परिपूर्ण समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Mathematical group with trivial abelianization}}
{{short description|Mathematical group with trivial abelianization}}
गणित में, अधिक विशेष रूप से [[समूह सिद्धांत]] में, एक [[समूह (गणित)]] को पूर्ण कहा जाता है यदि यह अपने स्वयं के [[कम्यूटेटर उपसमूह]] के समान होता है, या समतुल्य रूप से, यदि समूह में कोई [[तुच्छ समूह]] नहीं है।, जो सार्वभौम एबेलियन भागफल है, तुच्छ है)। प्रतीकों में, एक आदर्श समूह ऐसा है कि ''G''<sup>(1)</sup> = ''G'' (कम्यूटेटर उपसमूह समूह के समान है), या समकक्ष एक ऐसा है कि ''G''<sup>ab</sup> = {1} (इसका अपमान तुच्छ है)।
गणित में, अधिक विशेष रूप से [[समूह सिद्धांत]] में, एक [[समूह (गणित)]] को पूर्ण कहा जाता है यदि यह अपने स्वयं के [[कम्यूटेटर उपसमूह]] के समान होता है, या समतुल्य रूप से, यदि समूह में कोई [[तुच्छ समूह]] नहीं है।, जो सार्वभौम एबेलियन भागफल है, तुच्छ है)। प्रतीकों में, एक आदर्श समूह ऐसा है कि ''G''<sup>(1)</sup> = ''G'' (कम्यूटेटर उपसमूह समूह के समान है), या समकक्ष एक ऐसा है कि ''G''<sup>ab</sup> = {1} (इसका अपमान तुच्छ है)।


== उदाहरण ==
== उदाहरण ==
सबसे छोटा (गैर-तुच्छ) पूर्ण समूह [[वैकल्पिक समूह]] ''A''<sub>5</sub> है अधिक सामान्यतः , कोई भी [[गैर-अबेलियन समूह]] '''गैर-अबेलियन सरल समूह''' परिपूर्ण होता है क्योंकि कम्यूटेटर उपसमूह एबेलियन भागफल के साथ एक [[सामान्य उपसमूह]] है। इसके विपरीत, एक संपूर्ण समूह को सरल होने की आवश्यकता नहीं है; उदाहरण के लिए, 5 तत्वों के साथ [[क्षेत्र (गणित)]] पर [[विशेष रैखिक समूह]], एसएल (2,5) (या [[बाइनरी इकोसाहेड्रल समूह]], जो इसके लिए [[समूह समरूपता]] है) सही है किंतु सरल नहीं है (इसमें एक गैर-तुच्छ केंद्र है जिसमें <math>\left(\begin{smallmatrix}-1 & 0 \\ 0 & -1\end{smallmatrix}\right) = \left(\begin{smallmatrix}4 & 0 \\ 0 & 4\end{smallmatrix}\right)</math> है।.
सबसे छोटा (गैर-तुच्छ) पूर्ण समूह [[वैकल्पिक समूह]] ''A''<sub>5</sub> है अधिक सामान्यतः , कोई भी [[गैर-अबेलियन समूह]] परिपूर्ण होता है क्योंकि कम्यूटेटर उपसमूह एबेलियन भागफल के साथ एक [[सामान्य उपसमूह]] है। इसके विपरीत, एक संपूर्ण समूह को सरल होने की आवश्यकता नहीं है; उदाहरण के लिए, 5 तत्वों के साथ [[क्षेत्र (गणित)]] पर [[विशेष रैखिक समूह]], एसएल (2,5) (या [[बाइनरी इकोसाहेड्रल समूह]], जो इसके लिए [[समूह समरूपता]] है) सही है किंतु सरल नहीं है (इसमें एक गैर-तुच्छ केंद्र है जिसमें <math>\left(\begin{smallmatrix}-1 & 0 \\ 0 & -1\end{smallmatrix}\right) = \left(\begin{smallmatrix}4 & 0 \\ 0 & 4\end{smallmatrix}\right)</math> है।.


किसी भी दो सरल गैर-अबेलियन समूहों के [[समूहों का प्रत्यक्ष उत्पाद]] सही है किंतु सरल नहीं है; दो तत्वों का कम्यूटेटर [(''a'',''b''),(''c'',''d'')] = ([''a'',''c''],[''b'',''d'']) है। चूँकि प्रत्येक साधारण समूह में कम्यूटेटर एक जनरेटिंग सेट बनाते हैं, कम्यूटेटर के जोड़े प्रत्यक्ष उत्पाद का एक जेनरेटिंग सेट बनाते हैं।
किसी भी दो सरल गैर-अबेलियन समूहों के [[समूहों का प्रत्यक्ष उत्पाद]] सही है किंतु सरल नहीं है; दो तत्वों का कम्यूटेटर [(''a'',''b''),(''c'',''d'')] = ([''a'',''c''],[''b'',''d'']) है। चूँकि प्रत्येक साधारण समूह में कम्यूटेटर एक जनरेटिंग सेट बनाते हैं, कम्यूटेटर के जोड़े प्रत्यक्ष उत्पाद का एक जेनरेटिंग सेट बनाते हैं।


अधिक सामान्यतः , एक [[अर्धसरल समूह]] (एक साधारण समूह का एक पूर्ण [[केंद्रीय विस्तार (गणित)]]) जो एक गैर-तुच्छ विस्तार है (और इसलिए एक साधारण समूह नहीं है) सही है किंतु सरल नहीं है; इसमें [[प्रक्षेपी विशेष रैखिक समूह]] PSL(n,q) के विस्तार के रूप में सभी [[घुलनशील समूह]] गैर-सरल परिमित विशेष रैखिक समूह SL(n,q) साम्मिलित हैं (SL(2,5) PSL(2,5) का एक विस्तार है , जो ''A''<sub>5</sub> के लिए आइसोमोर्फिक है). इसी तरह, [[वास्तविक संख्या]] और [[जटिल संख्या]] संख्याओं पर विशेष रैखिक समूह सही है, किंतु सामान्य रैखिक समूह GL कभी भी सही नहीं होता है (तुच्छ या अधिक होने के अतिरिक्त ) <math>\mathbb{F}_2</math>, जहां यह विशेष रेखीय समूह के समान है), क्योंकि निर्धारक एक गैर-तुच्छ अवहेलना देता है और वास्तव में कम्यूटेटर उपसमूह SL है।
अधिक सामान्यतः , एक [[अर्धसरल समूह]] (एक साधारण समूह का एक पूर्ण [[केंद्रीय विस्तार (गणित)]]) जो एक गैर-तुच्छ विस्तार है (और इसलिए एक साधारण समूह नहीं है) सही है किंतु सरल नहीं है; इसमें [[प्रक्षेपी विशेष रैखिक समूह]] PSL(n,q) के विस्तार के रूप में सभी [[घुलनशील समूह]] गैर-सरल परिमित विशेष रैखिक समूह SL(n,q) साम्मिलित हैं (SL(2,5) PSL(2,5) का एक विस्तार है , जो ''A''<sub>5</sub> के लिए आइसोमोर्फिक है). इसी तरह, [[वास्तविक संख्या]] और [[जटिल संख्या]] संख्याओं पर विशेष रैखिक समूह सही है, किंतु सामान्य रैखिक समूह GL कभी भी सही नहीं होता है (तुच्छ या अधिक होने के अतिरिक्त ) <math>\mathbb{F}_2</math>, जहां यह विशेष रेखीय समूह के समान है), क्योंकि निर्धारक एक गैर-तुच्छ अवहेलना देता है और वास्तव में कम्यूटेटर उपसमूह SL है।
Line 11: Line 11:
एक गैर-तुच्छ पूर्ण समूह, चूँकि , आवश्यक रूप से [[हल करने योग्य समूह]] नहीं है; और 4 इसके क्रम को विभाजित करता है (समूह सिद्धांत) (यदि परिमित है), इसके अतिरिक्त , यदि 8 क्रम को विभाजित नहीं करता है, तो 3 करता है।<ref>Tobias Kildetoft (7 July 2015), [https://math.stackexchange.com/a/1357886/330413 answer] to [https://math.stackexchange.com/q/1357885/330413 "Is a non-trivial finite perfect group of order 4n?"]. ''Mathematics [[StackExchange]]''.  Accessed 7 July 2015.</ref>
एक गैर-तुच्छ पूर्ण समूह, चूँकि , आवश्यक रूप से [[हल करने योग्य समूह]] नहीं है; और 4 इसके क्रम को विभाजित करता है (समूह सिद्धांत) (यदि परिमित है), इसके अतिरिक्त , यदि 8 क्रम को विभाजित नहीं करता है, तो 3 करता है।<ref>Tobias Kildetoft (7 July 2015), [https://math.stackexchange.com/a/1357886/330413 answer] to [https://math.stackexchange.com/q/1357885/330413 "Is a non-trivial finite perfect group of order 4n?"]. ''Mathematics [[StackExchange]]''.  Accessed 7 July 2015.</ref>


प्रत्येक [[चक्रीय समूह]] पूर्ण है, किंतु इसका विलोम सत्य नहीं है: A<sub>5</sub> पूर्ण है किंतु चक्रीय नहीं है (वास्तव में, सुपरपरफेक्ट समूह भी नहीं), देखें {{harv|बेरीक|हिलमैन|2003}}. वास्तव में, <math>n\ge 5</math> के लिए वैकल्पिक समूह <math>A_n</math> उत्तम है, किंतु उत्तम नहीं, <math>H_2(A_n,\Z) = \Z/2</math> के साथ <math>n \ge 8</math> के लिए है .
प्रत्येक [[चक्रीय समूह]] पूर्ण है, किंतु इसका विलोम सत्य नहीं है: A<sub>5</sub> पूर्ण है किंतु चक्रीय नहीं है (वास्तव में, सुपरपरफेक्ट समूह भी नहीं), देखें {{harv|बेरीक|हिलमैन|2003}}. वास्तव में, <math>n\ge 5</math> के लिए वैकल्पिक समूह <math>A_n</math> उत्तम है, किंतु उत्तम नहीं, <math>H_2(A_n,\Z) = \Z/2</math> के साथ <math>n \ge 8</math> के लिए है .


एक पूर्ण समूह का कोई भी भागफल पूर्ण होता है। एक गैर-तुच्छ परिमित पूर्ण समूह जो सरल नहीं है, उसे कम से कम एक छोटे सरल गैर-अबेलियन समूह का विस्तार होना चाहिए। किंतु यह एक से अधिक साधारण समूह का विस्तार हो सकता है। वास्तव में, पूर्ण समूहों का प्रत्यक्ष उत्पाद भी पूर्ण होता है।
एक पूर्ण समूह का कोई भी भागफल पूर्ण होता है। एक गैर-तुच्छ परिमित पूर्ण समूह जो सरल नहीं है, उसे कम से कम एक छोटे सरल गैर-अबेलियन समूह का विस्तार होना चाहिए। किंतु यह एक से अधिक साधारण समूह का विस्तार हो सकता है। वास्तव में, पूर्ण समूहों का प्रत्यक्ष उत्पाद भी पूर्ण होता है।
Line 19: Line 19:
ऐसा है कि f इस गुण के साथ सार्वभौमिक है। f की गिरी को G का [[शूर गुणक]] कहा जाता है क्योंकि इसका अध्ययन पहली बार 1904 में [[कुछ नहीं]] द्वारा किया गया था; यह होमोलॉजी समूह <math>H_2(G)</math> के लिए आइसोमोर्फिक है .
ऐसा है कि f इस गुण के साथ सार्वभौमिक है। f की गिरी को G का [[शूर गुणक]] कहा जाता है क्योंकि इसका अध्ययन पहली बार 1904 में [[कुछ नहीं]] द्वारा किया गया था; यह होमोलॉजी समूह <math>H_2(G)</math> के लिए आइसोमोर्फिक है .


[[बीजगणितीय के-सिद्धांत]] के प्लस निर्माण में, यदि हम समूह <math>\operatorname{GL}(A) = \text{colim} \operatorname{GL}_n(A)</math> पर विचार करते हैं एक [[क्रमविनिमेय अंगूठी|क्रमविनिमेय रिंग]] के लिए <math>A</math>, फिर प्राथमिक आव्यूहों का [[उपसमूह]] <math>E(R)</math> पूर्ण उपसमूह बनाता है।
[[बीजगणितीय के-सिद्धांत]] के प्लस निर्माण में, यदि हम समूह <math>\operatorname{GL}(A) = \text{colim} \operatorname{GL}_n(A)</math> पर विचार करते हैं एक [[क्रमविनिमेय अंगूठी|क्रमविनिमेय रिंग]] के लिए <math>A</math>, फिर प्राथमिक आव्यूहों का [[उपसमूह]] <math>E(R)</math> पूर्ण उपसमूह बनाता है।


== अयस्क का [[अनुमान]] ==
== अयस्क का [[अनुमान]] ==
Line 25: Line 25:
|last2=Shalev |first2=Aner |authorlink2=Aner Shalev |title=अयस्क अनुमान|url=https://www.math.auckland.ac.nz/~obrien/research/ore.pdf|journal=[[Journal of the European Mathematical Society ]] |volume=12|year=2010|pages=939–1008|doi=10.4171/JEMS/220 |doi-access=free}}</ref>
|last2=Shalev |first2=Aner |authorlink2=Aner Shalev |title=अयस्क अनुमान|url=https://www.math.auckland.ac.nz/~obrien/research/ore.pdf|journal=[[Journal of the European Mathematical Society ]] |volume=12|year=2010|pages=939–1008|doi=10.4171/JEMS/220 |doi-access=free}}</ref>


'''<br />का अनुमान अंततः 2008 में सिद्ध हुआ। प्रमाण परिमित सरल ससिद्ध हुआ। प्रमाण परिमित'''
'''<br />का अनुमान अंततः 2008 में सिद्ध हुआ। प्रमाण परिमि'''
== ग्रुन की लेम्मा                                              ==
== ग्रुन की लेम्मा                                              ==
संपूर्ण समूहों के बारे में एक बुनियादी तथ्य ग्रुन की लेम्मा है {{harv|Grün|1935|loc=Satz 4,<ref group="note">''[[wikt:Satz#German|Satz]]'' is German for "theorem".</ref> p.&thinsp;3}}: इसके [[केंद्र (समूह सिद्धांत)]] द्वारा एक पूर्ण समूह का भागफल समूह केंद्र रहित है (तुच्छ केंद्र है)।
संपूर्ण समूहों के बारे में एक बुनियादी तथ्य ग्रुन की लेम्मा है {{harv|Grün|1935|loc=Satz 4,<ref group="note">''[[wikt:Satz#German|Satz]]'' is German for "theorem".</ref> p.&thinsp;3}}: इसके [[केंद्र (समूह सिद्धांत)]] द्वारा एक पूर्ण समूह का भागफल समूह केंद्र रहित है (तुच्छ केंद्र है)।


<blockquote>उपपत्ति: यदि G एक पूर्ण समूह है, मान लीजिए ''Z''<sub>1</sub> और ''Z''<sub>1</sub> , ''G'' की ऊपरी केंद्रीय श्रृंखला के पहले दो पदों को निरूपित करते हैं (अर्थात, ''Z''<sub>1</sub> , ''G'' का केंद्र है, और ''Z''<sub>2</sub>/''Z''<sub>1</sub>, ''G''/''Z''<sub>1</sub> का केंद्र है)। यदि H और K, G के उपसमूह हैं, तो H और K के कम्यूटेटर को [''H'', ''K''] से निरूपित करें और ध्यान दें कि [''Z''<sub>1</sub>, ''G''] = 1 और[''Z''<sub>2</sub>, ''G''] ⊆ ''Z''<sub>1</sub>, और परिणामस्वरूप (सम्मेलन कि [''X'', ''Y'', ''Z''] = [[''X'', ''Y''], ''Z''] का पालन किया जाता है):
<blockquote>उपपत्ति: यदि G एक पूर्ण समूह है, मान लीजिए ''Z''<sub>1</sub> और ''Z''<sub>1</sub> , ''G'' की ऊपरी केंद्रीय श्रृंखला के पहले दो पदों को निरूपित करते हैं (अर्थात, ''Z''<sub>1</sub> , ''G'' का केंद्र है, और ''Z''<sub>2</sub>/''Z''<sub>1</sub>, ''G''/''Z''<sub>1</sub> का केंद्र है)। यदि H और K, G के उपसमूह हैं, तो H और K के कम्यूटेटर को [''H'', ''K''] से निरूपित करें और ध्यान दें कि [''Z''<sub>1</sub>, ''G''] = 1 और[''Z''<sub>2</sub>, ''G''] ⊆ ''Z''<sub>1</sub>, और परिणामस्वरूप (सम्मेलन कि [''X'', ''Y'', ''Z''] = [[''X'', ''Y''], ''Z''] का पालन किया जाता है):


:<math>[Z_2,G,G]=[[Z_2,G],G]\subseteq [Z_1,G]=1</math>
:<math>[Z_2,G,G]=[[Z_2,G],G]\subseteq [Z_1,G]=1</math>
Line 35: Line 35:
[[तीन उपसमूह लेम्मा]] (या समतुल्य रूप से, कम्यूटेटर # पहचान (समूह सिद्धांत) | हॉल-विट पहचान) द्वारा, यह इस प्रकार है कि [जी, जेड<sub>2</sub>] = जी, जी], जेड<sub>2</sub>] = [जी, जी, जेड<sub>2</sub>] = {1}। इसलिए, जेड<sub>2</sub> ⊆ जेड<sub>1</sub> = Z(G), और भागफल समूह का केंद्र G / Z(G) तुच्छ समूह है।
[[तीन उपसमूह लेम्मा]] (या समतुल्य रूप से, कम्यूटेटर # पहचान (समूह सिद्धांत) | हॉल-विट पहचान) द्वारा, यह इस प्रकार है कि [जी, जेड<sub>2</sub>] = जी, जी], जेड<sub>2</sub>] = [जी, जी, जेड<sub>2</sub>] = {1}। इसलिए, जेड<sub>2</sub> ⊆ जेड<sub>1</sub> = Z(G), और भागफल समूह का केंद्र G / Z(G) तुच्छ समूह है।


[[तीन उपसमूह लेम्मा]] (या समतुल्य रूप से, हॉल-विट पहचान द्वारा), यह इस प्रकार है कि [''G'', ''Z''<sub>2</sub>] = [[''G'', ''G''], ''Z''<sub>2</sub>] = [''G'', ''G'', ''Z''<sub>2</sub>] = {1} इसलिए, ''Z''<sub>2</sub> ⊆ ''Z''<sub>1</sub> = ''Z''(''G''), और भागफल समूह ''G'' / ''Z''(''G'') का केंद्र तुच्छ समूह है।</blockquote>
[[तीन उपसमूह लेम्मा]] (या समतुल्य रूप से, हॉल-विट पहचान द्वारा), यह इस प्रकार है कि [''G'', ''Z''<sub>2</sub>] = [[''G'', ''G''], ''Z''<sub>2</sub>] = [''G'', ''G'', ''Z''<sub>2</sub>] = {1} इसलिए, ''Z''<sub>2</sub> ⊆ ''Z''<sub>1</sub> = ''Z''(''G''), और भागफल समूह ''G'' / ''Z''(''G'') का केंद्र तुच्छ समूह है।</blockquote>


परिणामस्वरूप, एक आदर्श समूह के सभी केंद्र (समूह सिद्धांत) या उच्च केंद्र (अर्थात् [[ऊपरी केंद्रीय श्रृंखला]] में उच्च पद) केंद्र के समान होते हैं।
परिणामस्वरूप, एक आदर्श समूह के सभी केंद्र (समूह सिद्धांत) या उच्च केंद्र (अर्थात् [[ऊपरी केंद्रीय श्रृंखला]] में उच्च पद) केंद्र के समान होते हैं।
Line 42: Line 42:
समूह होमोलॉजी के संदर्भ में, एक आदर्श समूह ठीक वही है जिसका पहला होमोलॉजी समूह विलुप्त हो जाता है: ''H''<sub>1</sub>(''G'', '''Z''') = 0, क्योंकि एक समूह का पहला होमोलॉजी समूह वास्तव में समूह का अवमूल्यन है, और सही का अर्थ है तुच्छ अपभ्रंश। इस परिभाषा का एक फायदा यह है कि यह वृद्धि को स्वीकार करती है:
समूह होमोलॉजी के संदर्भ में, एक आदर्श समूह ठीक वही है जिसका पहला होमोलॉजी समूह विलुप्त हो जाता है: ''H''<sub>1</sub>(''G'', '''Z''') = 0, क्योंकि एक समूह का पहला होमोलॉजी समूह वास्तव में समूह का अवमूल्यन है, और सही का अर्थ है तुच्छ अपभ्रंश। इस परिभाषा का एक फायदा यह है कि यह वृद्धि को स्वीकार करती है:
* एक सुपरपरफेक्ट समूह वह है जिसके पहले दो होमोलॉजी समूह <math>H_1(G,\Z)=H_2(G,\Z)=0</math> विलुप्त हो जाते हैं: .
* एक सुपरपरफेक्ट समूह वह है जिसके पहले दो होमोलॉजी समूह <math>H_1(G,\Z)=H_2(G,\Z)=0</math> विलुप्त हो जाते हैं: .
* एक विश्वकोश समूह वह है जिसके सभी (कम) होमोलॉजी समूह विलुप्त हो जाते हैं <math>\tilde H_i(G;\Z) = 0.</math> (यह इसके अतिरिक्त सभी होमोलॉजी समूहों के समान है <math>H_0</math> लुप्त हो जाना।)
* एक विश्वकोश समूह वह है जिसके सभी (कम) होमोलॉजी समूह विलुप्त हो जाते हैं <math>\tilde H_i(G;\Z) = 0.</math> (यह इसके अतिरिक्त सभी होमोलॉजी समूहों के समान है <math>H_0</math> लुप्त हो जाना।)


== अर्ध-परिपूर्ण समूह ==
== अर्ध-परिपूर्ण समूह ==
विशेष रूप से बीजगणितीय के-सिद्धांत के क्षेत्र में, एक समूह को अर्ध-परिपूर्ण कहा जाता है यदि इसका कम्यूटेटर उपसमूह सही है; प्रतीकों में, एक अर्ध-पूर्ण समूह ऐसा है कि ''G''<sup>(1)</sup> = ''G''<sup>(2)</sup> (कम्यूटेटर उपसमूह का कम्यूटेटर कम्यूटेटर उपसमूह है), जबकि एक आदर्श समूह ऐसा है कि ''G''<sup>(1)</sup> = ''G'' (कम्यूटेटर उपसमूह पूरा समूह है)। देखना {{harv|करौबी|1973|pp=301–411}} और {{harv| अस्सारिडेज़| 1995 | p=76}}.
विशेष रूप से बीजगणितीय के-सिद्धांत के क्षेत्र में, एक समूह को अर्ध-परिपूर्ण कहा जाता है यदि इसका कम्यूटेटर उपसमूह सही है; प्रतीकों में, एक अर्ध-पूर्ण समूह ऐसा है कि ''G''<sup>(1)</sup> = ''G''<sup>(2)</sup> (कम्यूटेटर उपसमूह का कम्यूटेटर कम्यूटेटर उपसमूह है), जबकि एक आदर्श समूह ऐसा है कि ''G''<sup>(1)</sup> = ''G'' (कम्यूटेटर उपसमूह पूरा समूह है)। देखना {{harv|करौबी|1973|pp=301–411}} और {{harv| अस्सारिडेज़| 1995 | p=76}}.


==टिप्पणियाँ==
==टिप्पणियाँ==

Revision as of 14:18, 3 May 2023

गणित में, अधिक विशेष रूप से समूह सिद्धांत में, एक समूह (गणित) को पूर्ण कहा जाता है यदि यह अपने स्वयं के कम्यूटेटर उपसमूह के समान होता है, या समतुल्य रूप से, यदि समूह में कोई तुच्छ समूह नहीं है।, जो सार्वभौम एबेलियन भागफल है, तुच्छ है)। प्रतीकों में, एक आदर्श समूह ऐसा है कि G(1) = G (कम्यूटेटर उपसमूह समूह के समान है), या समकक्ष एक ऐसा है कि Gab = {1} (इसका अपमान तुच्छ है)।

उदाहरण

सबसे छोटा (गैर-तुच्छ) पूर्ण समूह वैकल्पिक समूह A5 है अधिक सामान्यतः , कोई भी गैर-अबेलियन समूह परिपूर्ण होता है क्योंकि कम्यूटेटर उपसमूह एबेलियन भागफल के साथ एक सामान्य उपसमूह है। इसके विपरीत, एक संपूर्ण समूह को सरल होने की आवश्यकता नहीं है; उदाहरण के लिए, 5 तत्वों के साथ क्षेत्र (गणित) पर विशेष रैखिक समूह, एसएल (2,5) (या बाइनरी इकोसाहेड्रल समूह, जो इसके लिए समूह समरूपता है) सही है किंतु सरल नहीं है (इसमें एक गैर-तुच्छ केंद्र है जिसमें है।.

किसी भी दो सरल गैर-अबेलियन समूहों के समूहों का प्रत्यक्ष उत्पाद सही है किंतु सरल नहीं है; दो तत्वों का कम्यूटेटर [(a,b),(c,d)] = ([a,c],[b,d]) है। चूँकि प्रत्येक साधारण समूह में कम्यूटेटर एक जनरेटिंग सेट बनाते हैं, कम्यूटेटर के जोड़े प्रत्यक्ष उत्पाद का एक जेनरेटिंग सेट बनाते हैं।

अधिक सामान्यतः , एक अर्धसरल समूह (एक साधारण समूह का एक पूर्ण केंद्रीय विस्तार (गणित)) जो एक गैर-तुच्छ विस्तार है (और इसलिए एक साधारण समूह नहीं है) सही है किंतु सरल नहीं है; इसमें प्रक्षेपी विशेष रैखिक समूह PSL(n,q) के विस्तार के रूप में सभी घुलनशील समूह गैर-सरल परिमित विशेष रैखिक समूह SL(n,q) साम्मिलित हैं (SL(2,5) PSL(2,5) का एक विस्तार है , जो A5 के लिए आइसोमोर्फिक है). इसी तरह, वास्तविक संख्या और जटिल संख्या संख्याओं पर विशेष रैखिक समूह सही है, किंतु सामान्य रैखिक समूह GL कभी भी सही नहीं होता है (तुच्छ या अधिक होने के अतिरिक्त ) , जहां यह विशेष रेखीय समूह के समान है), क्योंकि निर्धारक एक गैर-तुच्छ अवहेलना देता है और वास्तव में कम्यूटेटर उपसमूह SL है।

एक गैर-तुच्छ पूर्ण समूह, चूँकि , आवश्यक रूप से हल करने योग्य समूह नहीं है; और 4 इसके क्रम को विभाजित करता है (समूह सिद्धांत) (यदि परिमित है), इसके अतिरिक्त , यदि 8 क्रम को विभाजित नहीं करता है, तो 3 करता है।[1]

प्रत्येक चक्रीय समूह पूर्ण है, किंतु इसका विलोम सत्य नहीं है: A5 पूर्ण है किंतु चक्रीय नहीं है (वास्तव में, सुपरपरफेक्ट समूह भी नहीं), देखें (बेरीक & हिलमैन 2003). वास्तव में, के लिए वैकल्पिक समूह उत्तम है, किंतु उत्तम नहीं, के साथ के लिए है .

एक पूर्ण समूह का कोई भी भागफल पूर्ण होता है। एक गैर-तुच्छ परिमित पूर्ण समूह जो सरल नहीं है, उसे कम से कम एक छोटे सरल गैर-अबेलियन समूह का विस्तार होना चाहिए। किंतु यह एक से अधिक साधारण समूह का विस्तार हो सकता है। वास्तव में, पूर्ण समूहों का प्रत्यक्ष उत्पाद भी पूर्ण होता है।

प्रत्येक पूर्ण समूह G एक अन्य पूर्ण समूह E (इसका सार्वभौमिक केंद्रीय विस्तार) को एक विशेषण f: E → G के साथ निर्धारित करता है जिसका कर्नेल (बीजगणित) E के केंद्र में है,

ऐसा है कि f इस गुण के साथ सार्वभौमिक है। f की गिरी को G का शूर गुणक कहा जाता है क्योंकि इसका अध्ययन पहली बार 1904 में कुछ नहीं द्वारा किया गया था; यह होमोलॉजी समूह के लिए आइसोमोर्फिक है .

बीजगणितीय के-सिद्धांत के प्लस निर्माण में, यदि हम समूह पर विचार करते हैं एक क्रमविनिमेय रिंग के लिए , फिर प्राथमिक आव्यूहों का उपसमूह पूर्ण उपसमूह बनाता है।

अयस्क का अनुमान

चूंकि कम्यूटेटर उपसमूह कम्यूटेटर द्वारा उत्पन्न होता है, एक पूर्ण समूह में ऐसे तत्व हो सकते हैं जो कम्यूटेटर के उत्पाद हैं किंतु स्वयं कम्यूटेटर नहीं हैं। Øystein Ore ने 1951 में सिद्ध किया कि पांच या अधिक तत्वों पर वैकल्पिक समूहों में केवल कम्यूटेटर होते हैं, और अनुमान लगाया कि यह सभी परिमित गैर-अबेलियन सरल समूहों के लिए ऐसा था। अयस्क का अनुमान अंततः 2008 में सिद्ध हुआ। प्रमाण परिमित सरल समूहों के वर्गीकरण पर निर्भर करता है।[2]


का अनुमान अंततः 2008 में सिद्ध हुआ। प्रमाण परिमि

ग्रुन की लेम्मा

संपूर्ण समूहों के बारे में एक बुनियादी तथ्य ग्रुन की लेम्मा है (Grün 1935, Satz 4,[note 1] p. 3): इसके केंद्र (समूह सिद्धांत) द्वारा एक पूर्ण समूह का भागफल समूह केंद्र रहित है (तुच्छ केंद्र है)।

उपपत्ति: यदि G एक पूर्ण समूह है, मान लीजिए Z1 और Z1 , G की ऊपरी केंद्रीय श्रृंखला के पहले दो पदों को निरूपित करते हैं (अर्थात, Z1 , G का केंद्र है, और Z2/Z1, G/Z1 का केंद्र है)। यदि H और K, G के उपसमूह हैं, तो H और K के कम्यूटेटर को [H, K] से निरूपित करें और ध्यान दें कि [Z1, G] = 1 और[Z2, G] ⊆ Z1, और परिणामस्वरूप (सम्मेलन कि [X, Y, Z] = [[X, Y], Z] का पालन किया जाता है):

तीन उपसमूह लेम्मा (या समतुल्य रूप से, कम्यूटेटर # पहचान (समूह सिद्धांत) | हॉल-विट पहचान) द्वारा, यह इस प्रकार है कि [जी, जेड2] = जी, जी], जेड2] = [जी, जी, जेड2] = {1}। इसलिए, जेड2 ⊆ जेड1 = Z(G), और भागफल समूह का केंद्र G / Z(G) तुच्छ समूह है।

तीन उपसमूह लेम्मा (या समतुल्य रूप से, हॉल-विट पहचान द्वारा), यह इस प्रकार है कि [G, Z2] = [[G, G], Z2] = [G, G, Z2] = {1} इसलिए, Z2Z1 = Z(G), और भागफल समूह G / Z(G) का केंद्र तुच्छ समूह है।

परिणामस्वरूप, एक आदर्श समूह के सभी केंद्र (समूह सिद्धांत) या उच्च केंद्र (अर्थात् ऊपरी केंद्रीय श्रृंखला में उच्च पद) केंद्र के समान होते हैं।

समूह समरूपता

समूह होमोलॉजी के संदर्भ में, एक आदर्श समूह ठीक वही है जिसका पहला होमोलॉजी समूह विलुप्त हो जाता है: H1(G, Z) = 0, क्योंकि एक समूह का पहला होमोलॉजी समूह वास्तव में समूह का अवमूल्यन है, और सही का अर्थ है तुच्छ अपभ्रंश। इस परिभाषा का एक फायदा यह है कि यह वृद्धि को स्वीकार करती है:

  • एक सुपरपरफेक्ट समूह वह है जिसके पहले दो होमोलॉजी समूह विलुप्त हो जाते हैं: .
  • एक विश्वकोश समूह वह है जिसके सभी (कम) होमोलॉजी समूह विलुप्त हो जाते हैं (यह इसके अतिरिक्त सभी होमोलॉजी समूहों के समान है लुप्त हो जाना।)

अर्ध-परिपूर्ण समूह

विशेष रूप से बीजगणितीय के-सिद्धांत के क्षेत्र में, एक समूह को अर्ध-परिपूर्ण कहा जाता है यदि इसका कम्यूटेटर उपसमूह सही है; प्रतीकों में, एक अर्ध-पूर्ण समूह ऐसा है कि G(1) = G(2) (कम्यूटेटर उपसमूह का कम्यूटेटर कम्यूटेटर उपसमूह है), जबकि एक आदर्श समूह ऐसा है कि G(1) = G (कम्यूटेटर उपसमूह पूरा समूह है)। देखना (करौबी 1973, pp. 301–411) और (अस्सारिडेज़ 1995, p. 76).

टिप्पणियाँ

  1. Satz is German for "theorem".


संदर्भ

  1. Tobias Kildetoft (7 July 2015), answer to "Is a non-trivial finite perfect group of order 4n?". Mathematics StackExchange. Accessed 7 July 2015.
  2. Liebeck, Martin; Shalev, Aner (2010). "अयस्क अनुमान" (PDF). Journal of the European Mathematical Society . 12: 939–1008. doi:10.4171/JEMS/220.


बाहरी संबंध