्षेपण वर्णन के साथ तरंग का वर्णन करता है। जब द्रव्यमान शब्द शून्य नहीं होता है तो यह प्राप्त होता है
:<math>\varphi(x) = \pm\sqrt{\frac{2\mu^4}{\mu_0^2 + \sqrt{\mu_0^4 + 2\lambda\mu^4}}}{\rm sn}\left(p\cdot x+\theta,\sqrt{\frac{-\mu_0^2 + \sqrt{\mu_0^4 + 2\lambda\mu^4}}{-\mu_0^2 -  
:<math>\varphi(x) = \pm\sqrt{\frac{2\mu^4}{\mu_0^2 + \sqrt{\mu_0^4 + 2\lambda\mu^4}}}{\rm sn}\left(p\cdot x+\theta,\sqrt{\frac{-\mu_0^2 + \sqrt{\mu_0^4 + 2\lambda\mu^4}}{-\mu_0^2 -  
   \sqrt{\mu_0^4 + 2\lambda\mu^4}}}\right)</math>
   \sqrt{\mu_0^4 + 2\lambda\mu^4}}}\right)</math>
अब विक्षेपण वर्णन होने के नाते
अब विक्षेपण वर्णन होने के नाते
:<math>p^2=\mu_0^2+\frac{\lambda\mu^4}{\mu_0^2+\sqrt{\mu_0^4+2\lambda\mu^4}}.</math>
:<math>p^2=\mu_0^2+\frac{\lambda\mu^4}{\mu_0^2+\sqrt{\mu_0^4+2\lambda\mu^4}}.</math>
अंत में, समरूपता को तोड़ने के मामले में किसी के पास है
अंत में, समरूपता को तोड़ने के स्थितियों में किसी के पास है
:<math>\varphi(x) =\pm v\cdot {\rm dn}(p\cdot x+\theta,i),</math>
:<math>\varphi(x) =\pm v\cdot {\rm dn}(p\cdot x+\theta,i),</math>
प्राणी <math>v=\sqrt{\frac{2\mu_0^2}{3\lambda}}</math> और निम्नलिखित विक्षेपण वर्णन धारण करता है
प्राणी <math>v=\sqrt{\frac{2\mu_0^2}{3\lambda}}</math> और निम्नलिखित विक्षेपण वर्णन धारण करता है
:<math>p^2=\frac{\lambda v^2}{2}.</math>
:<math>p^2=\frac{\lambda v^2}{2}.</math>
ये तरंग समाधान दिलचस्प हैं, भले ही हमने एक गलत द्रव्यमान चिह्न के साथ एक समीकरण के साथ शुरू किया, विक्षेपण वर्णन सही है। इसके अलावा, जैकोबी समारोह <math>\, {\rm dn}\!</math> कोई वास्तविक शून्य नहीं है और इसलिए क्षेत्र कभी भी शून्य नहीं होता है, लेकिन एक दिए गए स्थिर मान के चारों ओर घूमता है जिसे प्रारंभ में समरूपता के सहज टूटने का वर्णन करने के लिए चुना जाता है।
ये तरंग समाधान रोचक हैं, तथापि हमने एक गलत द्रव्यमान चिह्न के साथ समीकरण के साथ आरंभ किया, विक्षेपण वर्णन सही है। इसके अतिरिक्त, जैकोबी फलन <math>\, {\rm dn}\!</math> कोई वास्तविक शून्य नहीं है और इसलिए क्षेत्र कभी भी शून्य नहीं होता है, किन्तु दिए गए स्थिर मान के चारों ओर घूमता है जिसे प्रारंभ में समरूपता के सहज टूटने का वर्णन करने के लिए चुना जाता है।


अद्वितीयता का प्रमाण प्रदान किया जा सकता है यदि हम ध्यान दें कि शैली में समाधान खोजा जा सकता है <math>\varphi=\varphi(\xi)</math> प्राणी <math>\xi=p\cdot x</math>. फिर, आंशिक अंतर समीकरण एक सामान्य अंतर समीकरण बन जाता है जो जैकोबी दीर्घवृत्तीय समारोह को परिभाषित करता है <math>p</math> उचित विक्षेपण वर्णन को संतुष्ट करना।
अद्वितीयता का प्रमाण प्रदान किया जा सकता है, की यदि हम ध्यान दें कि शैली में समाधान खोजा जा सकता है <math>\varphi=\varphi(\xi)</math> प्राणी <math>\xi=p\cdot x</math>. फिर, आंशिक अंतर समीकरण सामान्य अंतर समीकरण बन जाता है, जो जैकोबी दीर्घवृत्तीय फलन को परिभाषित करता है और <math>p</math> उचित विक्षेपण वर्णन को संतुष्ट करता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 00:25, 15 April 2023

क्वांटम क्षेत्र सिद्धांत में, क्वार्टिक (चतुर्थक) अन्तःक्रिया एक प्रकार की आत्म-ऊर्जा है और अदिष्ट क्षेत्र में आत्म-बातचीत है। चार-फर्मियन इंटरैक्शन (चार उप-परमाणु कण अन्तःक्रिया) के विषय के अनुसार अन्य प्रकार के क्वार्टिक (चतुर्थक) अन्तःक्रिया मिल सकती हैं। मौलिक मुक्त अदिश क्षेत्र क्लेन-गॉर्डन समीकरण को संतुष्ट करता है। यदि अदिश क्षेत्र को निरूपित किया जाता है , तो संभावित ऊर्जा शब्द जोड़कर क्वार्टिक (चतुर्थक) अन्तःक्रिया का प्रतिनिधित्व किया जाता है लाग्रंगियन घनत्व के लिए युग्मन स्थिरांक 4-आयामी आकाशीय समय में आयामहीन है।

यह लेख उपयोग करता है, कि यह मिंकोव्स्की आकाशीय के लिए मापीय अंकित अंक है।

एक वास्तविक अदिश क्षेत्र के लिए लाग्रंगियन

क्वार्टिक (चतुर्थक) अन्तःक्रिया वाले वास्तविक संख्या अदिश क्षेत्र के लिए लाग्रंगियन (क्षेत्र सिद्धांत) है।

इस लाग्रंगियन के पास वैश्विक Z2 है, समरूपता मानचित्रण .

एक जटिल अदिश क्षेत्र के लिए लाग्रंगियन

एक सम्मिश्र संख्या अदिश क्षेत्र के लिए लाग्रंगियन को निम्नानुसार प्रेरित किया जा सकता है। दो अदिश क्षेत्रों के लिए और लाग्रंगियन का रूप है।

जिसे जटिल अदिश क्षेत्र का परिचय देते हुए अधिक संक्षिप्त रूप से लिखा जा सकता है, और यह के रूप में परिभाषित है।

इस जटिल अदिश क्षेत्र के संदर्भ में व्यक्त किया गया कि, उपरोक्त लैग्रैंगियन बन जाता है।

वास्तविक अदिश क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है , जैसा कि वास्तविक और काल्पनिक भागों में जटिल क्षेत्र का विस्तार करके देखा जा सकता है।

साथ मे वास्तविक अदिश क्षेत्र, हमारे पास हो सकता है, और यह a वैश्विक समरूपता विशेष ऑर्थोगोनल समूह के साथ प्रतिरूप है | SO(N) समरूपता लाग्रंगियन द्वारा दी गई है।

जटिल क्षेत्र को वास्तविक और काल्पनिक भागों में विस्तारित करने से पता चलता है, कि यह वास्तविक अदिष्ट क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है।

उपरोक्त सभी प्रतिरूपों में, युग्मन स्थिरांक सकारात्मक होना चाहिए, क्योंकि अन्यथा क्षमता नीचे असीमित होगी, और कोई स्थिर निर्वात नहीं होगा। इसके अतिरिक्त, नीचे चर्चा की गई फेनमैन अभिन्न मार्ग रूप से परिभाषित नहीं होगी। 4 आयामों में, सिद्धांतों में लैंडौ स्तंभ है। इसका कारण है कि उच्च-ऊर्जा स्तर पर सीमा के बिना, पुनर्सामान्यीकरण सिद्धांत को क्वांटम क्षुद्रता प्रदान करेगा। h> प्रतिरूप ग्रिफिथ्स-साइमन वर्ग से वर्णनित है,[1] जिसका अर्थ है कि इसे निश्चित प्रकार के बिंदुरेखा पर आइसिंग प्रतिरूप के अनियमित वर्तमान के अभिसरण के रूप में भी प्रदर्शित किया जा सकता है। दोनों की तुच्छता प्रतिरूप और आईसिंग प्रतिरूप एक बिंदुरेखा प्रतिनिधित्व के माध्यम से दिखाया जा सकता है, जिसे अनियमित वर्तमान विस्तार के रूप में जाना जाता है।[2]


फेनमैन अभिन्न परिमाणीकरण

फेनमैन आरेख विस्तार फेनमैन मार्ग अभिन्न सूत्रीकरण से भी प्राप्त किया जा सकता है।[3] φ में बहुपदों के समय क्रमित निर्वात प्रत्याशा मूल्य, जिसे n-कण ग्रीन के कार्यों के रूप में जाना जाता है, सभी संभावित क्षेत्रों को एकीकृत करके निर्मित किया जाता है, बिना किसी बाहरी क्षेत्र के निर्वात अपेक्षा मान द्वारा सामान्य किया जाता है,

इन सभी ग्रीन के कार्यों को उत्पादक कार्य में J(एक्स) φ (एक्स) में घातांक का विस्तार करके प्राप्त किया जा सकता है

समय को काल्पनिक बनाने के लिए पट्टी नियमित आवर्तन प्रयुक्त किया जा सकता है। अंकित अंक को (++++) में बदलने के बाद φ देता है4 4-आयामी यूक्लिडियन आकाशीय पर सांख्यिकीय यांत्रिकी अभिन्न है,

सामान्यतः, यह नियत संवेग वाले कणों के प्रकीर्णन पर प्रयुक्त होता है, जिस स्थिति में, फूरियर परिवर्तन उपयोगी होता है और वह इसको बदले देता है

डिराक डेल्टा कार्य है।

इस कार्यात्मक अभिन्न का मूल्यांकन करने के लिए मानक चाल इसे घातीय कारकों के उत्पाद मे योजनाबद्ध रूप से के रूप में लिखना है,

दूसरे दो घातीय कारकों को शक्ति श्रृंखला के रूप में विस्तारित किया जा सकता है, और इस विस्तार के संयोजन को रेखांकन के रूप में दर्शाया जा सकता है। λ = 0 के साथ अभिन्न को अनंत रूप से कई प्राथमिक सामान्य वितरण अंगभूत के उत्पाद के रूप में माना जा सकता है, और परिणाम को फेनमैन आरेखों के योग के रूप में व्यक्त किया जा सकता है, जिसकी गणना निम्नलिखित फेनमैन नियमों का उपयोग करके की जाती है:

  • प्रत्येक क्षेत्र N-बिंदु यूक्लिडियन ग्रीन के कार्य को बिंदुरेखा में एक बाहरी रेखा (आधा किनारा) द्वारा दर्शाया गया है, और गति P के साथ जुड़ा हुआ है।
  • प्रत्येक शीर्ष को एक कारक -λ द्वारा दर्शाया जाता है।
  • दिए गए क्रम में λk, n बाहरी रेखाओं और k शीर्षों वाले सभी आरेख इस प्रकार बनाए गए हैं, कि प्रत्येक शीर्ष में प्रवाहित होने वाला संवेग शून्य है। प्रत्येक आंतरिक रेखा को एक कारक 1/(q2 + m2), जहाँ q उस रेखा से बहने वाला संवेग है।
  • कोई भी अप्रतिबंधित क्षण सभी मूल्यों पर एकीकृत होते हैं।
  • परिणाम को समरूपता कारक द्वारा विभाजित किया जाता है, जो कि बिंदुरेखा की रेखाओं और शीर्षों को इसकी संयोजकता को बदले बिना पुनर्व्यवस्थित करने के विधियों की संख्या है।
  • निर्वात असत्य वाले बिंदुरेखा सम्मिलित न करें, बिना किसी बाहरी रेखा वाले संबद्ध सूक्ष्म बिंदुरेखा ।

अंतिम नियम द्वारा विभाजित करने के प्रभाव को ध्यान में रखता है . मिन्कोव्स्की-आकाशीय फेनमैन नियम समान हैं, सिवाय इसके कि प्रत्येक शीर्ष द्वारा दर्शाया गया है , जबकि प्रत्येक आंतरिक रेखा को कारक के रूप मे i/(q2-m2 + i ε), जहां मिन्कोव्स्की-आकाशीय गॉसियन अभिन्न अभिसरण बनाने के लिए आवश्यक छोटे पट्टी नियमित आवर्तन का प्रतिनिधित्व करता है।

ScalarFR.jpg

पुनर्सामान्यीकरण

अप्रतिबंधित गति पर अभिन्न, जिसे परिपथ अंगभूत कहा जाता है, फेनमैन बिंदुरेखा में सामान्यतः विचलन होता है। यह सामान्यतः पुनर्सामान्यीकरण, द्वारा नियंत्रित किया जाता है, जो लैग्रेंजियन के लिए अलग-अलग प्रति-शर्तें को इस तरह से जोड़ने की प्रक्रिया है कि मूल लैग्रेंजियन और प्रतिवाद से निर्मित आरेख परिमित हैं।[4] प्रक्रिया में पुनर्सामान्यीकरण स्तर प्रस्तुत किया जाना चाहिए, और युग्मन स्थिरांक और द्रव्यमान इस पर निर्भर हो जाते हैं। यह वह निर्भरता है जो पहले उल्लेख किए गए लन्दौ ध्रुव की ओर ले जाती है, और इसके लिए आवश्यक है कि अंतिम को परिमित रखा जाए। वैकल्पिक रूप से, यदि अंतिम को अनंत तक जाने की अनुमति दी जाती है, तो लैंडौ पोल से बचा जा सकता है, यदि पुन: सामान्यीकृत युग्मन शून्य तक चलता है, सिद्धांत क्वांटम तुच्छता प्रदान करता है।[5]


स्वतःस्फूर्त समरूपता टूटना

एक रोचक विशेषता तब हो सकती है जब M2 ऋणात्मक हो जाता है, किन्तु λ के साथ अभी भी धनात्मक है। इस स्थितियों में, निर्वात में दो सबसे कम-ऊर्जा वाले क्षेत्र होते हैं, जिनमें से प्रत्येक अनायास Z2 को तोड़ देता है, जो मूल सिद्धांत की वैश्विक समरूपता है। इससे क्षेत्र रुकावट ( श्रृंखला सिद्धांत) जैसे रोचक सामूहिक अवस्था की उपस्थिति होती है। O(2) सिद्धांत में, रिक्तिका वृत्त पर स्थित होगी, और किसी एक का चुनाव अनायास ही O(2) समरूपता को तोड़ देगा। निरंतर टूटी हुई समरूपता गोल्डस्टोन बोसोन की ओर ले जाती है। इस प्रकार की सहज समरूपता टूटना हिग्स तंत्र का आवश्यक घटक है।[6]

असतत समरूपता का स्वत: टूटना

लाग्रंगियन के साथ वह एकल अदिष्ट क्षेत्र है जिसे सबसे सरल सापेक्षतावादी प्रणाली मे हम सहज समरूपता को तोड़ते हुए देख सकते हैं,

कहाँ और

के वर्णन में क्षमता को कम करना ओर जाता है

अब हम इस न्यूनतम लेखन के क्षेत्र का विस्तार करते हैं

और लाग्रंगियन में प्रतिस्थापित करने पर हमें मिलता है

जहां हम देखते हैं कि अदिष्ट अब एक सकारात्मक द्रव्यमान शब्द है।

निर्वात अपेक्षा मूल्यों के संदर्भ में सोचने से हमें यह समझने में सहायता मिलती है कि जब समरूपता अनायास टूट जाती है तो क्या होता है। मूल लाग्रंगियन के अनुसार अपरिवर्तनीय था और समरूपता था. तब से

दोनों न्यूनतम हैं, औरदो अलग-अलग शून्य स्थान होने चाहिए: के साथ

के बाद से समरूपता लेता है , और इसे अवश्य लेना चाहिए भी। सिद्धांत के लिए दो संभावित रिक्तिकाएं समतुल्य हैं, किन्तु एक को चुनना होगा। चूंकि ऐसा लगता है कि नए लाग्रंगियन में समरूपता गायब हो गई है,किन्तु यह अब भी है, और यह अब कार्य करता है यह अनायास टूटी हुई समरूपता की सामान्य विशेषता है: निर्वात उन्हें तोड़ देता है, किन्तु वे वास्तव में लैग्रैंगियन में नहीं टूटे हैं, बस छिपे हुए हैं, और अधिकांशतः केवल गैर-रैखिक तरीके से अनुभूत किए जाते हैं।[7]


स्पष्ट समाधान

प्रपत्र में लिखे गए सिद्धांत की गति के समीकरण के स्पष्ट मौलिक समाधानों का एक समुच्चय उपस्थित है

जो द्रव्यमान रहित के लिए लिखा जा सकता है, स्थितियों के रूप में[8]

साथ जैकोबी दीर्घवृत्तीय फलन और दो एकीकरण स्थिरांक है, परन्तु निम्नलिखित मे विक्षेपण वर्णन हो

रोचक बात यह है कि हमने एक द्रव्यमान रहित समीकरण के साथ शुरुआत की थी किन्तु स्पष्ट समाधान बड़े स्तर पर समाधान के लिए विक्षेपण वर्णन के साथ तरंग का वर्णन करता है। जब द्रव्यमान शब्द शून्य नहीं होता है तो यह प्राप्त होता है

अब विक्षेपण वर्णन होने के नाते

अंत में, समरूपता को तोड़ने के स्थितियों में किसी के पास है

प्राणी और निम्नलिखित विक्षेपण वर्णन धारण करता है

ये तरंग समाधान रोचक हैं, तथापि हमने एक गलत द्रव्यमान चिह्न के साथ समीकरण के साथ आरंभ किया, विक्षेपण वर्णन सही है। इसके अतिरिक्त, जैकोबी फलन कोई वास्तविक शून्य नहीं है और इसलिए क्षेत्र कभी भी शून्य नहीं होता है, किन्तु दिए गए स्थिर मान के चारों ओर घूमता है जिसे प्रारंभ में समरूपता के सहज टूटने का वर्णन करने के लिए चुना जाता है।

अद्वितीयता का प्रमाण प्रदान किया जा सकता है, की यदि हम ध्यान दें कि शैली में समाधान खोजा जा सकता है प्राणी . फिर, आंशिक अंतर समीकरण सामान्य अंतर समीकरण बन जाता है, जो जैकोबी दीर्घवृत्तीय फलन को परिभाषित करता है और उचित विक्षेपण वर्णन को संतुष्ट करता है।

यह भी देखें

  • अदिष्ट क्षेत्र सिद्धांत
  • क्वांटम तुच्छता
  • लैंडौ पोल
  • पुनर्सामान्यीकरण
  • हिग्स तंत्र
  • गोल्डस्टोन बोसोन
  • कोलमैन-वेनबर्ग क्षमता

संदर्भ

  1. Simon, Barry; Griffiths, Robert B. (1973-06-01). "The (φ4)2 field theory as a classical Ising model". Communications in Mathematical Physics (in English). 33 (2): 145–164. doi:10.1007/BF01645626. ISSN 1432-0916. S2CID 123201243.
  2. Aizenman, Michael; Duminil-Copin, Hugo (2021-07-01). "Marginal triviality of the scaling limits of critical 4D Ising and $\phi_4^4$ models". Annals of Mathematics. 194 (1). arXiv:1912.07973. doi:10.4007/annals.2021.194.1.3. ISSN 0003-486X. S2CID 209386716.
  3. A general reference for this section is Ramond, Pierre (2001-12-21). Field Theory: A Modern Primer (Second ed.). USA: Westview Press. ISBN 0-201-30450-3..
  4. See the previous reference, or for more detail, Itzykson, Zuber; Zuber, Jean-Bernard (2006-02-24). Quantum Field Theory. Dover..
  5. D. J. E. Callaway (1988). "Triviality Pursuit: Can Elementary Scalar Particles Exist?". Physics Reports. 167 (5): 241–320. Bibcode:1988PhR...167..241C. doi:10.1016/0370-1573(88)90008-7.
  6. A basic description of spontaneous symmetry breaking may be found in the previous two references, or most other Quantum Field Theory books.
  7. Schwartz, Quantum Field Theory and the Standard Model, Chapter 28.1
  8. Marco Frasca (2011). "शास्त्रीय स्केलर फील्ड समीकरणों का सटीक समाधान". Journal of Nonlinear Mathematical Physics. 18 (2): 291–297. arXiv:0907.4053. Bibcode:2011JNMP...18..291F. doi:10.1142/S1402925111001441. S2CID 17314344.


अग्रिम पठन