पार्श्व कंपन: Difference between revisions

From Vigyanwiki
m (Abhishek moved page मरोड़ कंपन to पार्श्व कंपन without leaving a redirect)
Line 73: Line 73:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 23/03/2023]]
[[Category:Created On 23/03/2023]]
[[Category:Vigyan Ready]]

Revision as of 14:42, 16 May 2023

पार्श्व कंपन एक वस्तु का कोणीय कंपन होता है- प्रायः इसके घूर्णन के अक्ष के साथ एक शाफ्ट घूर्णन या कपलिंग का उपयोग करते हुए विद्युत पारेषण प्रणाली में पार्श्व वाला कंपन अक्सर एक चिंता का विषय होता है, जहां यह नियंत्रित न होने पर विफलता का कारण बन सकता है। पार्श्व वाले कंपन का दूसरा प्रभाव यात्री कारों पर प्रयुक्त होता है। पार्श्व वाले कंपन से कुछ गति पर सीट कंपन या कोलाहल हो सकता है। दोनों कम आरामदायक हैं।

आदर्श बिजली उत्पादन या संचरण में घूमने वाले भागों का उपयोग करने वाली प्रणालियाँ, न केवल लगाए गए या प्रतिक्रिया किए गए टार्क सुचारू होते हैं, जो निरंतर गति की ओर ले जाते हैं, बल्कि घूमने वाला विमान भी होता है जहाँ बिजली उत्पन्न होती है (या इनपुट) और वह विमान जिसे बाहर निकाला जाता है (आउटपुट) समान हैं। यथार्थ में ऐसा नहीं है, हो सकता है उत्पन्न टार्क सुचारू न हो (उदाहरण के लिए, आंतरिक दहन इंजन) या चलाया जा रहा घटक सुचारू रूप से टॉर्क पर प्रतिक्रिया न करे (जैसे, प्रत्यागामी कंप्रेशर्स), और बिजली उत्पन्न करने वाला विमान सामान्य रूप से पावर उड़ान भरने वाले विमान से कुछ दूरी पर होता है। साथ ही, टॉर्क ट्रांसमिट करने वाले घटक गैर चिकना या अदल-बदल करने वाले टॉर्क (जैसे, लोचदार ड्राइव बेल्ट, घिसे हुए गियर, गलत संरेखित शाफ्ट) उत्पन्न कर सकते हैं। क्योंकि कोई भी सामग्री असीम रूप से कठोर नहीं हो सकती है, शाफ्ट पर कुछ दूरी पर लगाए गए ये वैकल्पिक बल घूर्णन की धुरी के बारे में कंपन उत्पन्न करते हैं।

पार्श्व कंपन के स्रोत

पावर स्रोत द्वारा ड्राइव ट्रेन में पार्श्व वाले कंपन को प्रस्तुत किया जा सकता है। लेकिन यहां तक ​​​​कि एक बहुत ही चिकनी घूर्णी इनपुट वाली ड्राइव ट्रेन आंतरिक घटकों के माध्यम से पार्श्व वाले कंपन विकसित कर सकती है। सामान्य स्रोत हैं:

  • आंतरिक दहन इंजन: गैर-निरंतर दहन के पार्श्व वाले कंपन और क्रैंक शाफ्ट ज्यामिति स्वयं पार्श्व वाले कंपन का कारण बनते हैं [1] * प्रत्यागामी संपीडन : पिस्टन संपीड़न से विच्छिन्न बलों का अनुभव करते हैं।[2]
  • यूनिवर्सल संयुक्त: अगर शाफ्ट समानांतर नहीं हैं तो इस ज्वाइंट की ज्योमेट्री टॉर्सनल वाइब्रेशन का कारण बनती है।
  • स्टिक-स्लिप घटना: घर्षण तत्व के जुड़ाव के दौरान, स्टिक स्लिप की स्थिति पार्श्व वाले कंपन उत्पन्न करती है।
  • बैकलैश (इंजीनियरिंग): यदि रोटेशन की दिशा बदली जाती है या यदि बिजली का प्रवाह, यानी चालक बनाम चालित, उलटा हो जाता है, तो ड्राइव ट्रेन लैश टॉर्सनल कंपन उत्पन्न कर सकता है।

क्रैंक्शैफ्ट पार्श्व कंपन

आंतरिक दहन इंजनों के क्रैंकशाफ्ट में पार्श्व वाला कंपन एक चिंता का विषय है क्योंकि यह क्रैंकशाफ्ट को ही तोड़ सकता है; चक्का बंद करना; या संचालित बेल्ट, गियर और संलग्न घटकों को विफल करने का कारण बनता है, विशेषतः जब कंपन की आवृत्ति क्रैंकशाफ्ट के पार्श्व वाले अनुनाद से मेल खाती है। पार्श्व वाले कंपन के कारणों को कई कारकों के लिए उत्तरदायी ठहराया जाता है।

  • वैकल्पिक टॉर्क क्रैंकशाफ्ट, कनेक्टिंग रॉड और पिस्टन के स्लाइडर-क्रैंक तंत्र द्वारा उत्पन्न होते हैं।
    • दहन के कारण सिलेंडर का दबाव दहन चक्र के माध्यम से स्थिर नहीं होता है।
    • स्लाइडर-क्रैंक तंत्र दबाव स्थिर होने पर भी एक चिकनी टोक़ का उत्पादन नहीं करता है (उदाहरण के लिए, शीर्ष मृत केंद्र (इंजीनियरिंग) पर कोई टोक़ उत्पन्न नहीं होता है)
    • पिस्टन द्रव्यमान और कनेक्टिंग रॉड द्रव्यमान की गति वैकल्पिक टोक़ उत्पन्न करती है जिसे अक्सर "जड़त्व" टोक़ कहा जाता है
  • सीधी रेखा विन्यास में छह या अधिक सिलेंडर वाले इंजनों में उनकी लंबी लंबाई के कारण बहुत लचीले क्रैंकशाफ्ट हो सकते हैं।
  • 2 स्ट्रोक इंजन में प्रायः बड़े स्ट्रोक की लंबाई के कारण मुख्य और पिन बियरिंग के बीच छोटे बियरिंग ओवरलैप होते हैं, इसलिए कम कठोरता के कारण क्रैंकशाफ्ट का लचीलापन बढ़ जाता है।
  • मुख्य और कॉनरोड बियरिंग में तेल फिल्म के अपरूपण प्रतिरोध को छोड़कर कंपन को कम करने के लिए क्रैंकशाफ्ट में स्वाभाविक रूप से थोड़ा अवमंदन होता है।

यदि क्रैंकशाफ्ट में पार्श्व वाले कंपन को नियंत्रित नहीं किया जाता है तो यह क्रैंकशाफ्ट या क्रैंकशाफ्ट द्वारा चलाए जा रहे किसी भी सामान की विफलता का कारण बन सकता है (प्रायः इंजन के सामने; चक्का की जड़ता सामान्य रूप से इंजन के पीछे की गति को कम कर देती है। ). युग्मन कंपन ऊर्जा को ऊष्मा में बदल देता है। इसलिए, और यह सुनिश्चित करने के लिए कि इसके कारण कपलिंग क्षतिग्रस्त न हो (लोड के आधार पर तापमान बहुत अधिक हो सकता है), इसे पार्श्व कंपन गणना के माध्यम से सत्यापित किया जाता है।

यह संभावित रूप से हानिकारक कंपन अक्सर एक पार्श्व वाले स्पंज द्वारा नियंत्रित होता है जो क्रैंकशाफ्ट के सामने की नाक पर स्थित होता है (ऑटोमोबाइल में इसे अक्सर सामने की चरखी में एकीकृत किया जाता है)। पार्श्व वाले डैम्पर्स के दो मुख्य प्रकार हैं।

  • चिपचिपा डैम्पर्स में एक चिपचिपे द्रव में एक जड़त्व वलय होता है। क्रेंकशाफ्ट का पार्श्व वाला कंपन तरल को संकीर्ण मार्ग से मजबूर करता है जो कंपन को गर्मी के रूप में नष्ट कर देता है। चिपचिपा पार्श्व वाला स्पंज कार के निलंबन में हाइड्रोलिक शॉक अवशोषक के अनुरूप है।
  • ट्यून किए गए अवशोषक प्रकार के डैम्पर्स को अक्सर हार्मोनिक डैम्पर्स या हार्मोनिक बैलेंसर्स के रूप में संदर्भित किया जाता है (भले ही यह प्रोद्योगिक रूप से क्रैंकशाफ्ट को नम या संतुलित नहीं करता है)। यह डैम्पर एक स्प्रिंग तत्व (अक्सर ऑटोमोबाइल इंजनों में रबर) और एक जड़ता वलय का उपयोग करता है जिसे प्रायः क्रैंकशाफ्ट की पहली पार्श्व वाली प्राकृतिक आवृत्ति के लिए ट्यून किया जाता है। इस प्रकार का डैम्पर विशिष्ट इंजन गति पर कंपन को कम करता है जब उत्तेजना टॉर्क क्रैंकशाफ्ट की पहली प्राकृतिक आवृत्ति को उत्तेजित करता है, लेकिन अन्य गति पर नहीं। भूकंप के दौरान इमारत की गति को कम करने के लिए गगनचुंबी इमारतों में उपयोग किए जाने वाले ट्यून्ड मास डैम्पर्स के समान इस प्रकार का डैम्पर होता है।

विद्युत यांत्रिक ड्राइव प्रणाली में पार्श्व कंपन

ड्राइव प्रणाली के पार्श्व वाले कंपन के परिणामस्वरूप प्रायः ड्राइविंग इलेक्ट्रिक मोटर के रोटर की घूर्णी गति में महत्वपूर्ण उतार-चढ़ाव होता है। औसत रोटर घूर्णी गति पर आरोपित कोणीय गति के ऐसे दोलन विद्युत चुम्बकीय प्रवाह के अधिक या कम गंभीर गड़बड़ी का कारण बनते हैं और इस प्रकार मोटर वाइंडिंग में विद्युत धाराओं के अतिरिक्त दोलन होते हैं। फिर, उत्पन्न विद्युत चुम्बकीय टोक़ को समय घटकों में अतिरिक्त चर द्वारा भी चित्रित किया जाता है जो ड्राइव प्रणाली के पार्श्व वाले कंपन को प्रेरित करता है। उपरोक्त के अनुसार, मोटर वाइंडिंग में धाराओं के विद्युत कंपन के साथ ड्राइव प्रणाली के यांत्रिक कंपन युग्मित हो जाते हैं। ऐसा युग्मन अक्सर चरित्र में जटिल होता है और इस प्रकार कम्प्यूटेशनल रूप से परेशानी भरा होता है। इस कारण से, वर्तमान तक अधिकांश लेखक ड्राइव प्रणाली के यांत्रिक कंपन और मोटर वाइंडिंग में विद्युत प्रवाह के कंपन को परस्पर अयुग्मित के रूप में सरल करते थे। फिर, यांत्रिक इंजीनियरों ने इलेक्ट्रिक मोटर्स द्वारा उत्पन्न इलेक्ट्रोमैग्नेटिक टॉर्क को 'प्राथमिकता' के रूप में समय या रोटर-टू-स्टेटर स्लिप के उत्तेजना कार्यों के रूप में लागू किया, उदा- कागज में ।[3][4][5] प्रायः दिए गए इलेक्ट्रिक मोटर गतिशील व्यवहारों के लिए किए गए कई प्रयोगात्मक मापों के आधार पर। इस उद्देश्य के लिए, माप परिणामों के माध्यम से, उचित अनुमानित सूत्र विकसित किए गए हैं, जो विद्युत मोटर द्वारा उत्पादित संबंधित विद्युत चुम्बकीय बाहरी उत्तेजनाओं का वर्णन करते हैं।[6] यद्पि, बिजली मिस्त्री ने इलेक्ट्रिक मोटर वाइंडिंग में विद्युत प्रवाह को अच्छी तरह से प्रतिरूपित किया, लेकिन उन्होंने प्रायः यांत्रिक ड्राइव प्रणाली को एक या संभवतः ही कभी कुछ घूर्णन कठोर निकायों में कम किया, जैसे कि [7] कई घटनाओ में, इस तरह के सरलीकरण इंजीनियरिंग अनुप्रयोगों के लिए पर्याप्त उपयोगी परिणाम देते हैं, लेकिन बहुत बार वे उल्लेखनीय गलतियाँ उत्पन्न कर सकते हैं, क्योंकि यांत्रिक प्रणालियों के कई गुणात्मक गतिशील गुण, उदा- उनके बड़े पैमाने पर वितरण, पार्श्व वाले लचीलेपन और अवमंदन प्रभावों की उपेक्षा की जा रही है। इस प्रकार, इलेक्ट्रिक मशीन रोटर कोणीय गति में उतार-चढ़ाव पर ड्राइव प्रणाली स्पंदनात्मक व्यवहार का प्रभाव, और इस तरह रोटर और स्टेटर वाइंडिंग्स में विद्युत प्रवाह दोलनों पर, एक संतोषजनक सटीकता के साथ जांच नहीं की जा सकती है।

यांत्रिक कंपन और विकृति रेलवे वाहन ड्राइवट्रेन संरचनाओं के बहुमत के संचालन से जुड़ी घटनाएं हैं। रेलवे वाहनों की पारेषण प्रणालियों में पार्श्व वाले कंपन के बारे में ज्ञान का यांत्रिक प्रणालियों की गतिशीलता के क्षेत्र में बहुत महत्व है।[8] रेलवे वाहन ड्राइव ट्रेन में पार्श्व वाले कंपन कई घटनाओं से उत्पन्न होते हैं। सामान्यतः ये परिघटनाएँ बहुत जटिल होती हैं और इन्हें दो मुख्य भागों में विभाजित किया जा सकता है।

  • पहले वाला रेलवे ड्राइव प्रणाली के बीच इलेक्ट्रोमेकैनिकल बातचीत से संबंधित है: इलेक्ट्रिक मोटर, गियर, डिस्क क्लच का संचालित हिस्सा और गियर क्लच के ड्राइविंग हिस्से।[9] * दूसरे के लिए लचीले पहियों के पार्श्व वाले कंपन हैं,[10][11] और पहिया-रेल संपर्क क्षेत्र में आसंजन बलों की भिन्नता के कारण पहिये।[12] आसंजन बलों की एक बातचीत में गैर-रैखिक विशेषताएं होती हैं जो रेंगना मूल्य से संबंधित होती हैं और दृढ़ता से पहिया-रेल क्षेत्र की स्थिति और ट्रैक ज्यामिति पर निर्भर करती हैं (जब ट्रैक के वक्र खंड पर गाड़ी चलाती है)। कई आधुनिक यांत्रिक प्रणालियों में पार्श्व वाली संरचनात्मक विरूपता एक महत्वपूर्ण भूमिका निभाती है। अक्सर बिना पार्श्व वाले विकृत तत्वों के कठोर मल्टीबॉडी विधियों का उपयोग करके रेलवे वाहन की गतिशीलता का अध्ययन किया जाता है [13] यह दृष्टिकोण स्व-उत्तेजित कंपन का विश्लेषण करने की अनुमति नहीं देता है जिसका व्हील-रेल अनुदैर्ध्य बातचीत पर महत्वपूर्ण प्रभाव पड़ता है।[14]

एक संचालित मशीन के तत्वों के साथ युग्मित विद्युत ड्राइव प्रणाली का एक गतिशील मॉडलिंग [15][16] या वाहन विशेष रूप से महत्वपूर्ण है जब इस तरह के मॉडलिंग का उद्देश्य व्हील-रेल क्षेत्र में पहुंचना, मंद होनाऔर आसंजन के नुकसान जैसी प्रणाली के संचालन की क्षणिक घटना के बारे में जानकारी प्राप्त करना है। विद्युत मोटर चलना और मशीन के साथ-साथ ड्राइव प्रणाली में स्व-उत्तेजित पार्श्व वाले कंपन के प्रभाव के बीच एक विद्युतयांत्रिक बातचीत का प्रारूप ।[17][18]

भौतिक प्रणालियों पर पार्श्व वाले कंपन को मापना

पार्श्व वाले कंपन को मापने का सबसे सामान्य प्रकार एक शाफ्ट क्रांति पर समदूरस्थ दालों का उपयोग करने का दृष्टिकोण है। समर्पित शाफ्ट एनकोडर के साथ-साथ गियर टूथ पिकअप ट्रांसड्यूसर (इंडक्शन, हॉल-इफेक्ट, वेरिएबल रिलक्टेंस, आदि) इन दालों को उत्पन्न कर सकते हैं। परिणामी एन्कोडर पल्स ट्रेन या तो डिजिटल आरपीएम रीडिंग या आरपीएम के आनुपातिक वोल्टेज में परिवर्तित हो जाती है।

दोहरे-बीम लेज़र का उपयोग एक अन्य तकनीक है जिसका उपयोग पार्श्व वाले कंपन को मापने के लिए किया जाता है। डुअल-बीम लेजर का संचालन शाफ्ट पर अलग-अलग बिंदुओं पर इंगित करने वाले दो पूरी तरह से संरेखित बीम की प्रतिबिंब आवृत्ति में अंतर पर आधारित होता है। अपने विशिष्ट लाभों के बावजूद, यह विधि एक सीमित आवृत्ति रेंज उत्पन्न करती है, भाग से लेज़र तक दृष्टि की रेखा की आवश्यकता होती है, और कई माप बिंदुओं को समानांतर में मापने की आवश्यकता होने पर कई लेज़रों का प्रतिनिधित्व करती है।

पार्श्व कंपन सॉफ्टवेयर

ऐसे कई सॉफ्टवेयर पैकेज हैं जो समीकरणों की पार्श्व वाली कंपन प्रणाली को हल करने में सक्षम हैं। पार्श्व वाले कंपन विशिष्ट कोड डिजाइन और प्रणाली सत्यापन उद्देश्यों के लिए अधिक बहुमुखी हैं और सिमुलेशन आंकड़े का उत्पादन कर सकते हैं जो प्रकाशित उद्योग मानकों की तुलना में आसानी से कर सकते हैं। ये कोड प्रणाली शाखाओं, द्रव्यमान-लोचदार आंकड़े, स्थिर-राज्य भार, क्षणिक गड़बड़ी और कई अन्य वस्तुओं को जोड़ना आसान बनाते हैं, जिसके लिए केवल एक रोटरडायनामिकिस्ट की आवश्यकता होगी। पार्श्व कंपन विशिष्ट कोड:

  • एक्सस्ट्रीम रोटरडायनामिक्स, (सॉफ्टइनवे) - घूमने वाले उपकरणों की पूरी रेंज पर पार्श्व वाले विश्लेषण की पूरी गुंजाइश के प्रदर्शन के लिए वाणिज्यिक एफईए-आधारित कार्यक्रम . स्थिर-अवस्था और क्षणिक, मोडल, हार्मोनिक और पारस्परिक मशीन विश्लेषण करने के लिए उपयोग किया जा सकता है, और स्थिरता की साजिश और कैंपबेल आरेखों को जल्दी से उत्पन्न करता है।
  • एआरएमडी पार्श्व (रोटर बियरिंग टेक्नोलॉजी एंड सॉफ्टवेयर, इंक।) - डैम्प्ड और अनडैम्प्ड टॉर्सनल नेचुरल फ्रिक्वेंसी, मोड शेप, स्टेडी-स्टेट और परफॉर्मेंस के लिए कमर्शियल एफईए-बेस्ड सॉफ्टवेयर विभिन्न प्रकार के बाहरी उत्तेजना, सिंक्रोनस मोटर स्टार्ट-अप टॉर्क, कंप्रेसर टॉर्क और इलेक्ट्रिकल प्रणाली की गड़बड़ी के इनपुट के साथ यांत्रिक ड्राइव ट्रेनों की समय-क्षणिक प्रतिक्रिया।

बॉन्ड ग्राफ का उपयोग जनरेटर सेटों में पार्श्व वाले कंपन का विश्लेषण करने के लिए किया जा सकता है, जैसे कि जहाजों पर उपयोग होने वाले।[19]

यह भी देखें

ग्रन्थसूची

  • नेस्टोराइड्स, ईजे, बिसेरा: टॉर्सनल वाइब्रेशन पर एक हैंडबुक, यूनिवर्सिटी प्रेस, 1958, ISBN 0-521-04326-3
  • परिक्यान, टी. (2011). "एवीएल एक्साइट डिजाइनर के साथ मल्टी-साइकिल टॉर्सनल वाइब्रेशन सिमुलेशन". एएसएमई 2011 आंतरिक दहन इंजन प्रभाग पतन यांत्रिक सम्मेलन. Vol. एएसएमई पेपर ICEF2011-60091. pp. 1009–1018. doi:10.1115/ICEF2011-60091. ISBN 978-0-7918-4442-7.

संदर्भ

  1. Den Hartog, J. P. (1985). यांत्रिक कंपन. Nineola, N.Y.: Dover Publications. p. 174. ISBN 0-486-64785-4.
  2. Feese, Hill. "रेसिप्रोकेटिंग मशीनरी में मरोड़ वाले कंपन की समस्याओं की रोकथाम" (PDF). Engineering Dynamics Incorporated. Archived from the original (PDF) on 19 October 2013. Retrieved 17 October 2013.
  3. B. F. Evans, A. J. Smalley, H. R. Simmons, Startup of synchronous motor drive trains: the application of transient torsional analysis of cumulative fatigue assessment, ASME Paper, 85-DET-122, 1985.
  4. A. Laschet A., Simulation von Antriebssystemen, Springer-Verlag, Berlin, Heidelberg, London, New-York, Paris, Tokio, 1988.
  5. P. Schwibinger, R. Nordmann, Improvement of a reduced torsional model by means of parameter identification, Transactions of the ASME, Journal of Vibration, Acoustics, Stress and Reliability in Design, 111, 1989, pp. 17-26.
  6. A. Laschet A., Simulation von Antriebssystemen, Springer-Verlag, Berlin, Heidelberg, London, New-York, Paris, Tokio, 1988.
  7. L. Harnefors, Analysis of subsynchronous torsional interaction with power electronic converters, IEEE Transactions on power systems, Vol. 22, No. 1, 2007, pp. 305-313.
  8. R. Bogacz, T. Szolc, H. Irretier, An application of torsional wave analysis to turbogenerator rotor shaft response, J.Vibr. Acou. -Trans. of the Asme, Vol. 114-2 (1992) 149-153.
  9. O. Ahmedov, V. Zeman, M. Byrtus, Modelling of vibration and modal properties of electric locomotive drive, Eng. Mech., Vol. 19: 2/3 (2012) 165–176.
  10. S. Noga, R. Bogacz, T. Markowski, Vibration analysis of a wheel composed of a ring and a wheel-plate modelled as a three-parameter elastic foundation, J.Sound Vib., Vol. 333:24, (2014) 6706-6722.
  11. R. Bogacz, R. Konowrocki, On new effects of wheel-rail interaction, Arch. Appl. Mech, Vol.82 (2012)1313-1323.
  12. 5. V. Zeman, Z. Hlavac, Dynamic wheelset drive load of the railway vehicle caused by shortcircuit motor moment, App. & Comp. Mech., Vol.3, No.2 (2009)423–434.
  13. B.S. Branislav, Simulation of torsion moment at the wheel set of the railway vehicle with the traction electromotor for wavy direct current, Mech. Trans. Com., Issue 3 (2008) 6-9
  14. J. Liu, H. Zhao, W. Zhai, Mechanism of self-excited torsional vibration of locomotive driving system, Front. Mech. Eng.China, Vol.5:4 (2010,) 465-469.
  15. Szolc T., Konowrocki R., Michajłow M., Pręgowska A., An investigation of the dynamic electromechanical coupling effects in machine drive systems driven by asynchronous motors, Mechanical Systems and Signal Processing, ISSN 0888-3270, Vol.49, pp.118-134, 2014
  16. Konowrocki R., Szolc T., Pochanke A., Pręgowska A., An influence of the stepping motor control and friction models on precise positioning of the complex mechanical system, Mechanical Systems and Signal Processing, ISSN 0888-3270, doi:10.1016/j.ymssp.2015.09.030, Vol.70-71, pp.397-413, 2016
  17. Konowrocki R., Szolc T., An analysis of the self-excited torsional vibrations of the electromechanical drive system,Vibrations in Physical Systems, ISSN 0860-6897, Vol.27, pp.187-194, 2016
  18. Konowrocki R., Analysis of electromechanical interaction in an electric drive system used in the high speed trains, ART Conference 2016, ADVANCED RAIL TECHNOLOGIES - 5th International Conference, 2016-11-09/11-11, Warsaw (PL), pp.1-2, 2016
  19. Heeringa, T (2018-10-03). "Torsional Vibration Analysis by Bondgraph Modelling. A practical approach". अंतर्राष्ट्रीय नौसेना इंजीनियरिंग सम्मेलन और प्रदर्शनी (आईएनईसी) की कार्यवाही. Vol. 14. Glasgow, UK. doi:10.24868/issn.2515-818X.2018.034.{{cite book}}: CS1 maint: location missing publisher (link)


बाहरी संबंध