ब्रिलुवां प्रकीर्णन: Difference between revisions

From Vigyanwiki
No edit summary
 
(17 intermediate revisions by 3 users not shown)
Line 1: Line 1:
ब्रिलौइन स्कैटरिंग (जिसे ब्रिलौइन [[ रोशनी ]] स्कैटरिंग या बीएलएस के रूप में भी जाना जाता है), जिसका नाम लियोन ब्रिलौइन के नाम पर रखा गया है, एक माध्यम में सामग्री तरंगों (जैसे [[ बिजली ]] और [[ चुंबकीय विरूपण ]]) के साथ प्रकाश की बातचीत को संदर्भित करता है। माध्यम के भौतिक गुणों पर [[अपवर्तक सूचकांक]] निर्भरता द्वारा इसकी मध्यस्थता की जाती है; जैसा [[प्रकाशिकी]] में वर्णित है, विरूपण (संपीड़न-विस्तार या कतरनी-तिरछी) के तहत एक पारदर्शी सामग्री के 'अपवर्तन का सूचकांक' बदलता है।
ब्रिलौइन स्कैटरिंग (जिसे ब्रिलौइन [[ रोशनी |प्रकाश]] स्कैटरिंग या बीएलएस के रूप में भी जाना जाता है), जिसका नाम लियोन ब्रिलौइन के नाम पर रखा गया है, एक माध्यम में पदार्थ तरंगों (जैसे [[ बिजली |विद्युत]] और [[ चुंबकीय विरूपण |चुंबकीय विरूपण]] ) के साथ प्रकाश की परस्पर क्रिया को संदर्भित करता है। यह माध्यम के भौतिक गुणों पर [[अपवर्तक सूचकांक]] निर्भरता द्वारा इसकी मध्यस्थता की जाती है; जैसा [[प्रकाशिकी]] में वर्णित है, विरूपण (संपीड़न-विस्तार या कतरनी-तिरछी) के अनुसार पारदर्शी पदार्थ के 'अपवर्तन का सूचकांक' बदलता है।


प्रकाश-तरंग और वाहक-विरूपण तरंग के बीच परस्पर क्रिया का परिणाम यह होता है कि प्रेषित प्रकाश-तरंग का एक अंश अपनी गति (इस प्रकार इसकी आवृत्ति और ऊर्जा) को अधिमान्य दिशाओं में बदल देता है, जैसे कि एक दोलन 3 के कारण होने वाले विवर्तन से- आयामी विवर्तन झंझरी।
प्रकाश-तरंग और वाहक-विरूपण तरंग के बीच परस्पर क्रिया का परिणाम यह होता है कि प्रेषित प्रकाश-तरंग का अंश अपनी गति (इस प्रकार इसकी आवृत्ति और ऊर्जा) को अधिमान्य दिशाओं में बदल देता है, जैसे कि दोलन 3 के कारण होने वाले विवर्तन से- आयामी विवर्तन ग्रेटिंग है।


यदि माध्यम एक ठोस क्रिस्टल, एक मैक्रोमोलेक्युलर चेन कंडेनसेट या एक चिपचिपा तरल या गैस है, तो कम आवृत्ति परमाणु-श्रृंखला-विरूपण तरंगें संचारण माध्यम के भीतर (संचरित विद्युत-चुंबकीय तरंग नहीं) वाहक में ([[quisiparticle]] के रूप में प्रतिनिधित्व) ) उदाहरण के लिए हो सकता है:
यदि माध्यम ठोस क्रिस्टल, मैक्रोमोलेक्युलर चेन कंडेनसेट या चिपचिपा तरल या गैस है, तो कम आवृत्ति परमाणु-श्रृंखला-विरूपण तरंगें संचारण माध्यम के अन्दर (संचरित विद्युत-चुंबकीय तरंग नहीं) वाहक में ([[quisiparticle|क्यूसिपार्टिकल]] के रूप में प्रतिनिधित्व) ) उदाहरण के लिए हो सकता है:
# द्रव्यमान दोलन (ध्वनिक) मोड ([[फोनन]] कहा जाता है);
# द्रव्यमान दोलन (ध्वनिक) मोड ([[फोनन]] कहा जाता है);
# चार्ज विस्थापन मोड (डाइलेक्ट्रिक्स में, [[पोलरिटोन]] कहा जाता है);
# चार्ज विस्थापन मोड (डाइलेक्ट्रिक्स में, [[पोलरिटोन]] कहा जाता है);
# चुंबकीय स्पिन दोलन मोड (चुंबकीय सामग्री में, जिसे मैग्नॉन कहा जाता है)।
# चुंबकीय स्पिन दोलन मोड (चुंबकीय पदार्थ में, जिसे मैग्नॉन कहा जाता है)।
 
#


== तंत्र ==
== तंत्र ==
[[Image:Lattice wave.svg|250px|right]]ठोस अवस्था भौतिकी के दृष्टिकोण से, ब्रिलॉइन स्कैटरिंग एक विद्युत चुम्बकीय तरंग और तीन उपर्युक्त क्रिस्टलीय जाली तरंगों (जैसे इलेक्ट्रोस्ट्रिक्शन और मैग्नेटोस्ट्रिक्शन) में से एक के बीच एक संपर्क है। प्रकीर्णन अप्रत्यास्थ प्रकीर्णन है अर्थात फोटॉन ऊर्जा खो सकता है ([[स्टोक्स शिफ्ट]] प्रक्रिया) और इस प्रक्रिया में तीन क्वासिपार्टिकल प्रकारों (फोनन, पोलरिटोन, मैग्नन) में से एक का निर्माण करता है या उनमें से किसी एक को अवशोषित करके ऊर्जा (एंटी-स्टोक्स प्रक्रिया) प्राप्त कर सकता है। क्वासिपार्टिकल प्रकार। फोटॉन ऊर्जा में इस तरह का बदलाव, फ्रिक्वेंसी में ब्रिलॉइन शिफ्ट के अनुरूप होता है, जो जारी या अवशोषित क्यूसिपार्टिकल की ऊर्जा के बराबर होता है। इस प्रकार, ब्रिलॉइन स्कैटरिंग का उपयोग ऊर्जा, तरंग दैर्ध्य और विभिन्न परमाणु श्रृंखला दोलन प्रकारों ('क्यूसिपार्टिकल्स') की आवृत्तियों को मापने के लिए किया जा सकता है। Brillouin शिफ्ट को मापने के लिए Brillouin [[स्पेक्ट्रोमीटर]] नामक एक सामान्य रूप से नियोजित डिवाइस का उपयोग किया जाता है, जिसका डिज़ाइन फैब्री-पेरोट इंटरफेरोमीटर से लिया गया है।
[[Image:Lattice wave.svg|250px|right]]ठोस अवस्था भौतिकी के दृष्टिकोण से, ब्रिलॉइन स्कैटरिंग विद्युत चुम्बकीय तरंग और तीन उपर्युक्त क्रिस्टलीय जाली तरंगों (जैसे विद्युत सख्त और चुंबकीय विरूपण ) में से एक के बीच संपर्क है। प्रकीर्णन अप्रत्यास्थ प्रकीर्णन है अर्थात फोटॉन ऊर्जा खो सकता है ([[स्टोक्स शिफ्ट]] प्रक्रिया) और इस प्रक्रिया में तीन क्वासिपार्टिकल प्रकारों (फोनन, पोलरिटोन, मैग्नन) में से एक का निर्माण करता है या उन क्वासिपार्टिकल प्रकारो से किसी एक को अवशोषित करके ऊर्जा (एंटी-स्टोक्स प्रक्रिया) प्राप्त कर सकता है। फोटॉन ऊर्जा में इस तरह का बदलाव, आवृत्ति में ब्रिलॉइन शिफ्ट के अनुरूप होता है, जो जारी या अवशोषित क्यूसिपार्टिकल की ऊर्जा के बराबर होता है। इस प्रकार, ब्रिलॉइन स्कैटरिंग का उपयोग ऊर्जा, तरंग दैर्ध्य और विभिन्न परमाणु श्रृंखला दोलन प्रकारों ('क्यूसिपार्टिकल्स') की आवृत्तियों को मापने के लिए किया जा सकता है। ब्रिलौइन शिफ्ट को मापने के लिए ब्रिलौइन [[स्पेक्ट्रोमीटर]] नामक सामान्य रूप से नियोजित उपकरण का उपयोग किया जाता है, जिसका डिज़ाइन फैब्री-पेरोट इंटरफेरोमीटर से लिया गया है।


== [[रेले स्कैटरिंग]] == के साथ तुलना करें
=== [[रेले स्कैटरिंग]] के साथ तुलना करें ===
रेले स्कैटरिंग को भी संचारण माध्यम के भीतर अणुओं के घनत्व, संरचना और अभिविन्यास में उतार-चढ़ाव के कारण माना जा सकता है, और इसलिए इसका अपवर्तन सूचकांक, पदार्थ की छोटी मात्रा (विशेष रूप से गैसों या तरल पदार्थों में) में होता है। अंतर यह है कि रेले स्कैटरिंग में केवल यादृच्छिक और असंगत थर्मल उतार-चढ़ाव शामिल होते हैं, इसके विपरीत सहसंबद्ध, आवधिक उतार-चढ़ाव (फोनन) होते हैं जो ब्रिलॉइन स्कैटरिंग का कारण बनते हैं। इसके अलावा, रेले स्कैटरिंग लोचदार है जिसमें कोई ऊर्जा नष्ट या प्राप्त नहीं होती है।
रेले स्कैटरिंग को भी संचारण माध्यम के अन्दर अणुओं के घनत्व, संरचना और अभिविन्यास में उतार-चढ़ाव के कारण माना जा सकता है, और इसलिए इसका अपवर्तन सूचकांक, पदार्थ की छोटी मात्रा (विशेष रूप से गैसों या तरल पदार्थों में) में होता है। अंतर यह है कि रेले स्कैटरिंग में केवल यादृच्छिक और असंगत थर्मल उतार-चढ़ाव सम्मिलित होते हैं, इसके विपरीत सहसंबद्ध, आवधिक उतार-चढ़ाव (फोनन) होते हैं जो ब्रिलॉइन स्कैटरिंग का कारण बनते हैं। इसके अतिरिक्त, रेले स्कैटरिंग लोचदार है जिसमें कोई ऊर्जा नष्ट या प्राप्त नहीं होती है।


== [[ रमन बिखरना ]] == के साथ तुलना करें
=== [[ रमन बिखरना |रमन स्कैटरिंग]] के साथ तुलना करें ===
रमन प्रकीर्णन एक अन्य घटना है जिसमें पदार्थ के कंपन गुणों के कारण प्रकाश का अप्रत्यास्थ प्रकीर्णन शामिल है। ब्रिलौइन स्कैटरिंग की तुलना में फ़्रीक्वेंसी शिफ्ट और अन्य प्रभावों की पता लगाई गई सीमा बहुत अलग है। रमन प्रकीर्णन में, पहले क्रम के पड़ोसी परमाणुओं के बीच बंधनों में कंपन और घूर्णी संक्रमण के प्रभाव से फोटॉन बिखर जाते हैं, जबकि ब्रिलौइन बिखरने का परिणाम बड़े पैमाने पर, कम आवृत्ति वाले फ़ोनों के कारण होने वाले [[फोटोन]] के बिखरने से होता है। दो घटनाओं के प्रभाव नमूने के बारे में बहुत अलग जानकारी प्रदान करते हैं: [[रमन स्पेक्ट्रोस्कोपी]] का उपयोग ट्रांसमिटिंग माध्यम की रासायनिक संरचना और आणविक संरचना को निर्धारित करने के लिए किया जा सकता है, जबकि ब्रिलॉइन स्कैटरिंग का उपयोग सामग्री के गुणों को बड़े पैमाने पर मापने के लिए किया जा सकता है - जैसे कि इसकी लोचदार व्यवहार। ब्रिलौइन स्कैटरिंग से आवृत्ति बदलाव, एक तकनीक जिसे [[ब्रिलौइन स्पेक्ट्रोस्कोपी]] के रूप में जाना जाता है, एक [[इंटरफेरोमीटर]] के साथ पता लगाया जाता है जबकि रमन स्कैटरिंग या तो एक इंटरफेरोमीटर या डिस्पर्सिव ([[ कर्कश ]]) स्पेक्ट्रोमीटर का उपयोग करता है।
रमन प्रकीर्णन एक अन्य घटना है जिसमें पदार्थ के कंपन गुणों के कारण प्रकाश का अप्रत्यास्थ प्रकीर्णन सम्मिलित है। ब्रिलौइन स्कैटरिंग की तुलना में आवृत्ति शिफ्ट और अन्य प्रभावों की पता लगाई गई सीमा बहुत अलग है। रमन प्रकीर्णन में, पहले क्रम के पड़ोसी परमाणुओं के बीच बंधनों में कंपन और घूर्णी संक्रमण के प्रभाव से फोटॉन बिखर जाते हैं, जबकि ब्रिलौइन बिखरने का परिणाम बड़े मापदंड पर, कम आवृत्ति वाले फ़ोनों के कारण होने वाले [[फोटोन]] के बिखरने से होता है। दो घटनाओं के प्रभाव नमूने के बारे में बहुत अलग जानकारी प्रदान करते हैं: [[रमन स्पेक्ट्रोस्कोपी]] का उपयोग ट्रांसमिटिंग माध्यम की रासायनिक संरचना और आणविक संरचना को निर्धारित करने के लिए किया जा सकता है, जबकि ब्रिलॉइन स्कैटरिंग का उपयोग पदार्थ के गुणों को बड़े मापदंड पर मापने के लिए किया जा सकता है - जैसे कि इसकी लोचदार व्यवहार ब्रिलौइन स्कैटरिंग से आवृत्ति बदलाव विधि जिसे [[ब्रिलौइन स्पेक्ट्रोस्कोपी]] के रूप में जाना जाता है, [[इंटरफेरोमीटर]] के साथ पता लगाया जाता है जबकि रमन स्कैटरिंग या तो इंटरफेरोमीटर या डिस्पर्सिव ([[ कर्कश | कर्कश]] ) स्पेक्ट्रोमीटर का उपयोग करता है।


== उत्तेजित ब्रिलौइन स्कैटरिंग ==
== उत्तेजित ब्रिलौइन स्कैटरिंग ==
प्रकाश के तीव्र बीम (जैसे [[लेज़र]]) के लिए एक माध्यम में या [[वेवगाइड (विद्युत चुंबकत्व)]] में यात्रा करते हैं, जैसे [[प्रकाशित तंतु]], बीम के [[विद्युत क्षेत्र]] में भिन्नता इलेक्ट्रोस्ट्रिक्शन या [[विकिरण दबाव]] के माध्यम से माध्यम में ध्वनिक कंपन उत्पन्न कर सकती है। बीम उन कंपनों के परिणामस्वरूप ब्रिलौइन स्कैटरिंग प्रदर्शित कर सकता है, आमतौर पर आने वाली बीम के विपरीत दिशा में, एक घटना जिसे उत्तेजित ब्रिलौइन स्कैटरिंग (एसबीएस) के रूप में जाना जाता है। तरल पदार्थ और गैसों के लिए, आमतौर पर बनाई गई आवृत्ति बदलाव 1-10 [[गीगाहर्ट्ज़]] के क्रम के होते हैं, जिसके परिणामस्वरूप दृश्यमान स्पेक्ट्रम में ~ 1-10 [[picometre]] की तरंग दैर्ध्य बदलाव होते हैं। उत्तेजित ब्रिलौइन स्कैटरिंग एक ऐसा प्रभाव है जिसके द्वारा नॉनलाइनियर ऑप्टिक्स #ऑप्टिकल चरण संयुग्मन हो सकता है।
प्रकाश के तीव्र बीम (जैसे [[लेज़र]]) के लिए एक माध्यम में या [[वेवगाइड (विद्युत चुंबकत्व)]] में यात्रा करते हैं, जैसे [[प्रकाशित तंतु]], बीम के [[विद्युत क्षेत्र]] में भिन्नता विद्युत सख्त या [[विकिरण दबाव]] के माध्यम से माध्यम में ध्वनिक कंपन उत्पन्न कर सकती है। बीम उन कंपनों के परिणामस्वरूप ब्रिलौइन स्कैटरिंग प्रदर्शित कर सकता है, सामान्यतः आने वाली बीम के विपरीत दिशा में, घटना जिसे उत्तेजित ब्रिलौइन स्कैटरिंग (एसबीएस) के रूप में जाना जाता है। तरल पदार्थ और गैसों के लिए, सामान्यतः बनाई गई आवृत्ति बदलाव 1-10 [[गीगाहर्ट्ज़]] के क्रम के होते हैं, जिसके परिणामस्वरूप दृश्यमान स्पेक्ट्रम में ~ 1-10 [[picometre|पीकोमेट्रे]] की तरंग दैर्ध्य बदलाव होते हैं। उत्तेजित ब्रिलौइन स्कैटरिंग ऐसा प्रभाव है जिसके द्वारा नॉनलाइनियर प्रकाशिकी या प्रकाशिकी चरण संयुग्मन हो सकता है।


== डिस्कवरी ==
== डिस्कवरी ==
1914 में लियोन ब्रिलौइन द्वारा पहली बार ध्वनिक फोनन के कारण प्रकाश के अप्रत्यास्थ प्रकीर्णन की भविष्यवाणी की गई थी।
1914 में लियोन ब्रिलौइन द्वारा पहली बार ध्वनिक फोनन के कारण प्रकाश के अप्रत्यास्थ प्रकीर्णन की भविष्यवाणी की गई थी।<ref>
<ref>
Brillouin, Léon: "Diffusion de la lumière par un corps transparent homogène", Comptes rendus de l’Académie des sciences, Tome 158, p. 1331 (1914) [https://gallica.bnf.fr/ark:/12148/bpt6k3111d/f1335.item# link]</ref>. माना जाता है कि [[लियोनिद मंडेलस्टम]] ने 1918 के प्रारंभ में ही इस तरह के प्रकीर्णन की संभावना को पहचान लिया था, किंतु उन्होंने अपना विचार 1926 में ही प्रकाशित किया।<ref>Feînberg, E.L.:  
Brillouin, Léon: "Diffusion de la lumière par un corps transparent homogène", Comptes rendus de l’Académie des sciences, Tome 158, p. 1331 (1914) [https://gallica.bnf.fr/ark:/12148/bpt6k3111d/f1335.item# link]</ref>
''The forefather'', Uspekhi Fizicheskikh Nauk, Vol. '''172''', 2002 (Physics-Uspekhi, '''45''', 81 (2002) {{doi|10.1070/PU2002v045n01ABEH001126}})</ref> मैंडेलस्टम को श्रेय देने के लिए, प्रभाव को ब्रिलॉइन-मैंडेलस्टैम स्कैटरिंग (बीएमएस) भी कहा जाता है। सामान्यतः उपयोग किए जाने वाले अन्य नाम ब्रिलौइन लाइट स्कैटरिंग (बीएलएस) और ब्रिलौइन-मैंडेलस्टैम लाइट स्कैटरिंग (बीएमएलएस) हैं।
. माना जाता है कि [[लियोनिद मंडेलस्टम]] ने 1918 की शुरुआत में ही इस तरह के बिखराव की संभावना को पहचान लिया था, लेकिन उन्होंने अपना विचार 1926 में ही प्रकाशित किया।<ref>Feînberg, E.L.:  
''The forefather'', Uspekhi Fizicheskikh Nauk, Vol. '''172''', 2002 (Physics-Uspekhi, '''45''', 81 (2002) {{doi|10.1070/PU2002v045n01ABEH001126}})</ref>
मैंडेलस्टम को श्रेय देने के लिए, प्रभाव को ब्रिलॉइन-मैंडेलस्टैम स्कैटरिंग (बीएमएस) भी कहा जाता है। आमतौर पर इस्तेमाल किए जाने वाले अन्य नाम ब्रिलौइन लाइट स्कैटरिंग (बीएलएस) और ब्रिलौइन-मैंडेलस्टैम लाइट स्कैटरिंग (बीएमएलएस) हैं।


स्टिमुलेटेड ब्रिलौइन स्कैटरिंग (SBS) की प्रक्रिया को सबसे पहले Chiao et al द्वारा देखा गया था। 1964 में। एसबीएस प्रक्रिया के ऑप्टिकल चरण संयुग्मन पहलू की खोज [[बोरिस याकोवलेविच ज़ेल्डोविच]] एट अल द्वारा की गई थी। 1972 में।
स्टिमुलेटेड ब्रिलौइन स्कैटरिंग (एसबीएस) की प्रक्रिया को सबसे पहले 1964 में चियाओ एट अल द्वारा देखा गया था। एसबीएस प्रक्रिया के प्रकाशिकी चरण संयुग्मन पहलू की खोज 1972 में [[बोरिस याकोवलेविच ज़ेल्डोविच]] एट अल द्वारा की गई थी।


== फाइबर ऑप्टिक सेंसिंग ==
== फाइबर ऑप्टिक सेंसिंग ==
ऑप्टिकल फाइबर में [[विरूपण (यांत्रिकी)]] और तापमान को समझने के लिए ब्रिलॉइन स्कैटरिंग को भी नियोजित किया जा सकता है।<ref>
प्रकाशिकी फाइबर में [[विरूपण (यांत्रिकी)]] और तापमान को समझने के लिए ब्रिलॉइन स्कैटरिंग को भी नियोजित किया जा सकता है।<ref>
{{cite book
{{cite book
   | last = Measures
   | last = Measures
Line 42: Line 41:
   | isbn = 978-0-12-487430-5}}
   | isbn = 978-0-12-487430-5}}
</ref>
</ref>
 
== यह भी देखें                                   ==
 
== यह भी देखें ==
* [[ब्रिलौइन स्पेक्ट्रोस्कोपी]]
* [[ब्रिलौइन स्पेक्ट्रोस्कोपी]]
* बिखराव
* बिखराव
Line 51: Line 48:


==संदर्भ==
==संदर्भ==
===टिप्पणियाँ===
===टिप्पणियाँ===
{{reflist}}
{{reflist}}
=== स्रोत ===
=== स्रोत ===
* {{cite journal |last=Brillouin |first=Léon |date=1914 |title=एक सजातीय पारदर्शी शरीर द्वारा प्रकाश का प्रसार|trans-title= |url=https://gallica.bnf.fr/ark:/12148/bpt6k3111d/f1335.item# |language=FR |journal=Comptes Rendus de l'Académie des Sciences |volume=158  |pages=1331–4 |access-date=2022-09-28}}
* {{cite journal |last=Brillouin |first=Léon |date=1914 |title=एक सजातीय पारदर्शी शरीर द्वारा प्रकाश का प्रसार|trans-title= |url=https://gallica.bnf.fr/ark:/12148/bpt6k3111d/f1335.item# |language=FR |journal=Comptes Rendus de l'Académie des Sciences |volume=158  |pages=1331–4 |access-date=2022-09-28}}
Line 71: Line 63:
* [http://www.icmm.csic.es/emmh/?page_id=124 List of labs] performing Brillouin scattering measurements [http://www.icmm.csic.es/emmh/?page_id=39 (source BS Lab in ICMM-CSIC)]
* [http://www.icmm.csic.es/emmh/?page_id=124 List of labs] performing Brillouin scattering measurements [http://www.icmm.csic.es/emmh/?page_id=39 (source BS Lab in ICMM-CSIC)]


{{DEFAULTSORT:Brillouin Scattering}}[[Category: बिखराव, अवशोषण और विकिरण स्थानांतरण (प्रकाशिकी)]] [[Category: बिखरने]] [[Category: फाइबर ऑप्टिक संचार]]
{{DEFAULTSORT:Brillouin Scattering}}
 
 


[[Category: Machine Translated Page]]
[[Category:CS1 français-language sources (fr)|Brillouin Scattering]]
[[Category:Created On 27/03/2023]]
[[Category:Created On 27/03/2023|Brillouin Scattering]]
[[Category:Machine Translated Page|Brillouin Scattering]]
[[Category:Pages with script errors|Brillouin Scattering]]
[[Category:Templates Vigyan Ready|Brillouin Scattering]]
[[Category:फाइबर ऑप्टिक संचार|Brillouin Scattering]]
[[Category:बिखरने|Brillouin Scattering]]
[[Category:बिखराव, अवशोषण और विकिरण स्थानांतरण (प्रकाशिकी)|Brillouin Scattering]]

Latest revision as of 09:52, 17 May 2023

ब्रिलौइन स्कैटरिंग (जिसे ब्रिलौइन प्रकाश स्कैटरिंग या बीएलएस के रूप में भी जाना जाता है), जिसका नाम लियोन ब्रिलौइन के नाम पर रखा गया है, एक माध्यम में पदार्थ तरंगों (जैसे विद्युत और चुंबकीय विरूपण ) के साथ प्रकाश की परस्पर क्रिया को संदर्भित करता है। यह माध्यम के भौतिक गुणों पर अपवर्तक सूचकांक निर्भरता द्वारा इसकी मध्यस्थता की जाती है; जैसा प्रकाशिकी में वर्णित है, विरूपण (संपीड़न-विस्तार या कतरनी-तिरछी) के अनुसार पारदर्शी पदार्थ के 'अपवर्तन का सूचकांक' बदलता है।

प्रकाश-तरंग और वाहक-विरूपण तरंग के बीच परस्पर क्रिया का परिणाम यह होता है कि प्रेषित प्रकाश-तरंग का अंश अपनी गति (इस प्रकार इसकी आवृत्ति और ऊर्जा) को अधिमान्य दिशाओं में बदल देता है, जैसे कि दोलन 3 के कारण होने वाले विवर्तन से- आयामी विवर्तन ग्रेटिंग है।

यदि माध्यम ठोस क्रिस्टल, मैक्रोमोलेक्युलर चेन कंडेनसेट या चिपचिपा तरल या गैस है, तो कम आवृत्ति परमाणु-श्रृंखला-विरूपण तरंगें संचारण माध्यम के अन्दर (संचरित विद्युत-चुंबकीय तरंग नहीं) वाहक में (क्यूसिपार्टिकल के रूप में प्रतिनिधित्व) ) उदाहरण के लिए हो सकता है:

  1. द्रव्यमान दोलन (ध्वनिक) मोड (फोनन कहा जाता है);
  2. चार्ज विस्थापन मोड (डाइलेक्ट्रिक्स में, पोलरिटोन कहा जाता है);
  3. चुंबकीय स्पिन दोलन मोड (चुंबकीय पदार्थ में, जिसे मैग्नॉन कहा जाता है)।

तंत्र

Lattice wave.svg

ठोस अवस्था भौतिकी के दृष्टिकोण से, ब्रिलॉइन स्कैटरिंग विद्युत चुम्बकीय तरंग और तीन उपर्युक्त क्रिस्टलीय जाली तरंगों (जैसे विद्युत सख्त और चुंबकीय विरूपण ) में से एक के बीच संपर्क है। प्रकीर्णन अप्रत्यास्थ प्रकीर्णन है अर्थात फोटॉन ऊर्जा खो सकता है (स्टोक्स शिफ्ट प्रक्रिया) और इस प्रक्रिया में तीन क्वासिपार्टिकल प्रकारों (फोनन, पोलरिटोन, मैग्नन) में से एक का निर्माण करता है या उन क्वासिपार्टिकल प्रकारो से किसी एक को अवशोषित करके ऊर्जा (एंटी-स्टोक्स प्रक्रिया) प्राप्त कर सकता है। फोटॉन ऊर्जा में इस तरह का बदलाव, आवृत्ति में ब्रिलॉइन शिफ्ट के अनुरूप होता है, जो जारी या अवशोषित क्यूसिपार्टिकल की ऊर्जा के बराबर होता है। इस प्रकार, ब्रिलॉइन स्कैटरिंग का उपयोग ऊर्जा, तरंग दैर्ध्य और विभिन्न परमाणु श्रृंखला दोलन प्रकारों ('क्यूसिपार्टिकल्स') की आवृत्तियों को मापने के लिए किया जा सकता है। ब्रिलौइन शिफ्ट को मापने के लिए ब्रिलौइन स्पेक्ट्रोमीटर नामक सामान्य रूप से नियोजित उपकरण का उपयोग किया जाता है, जिसका डिज़ाइन फैब्री-पेरोट इंटरफेरोमीटर से लिया गया है।

रेले स्कैटरिंग के साथ तुलना करें

रेले स्कैटरिंग को भी संचारण माध्यम के अन्दर अणुओं के घनत्व, संरचना और अभिविन्यास में उतार-चढ़ाव के कारण माना जा सकता है, और इसलिए इसका अपवर्तन सूचकांक, पदार्थ की छोटी मात्रा (विशेष रूप से गैसों या तरल पदार्थों में) में होता है। अंतर यह है कि रेले स्कैटरिंग में केवल यादृच्छिक और असंगत थर्मल उतार-चढ़ाव सम्मिलित होते हैं, इसके विपरीत सहसंबद्ध, आवधिक उतार-चढ़ाव (फोनन) होते हैं जो ब्रिलॉइन स्कैटरिंग का कारण बनते हैं। इसके अतिरिक्त, रेले स्कैटरिंग लोचदार है जिसमें कोई ऊर्जा नष्ट या प्राप्त नहीं होती है।

रमन स्कैटरिंग के साथ तुलना करें

रमन प्रकीर्णन एक अन्य घटना है जिसमें पदार्थ के कंपन गुणों के कारण प्रकाश का अप्रत्यास्थ प्रकीर्णन सम्मिलित है। ब्रिलौइन स्कैटरिंग की तुलना में आवृत्ति शिफ्ट और अन्य प्रभावों की पता लगाई गई सीमा बहुत अलग है। रमन प्रकीर्णन में, पहले क्रम के पड़ोसी परमाणुओं के बीच बंधनों में कंपन और घूर्णी संक्रमण के प्रभाव से फोटॉन बिखर जाते हैं, जबकि ब्रिलौइन बिखरने का परिणाम बड़े मापदंड पर, कम आवृत्ति वाले फ़ोनों के कारण होने वाले फोटोन के बिखरने से होता है। दो घटनाओं के प्रभाव नमूने के बारे में बहुत अलग जानकारी प्रदान करते हैं: रमन स्पेक्ट्रोस्कोपी का उपयोग ट्रांसमिटिंग माध्यम की रासायनिक संरचना और आणविक संरचना को निर्धारित करने के लिए किया जा सकता है, जबकि ब्रिलॉइन स्कैटरिंग का उपयोग पदार्थ के गुणों को बड़े मापदंड पर मापने के लिए किया जा सकता है - जैसे कि इसकी लोचदार व्यवहार ब्रिलौइन स्कैटरिंग से आवृत्ति बदलाव विधि जिसे ब्रिलौइन स्पेक्ट्रोस्कोपी के रूप में जाना जाता है, इंटरफेरोमीटर के साथ पता लगाया जाता है जबकि रमन स्कैटरिंग या तो इंटरफेरोमीटर या डिस्पर्सिव ( कर्कश ) स्पेक्ट्रोमीटर का उपयोग करता है।

उत्तेजित ब्रिलौइन स्कैटरिंग

प्रकाश के तीव्र बीम (जैसे लेज़र) के लिए एक माध्यम में या वेवगाइड (विद्युत चुंबकत्व) में यात्रा करते हैं, जैसे प्रकाशित तंतु, बीम के विद्युत क्षेत्र में भिन्नता विद्युत सख्त या विकिरण दबाव के माध्यम से माध्यम में ध्वनिक कंपन उत्पन्न कर सकती है। बीम उन कंपनों के परिणामस्वरूप ब्रिलौइन स्कैटरिंग प्रदर्शित कर सकता है, सामान्यतः आने वाली बीम के विपरीत दिशा में, घटना जिसे उत्तेजित ब्रिलौइन स्कैटरिंग (एसबीएस) के रूप में जाना जाता है। तरल पदार्थ और गैसों के लिए, सामान्यतः बनाई गई आवृत्ति बदलाव 1-10 गीगाहर्ट्ज़ के क्रम के होते हैं, जिसके परिणामस्वरूप दृश्यमान स्पेक्ट्रम में ~ 1-10 पीकोमेट्रे की तरंग दैर्ध्य बदलाव होते हैं। उत्तेजित ब्रिलौइन स्कैटरिंग ऐसा प्रभाव है जिसके द्वारा नॉनलाइनियर प्रकाशिकी या प्रकाशिकी चरण संयुग्मन हो सकता है।

डिस्कवरी

1914 में लियोन ब्रिलौइन द्वारा पहली बार ध्वनिक फोनन के कारण प्रकाश के अप्रत्यास्थ प्रकीर्णन की भविष्यवाणी की गई थी।[1]. माना जाता है कि लियोनिद मंडेलस्टम ने 1918 के प्रारंभ में ही इस तरह के प्रकीर्णन की संभावना को पहचान लिया था, किंतु उन्होंने अपना विचार 1926 में ही प्रकाशित किया।[2] मैंडेलस्टम को श्रेय देने के लिए, प्रभाव को ब्रिलॉइन-मैंडेलस्टैम स्कैटरिंग (बीएमएस) भी कहा जाता है। सामान्यतः उपयोग किए जाने वाले अन्य नाम ब्रिलौइन लाइट स्कैटरिंग (बीएलएस) और ब्रिलौइन-मैंडेलस्टैम लाइट स्कैटरिंग (बीएमएलएस) हैं।

स्टिमुलेटेड ब्रिलौइन स्कैटरिंग (एसबीएस) की प्रक्रिया को सबसे पहले 1964 में चियाओ एट अल द्वारा देखा गया था। एसबीएस प्रक्रिया के प्रकाशिकी चरण संयुग्मन पहलू की खोज 1972 में बोरिस याकोवलेविच ज़ेल्डोविच एट अल द्वारा की गई थी।

फाइबर ऑप्टिक सेंसिंग

प्रकाशिकी फाइबर में विरूपण (यांत्रिकी) और तापमान को समझने के लिए ब्रिलॉइन स्कैटरिंग को भी नियोजित किया जा सकता है।[3]

यह भी देखें

संदर्भ

टिप्पणियाँ

  1. Brillouin, Léon: "Diffusion de la lumière par un corps transparent homogène", Comptes rendus de l’Académie des sciences, Tome 158, p. 1331 (1914) link
  2. Feînberg, E.L.: The forefather, Uspekhi Fizicheskikh Nauk, Vol. 172, 2002 (Physics-Uspekhi, 45, 81 (2002) doi:10.1070/PU2002v045n01ABEH001126)
  3. Measures, Raymond M. (2001). Structural Monitoring with Fiber Optic Technology. San Diego, California, USA: Academic Press. pp. Chapter 7. ISBN 978-0-12-487430-5.

स्रोत

  • Brillouin, Léon (1914). "एक सजातीय पारदर्शी शरीर द्वारा प्रकाश का प्रसार". Comptes Rendus de l'Académie des Sciences (in français). 158: 1331–4. Retrieved 2022-09-28.
  • Brillouin, Léon (1922). "एक सजातीय पारदर्शी निकाय द्वारा प्रकाश और एक्स-रे का प्रसार". Annales de Physique. EDP Sciences. 9 (17): 88–122. doi:10.1051/anphys/192209170088. ISSN 0003-4169.
  • लियोनिद मंडेलस्टम | एल.आई. मंडेलस्टम, जे। रस। फ़िज़-खिम।, ओवा। 58, 381 (1926)।
  • Chiao, R. Y.; Townes, C. H.; Stoicheff, B. P. (1964-05-25). "स्टिम्युलेटेड ब्रिलौइन स्कैटरिंग एंड कोहेरेंट जनरेशन ऑफ़ इंटेंस हाइपरसोनिक वेव्स". Physical Review Letters. American Physical Society (APS). 12 (21): 592–595. doi:10.1103/physrevlett.12.592. ISSN 0031-9007.
  • बी.वाई. ज़ेल्डोविच, वी.आई.पोपोविच, वी.वी.रागुल्स्की और एफ़.एस. फ़ैसुल्लोव, उत्तेजित मैंडेलश्टम ब्रिलॉइन स्कैटरिंग, सोव में परावर्तित और रोमांचक प्रकाश के वेवफ्रंट्स के बीच संबंध। भौतिक। जेईटीपी, '15', 109 (1972)

बाहरी संबंध