सममित बहुपद: Difference between revisions
Line 72: | Line 72: | ||
:<math>m_{(3,1,1)}(X_1,X_2,X_3)=X_1^3X_2X_3+X_1X_2^3X_3+X_1X_2X_3^3</math>, | :<math>m_{(3,1,1)}(X_1,X_2,X_3)=X_1^3X_2X_3+X_1X_2^3X_3+X_1X_2X_3^3</math>, | ||
:<math>m_{(3,2,1)}(X_1,X_2,X_3)=X_1^3X_2^2X_3+X_1^3X_2X_3^2+X_1^2X_2^3X_3+X_1^2X_2X_3^3+X_1X_2^3X_3^2+X_1X_2^2X_3^3.</math> | :<math>m_{(3,2,1)}(X_1,X_2,X_3)=X_1^3X_2^2X_3+X_1^3X_2X_3^2+X_1^2X_2^3X_3+X_1^2X_2X_3^3+X_1X_2^3X_3^2+X_1X_2^2X_3^3.</math> | ||
स्पष्ट रूप से ''m''<sub>α</sub> = ''m''<sub>β</sub> जब β, α का क्रमचय होता है, तो आमतौर पर केवल उन्हीं ''m''<sub>α</sub> पर विचार किया जाता है जिसके लिए α<sub>1</sub> ≥ α<sub>2</sub> ≥ … ≥ α<sub>''n''</sub>, दूसरे शब्दों में जिसके लिए α एक [[विभाजन (संख्या सिद्धांत)]] है। ये एकपद सममित बहुपद | स्पष्ट रूप से ''m''<sub>α</sub> = ''m''<sub>β</sub> जब β, α का क्रमचय होता है, तो आमतौर पर केवल उन्हीं ''m''<sub>α</sub> पर विचार किया जाता है जिसके लिए α<sub>1</sub> ≥ α<sub>2</sub> ≥ … ≥ α<sub>''n''</sub>, दूसरे शब्दों में जिसके लिए α एक [[विभाजन (संख्या सिद्धांत)]] है। ये एकपद सममित बहुपद सदिश समष्टि [[आधार (रैखिक बीजगणित)]] बनाते हैं: प्रत्येक सममित बहुपद ''P'' को एकपद सममित बहुपदों के [[रैखिक संयोजन]] के रूप में लिखा जा सकता है। ऐसा करने के लिए यह ''P'' में होने वाले विभिन्न प्रकार के एकपद को अलग करने के लिए पर्याप्त है। विशेष रूप से यदि ''P'' में पूर्णांक गुणांक हैं, तो रैखिक संयोजन भी होता है। | ||
प्रारंभिक सममित बहुपद एकपदी सममित बहुपद के विशेष मामले हैं: 0 ≤ k ≤ n के लिए एक है | प्रारंभिक सममित बहुपद एकपदी सममित बहुपद के विशेष मामले हैं: 0 ≤ k ≤ n के लिए एक है | ||
:<math>e_k(X_1,\ldots,X_n)=m_\alpha(X_1,\ldots,X_n)</math> जहाँ α k का k भागों 1 में विभाजन है (इसके बाद n − k शून्य)। | :<math>e_k(X_1,\ldots,X_n)=m_\alpha(X_1,\ldots,X_n)</math> जहाँ ''α k'' का ''k'' भागों 1 में विभाजन है (इसके बाद ''n − k'' शून्य)। | ||
=== | === घात-योग सममित बहुपद === | ||
{{Main| | {{Main|घात-योग सममित बहुपद}} | ||
प्रत्येक पूर्णांक k ≥ 1 के लिए, एकपदी सममित बहुपद m<sub>(''k'',0,…,0)</sub>( | प्रत्येक पूर्णांक k ≥ 1 के लिए, एकपदी सममित बहुपद m<sub>(''k'',0,…,0)</sub>(''X''<sub>1</sub>, …, ''X<sub>n</sub>'') विशेष रुचि है। यह घात योग सममित बहुपद है, जिसे परिभाषित किया गया है | ||
:<math>p_k(X_1,\ldots,X_n) = X_1^k + X_2^k + \cdots + X_n^k .</math> सभी सममित बहुपदों को पहले n घात योग सममित बहुपदों से जोड़ और गुणा करके प्राप्त किया जा सकता है, संभवतः परिमेय संख्या गुणांकों को शामिल करते हुए। ज्यादा ठीक, | :<math>p_k(X_1,\ldots,X_n) = X_1^k + X_2^k + \cdots + X_n^k .</math> | ||
: X | :सभी सममित बहुपदों को पहले ''n'' घात योग सममित बहुपदों से जोड़ और गुणा करके प्राप्त किया जा सकता है, संभवतः परिमेय संख्या गुणांकों को शामिल करते हुए। ज्यादा ठीक, | ||
विशेष रूप से, शेष घात योग बहुपद p<sub> | : ''X''<sub>1</sub>, …, ''X<sub>n</sub>'' में कोई सममित बहुपद घात योग सममित बहुपद ''p<sub>1</sub>(X<sub>1</sub>, …, X<sub>n</sub>), …, p<sub>n</sub>(X<sub>1</sub>, …, X<sub>n</sub>)'' में तर्कसंगत गुणांक के साथ बहुपद अभिव्यक्ति के रूप में व्यक्त किया जा सकता है। | ||
विशेष रूप से, शेष घात योग बहुपद ''p<sub>k</sub>''(''X''<sub>1</sub>, …, ''X<sub>n</sub>'') k > n के लिए पहले ''n'' घात योग बहुपदों में व्यक्त किया जा सकता है; उदाहरण के लिए | |||
:<math>p_3(X_1,X_2)=\textstyle\frac32p_2(X_1,X_2)p_1(X_1,X_2)-\frac12p_1(X_1,X_2)^3.</math> | :<math>p_3(X_1,X_2)=\textstyle\frac32p_2(X_1,X_2)p_1(X_1,X_2)-\frac12p_1(X_1,X_2)^3.</math> | ||
प्रारंभिक और पूर्ण सजातीय बहुपदों के लिए स्थिति के विपरीत, पूर्णांक गुणांक वाले n चरों में | प्रारंभिक और पूर्ण सजातीय बहुपदों के लिए स्थिति के विपरीत, पूर्णांक गुणांक वाले ''n'' चरों में सममित बहुपद को घात योग सममित बहुपदों के अभिन्न गुणांकों के साथ बहुपद फलन नहीं होना चाहिए। उदाहरण के लिए, ''n = 2'' के लिए, सममित बहुपद | ||
उदाहरण के लिए, n = 2 के लिए, सममित बहुपद | |||
:<math>m_{(2,1)}(X_1,X_2) = X_1^2 X_2 + X_1 X_2^2</math> | :<math>m_{(2,1)}(X_1,X_2) = X_1^2 X_2 + X_1 X_2^2</math> | ||
अभिव्यक्ति है | अभिव्यक्ति है | ||
:<math> m_{(2,1)}(X_1,X_2)= \textstyle\frac12p_1(X_1,X_2)^3-\frac12p_2(X_1,X_2)p_1(X_1,X_2).</math> | :<math> m_{(2,1)}(X_1,X_2)= \textstyle\frac12p_1(X_1,X_2)^3-\frac12p_2(X_1,X_2)p_1(X_1,X_2).</math> | ||
तीन चरों का उपयोग करने से | तीन चरों का उपयोग करने से भिन्न व्यंजक प्राप्त होता है | ||
:<math>\begin{align}m_{(2,1)}(X_1,X_2,X_3) &= X_1^2 X_2 + X_1 X_2^2 + X_1^2 X_3 + X_1 X_3^2 + X_2^2 X_3 + X_2 X_3^2\\ | :<math>\begin{align}m_{(2,1)}(X_1,X_2,X_3) &= X_1^2 X_2 + X_1 X_2^2 + X_1^2 X_3 + X_1 X_3^2 + X_2^2 X_3 + X_2 X_3^2\\ | ||
&= p_1(X_1,X_2,X_3)p_2(X_1,X_2,X_3)-p_3(X_1,X_2,X_3). | &= p_1(X_1,X_2,X_3)p_2(X_1,X_2,X_3)-p_3(X_1,X_2,X_3). | ||
\end{align}</math> | \end{align}</math> | ||
समरूपी व्यंजक दो चरों के लिए भी मान्य था (यह ''X''<sub>3</sub> शून्य तक सेट करने के लिए पर्याप्त है), लेकिन चूंकि इसमें ''p''<sub>3</sub> शामिल है, इसका उपयोग ''n = 2'' के लिए कथन को चित्रित करने के लिए नहीं किया जा सकता है। उदाहरण से पता चलता है कि किसी दिए गए एकपद सममित बहुपद के लिए पहले ''n'' घात योग बहुपद के संदर्भ में अभिव्यक्ति में तर्कसंगत गुणांक शामिल हैं या नहीं, यह ''n'' पर निर्भर हो सकता है। लेकिन प्रारंभिक सममित बहुपदों को व्यक्त करने के लिए हमेशा तर्कसंगत गुणांक की (स्थिर लोगों को छोड़कर, और ''e''<sub>1</sub> जो पहले घात योग के साथ मेल खाता है) घात योग बहुपद के संदर्भ में आवश्यकता होती है। न्यूटन सर्वसमिका ऐसा करने के लिए स्पष्ट विधि प्रदान करती है; इसमें ''n'' तक पूर्णांकों द्वारा विभाजन शामिल है, जो परिमेय गुणांकों की व्याख्या करता है। इन विभाजनों के कारण, उल्लिखित कथन सामान्य रूप से विफल हो जाता है जब गुणांक परिमित [[विशेषता (बीजगणित)]] के क्षेत्र (गणित) में लिया जाता है; हालाँकि, यह तर्कसंगत संख्याओं वाले किसी भी वलय (गणित) में गुणांक के साथ मान्य है। | |||
=== पूर्ण सजातीय सममित बहुपद === | === पूर्ण सजातीय सममित बहुपद === |
Revision as of 12:36, 10 May 2023
गणित में, सममित बहुपद एक बहुपद P(X1, X2, …, Xn) में n चर है, जैसे कि यदि किसी भी चर को आपस में बदल दिया जाए, तो एक ही बहुपद प्राप्त होता है। औपचारिक रूप से, P किसी भी क्रमचय के लिए सममित बहुपद है σ पादांक का 1, 2, ..., n किसी के पास P(Xσ(1), Xσ(2), …, Xσ(n)) = P(X1, X2, …, Xn).
सममित बहुपद स्वाभाविक रूप से चर और उसके गुणांक में बहुपद का मूल के बीच के संबंध के अध्ययन में उत्पन्न होते हैं, क्योंकि गुणांक मूल में बहुपद अभिव्यक्तियों द्वारा दिए जा सकते हैं, और सभी मूल इस समायोजन में समान भूमिका निभाती हैं। इस दृष्टिकोण से प्रारंभिक सममित बहुपद सबसे आधारभूत सममित बहुपद हैं। दरअसल, प्रमेय जिसे सममित बहुपदों का मूलभूत प्रमेय कहा जाता है, कहता है कि किसी भी सममित बहुपद को प्रारंभिक सममित बहुपदों के रूप में व्यक्त किया जा सकता है। इसका तात्पर्य यह है कि मोनिक बहुपद की मूल में प्रत्येक सममित बहुपद व्यंजक वैकल्पिक रूप से बहुपद के गुणांकों में बहुपद व्यंजक के रूप में दिया जा सकता है।
सममित बहुपद भी बहुपद की मूल से किसी भी संबंध से स्वतंत्र रूप से अपने आप में एक दिलचस्प संरचना बनाते हैं। इस संदर्भ में विशिष्ट सममित बहुपदों के अन्य संग्रह, जैसे पूर्ण सजातीय सममित बहुपद, घात योग सममित बहुपद, और शूर बहुपद प्रारंभिक के साथ महत्वपूर्ण भूमिका निभाते हैं। परिणामी संरचनाएं, और विशेष रूप से सममित फलन की वलय, साहचर्य और प्रतिनिधित्व सिद्धांत में बहुत महत्वपूर्ण हैं।
उदाहरण
निम्नलिखित बहुपद दो चर X1 और X2 में सममित हैं:
जैसा कि तीन चर X1, X2, X3 में निम्नलिखित बहुपद है:
किसी भी चर संख्या में विशिष्ट सममित बहुपद बनाने के कई तरीके हैं (नीचे विभिन्न प्रकार देखें)। कुछ भिन्न झलक का उदाहरण है
जहां पहले बहुपद का निर्माण किया जाता है जो चर के प्रत्येक आदान-प्रदान के तहत प्रतीक बदलता है, और वर्ग (बीजगणित) लेने से यह पूरी तरह से सममित हो जाता है (यदि चर एक बहुपद की मूल का प्रतिनिधित्व करते हैं, तो यह बहुपद अपना विभेदक देता है)।
दूसरी ओर, दो चरों में बहुपद
सममित नहीं है, क्योंकि यदि कोई विनिमय करता है और एक को एक अलग बहुपद मिलता है, . इसी प्रकार तीन चरों में
तीन चरों के चक्रीय क्रमपरिवर्तन के तहत केवल समरूपता है, जो सममित बहुपद होने के लिए पर्याप्त नहीं है। हालाँकि, निम्नलिखित सममित है:
अनुप्रयोग
गैलोइस सिद्धांत
एक संदर्भ जिसमें सममित बहुपद फलन होते हैं, एक दिए गए क्षेत्र (गणित) में n मूल वाले बहुपद n की डिग्री के मोनिक बहुपद अविभाजित बहुपदों के अध्ययन में है। ये n मूल बहुपद का निर्धारण करती हैं, और जब उन्हें स्वतंत्र चर के रूप में माना जाता है, तो बहुपद के गुणांक मूल के सममित बहुपद फलन होते हैं। इसके अलावा सममित बहुपदों के आधारभूत प्रमेय का अर्थ है कि n मूल के बहुपद फलन f को मूल द्वारा निर्धारित बहुपद के गुणांकों के (दूसरे) बहुपद फलन के रूप में व्यक्त किया जा सकता है यदि और केवल अगर f एक सममित बहुपद द्वारा दिया दिया जाता है।
यह इस मानचित्र को उल्टा करके बहुपद समीकरणों को हल करने के दृष्टिकोण को प्राप्त करता है, समरूपता को "तोड़ना" - बहुपद के गुणांक (जड़ों में प्रारंभिक सममित बहुपद) दिए गए हैं, कोई मूल को कैसे पुनर्प्राप्त कर सकता है? यह मूल के क्रमचय समूह का उपयोग करके बहुपदों के समाधान का अध्ययन करने की ओर जाता है, मूल रूप से लैग्रेंज सॉल्वैंट्स के रूप में, जिसे बाद में गैलोज़ सिद्धांत में विकसित किया गया था।
मोनिक यूनिवेरिएट बहुपद की मूल के साथ संबंध
डिग्री n के t में मोनिक बहुपद पर विचार करें
किसी क्षेत्र K में गुणांक ai के साथ। संभवतः कुछ बड़े क्षेत्र में P की n मूल x1,…,xnमौजूद हैं (उदाहरण के लिए यदि K वास्तविक संख्याओं का क्षेत्र है, तो मूल समिश्र संख्या के क्षेत्र में मौजूद होंगी); कुछ मूल समान हो सकते हैं, लेकिन तथ्य यह है कि सभी मूल संबंध द्वारा व्यक्त की जाती हैं
गुणांकों की तुलना करने पर यह पता चलता है
ये वास्तव में वियत के सूत्रों के उदाहरण मात्र हैं। वे दिखाते हैं कि बहुपद के सभी गुणांक सममित बहुपद व्यंजक द्वारा मूल के संदर्भ में दिए गए हैं: हालांकि किसी दिए गए बहुपद P के लिए मूल के बीच गुणात्मक अंतर हो सकता है (जैसे आधार क्षेत्र K में पड़ा हो या नहीं, साधारण मूल हो या एकाधिक होना), इनमें से कोई भी इन अभिव्यक्तियों में मूल के होने के तरीके को प्रभावित नहीं करता है।
अब P का वर्णन करने के लिए बुनियादी मापदंडों के रूप में गुणांक के बजाय मूल को ले कर, और उन्हें उपयुक्त क्षेत्र में स्थिरांक के रूप में अनिश्चित के रूप में विचार करके, दृष्टिकोण को बदल सकते हैं; गुणांक ai तो उपरोक्त समीकरणों द्वारा दिए गए विशेष सममित बहुपद बन जाते हैं। वे बहुपद, बिना चिह्न के , x1, …, xn में प्रारंभिक सममित बहुपद के रूप में जाना जाता है एक बुनियादी तथ्य, जिसे सममित बहुपदों के आधारभूत प्रमेय के रूप में जाना जाता है, कहता है कि n चर में कोई भी सममित बहुपद इन प्रारंभिक सममित बहुपदों के संदर्भ में बहुपद अभिव्यक्ति द्वारा दिया जा सकता है। यह इस प्रकार है कि मोनिक बहुपद की मूल में किसी भी सममित बहुपद अभिव्यक्ति को बहुपद के गुणांक में बहुपद के रूप में व्यक्त किया जा सकता है, और विशेष रूप से इसका मूल्य आधार क्षेत्र K में निहित है जिसमें वे गुणांक शामिल हैं। इस प्रकार, मूल में केवल ऐसे सममित बहुपद अभिव्यक्तियों के साथ काम करते समय, उन मूल के बारे में विशेष रूप से कुछ भी जानना अनावश्यक है, या किसी भी बड़े क्षेत्र में K की तुलना में गणना करने के लिए जिसमें मूल लाइ कर सकती हैं। वास्तव में मूलों के मान स्वयं अप्रासंगिक हो जाते हैं, और गुणांकों और सममित बहुपद व्यंजकों के बीच आवश्यक संबंध केवल सममित बहुपदों के संदर्भ में अभिकलन द्वारा प्राप्त किए जा सकते हैं। ऐसे संबंधों का उदाहरण न्यूटन की सर्वसमिकाएं हैं, जो प्रारंभिक सममित बहुपदों के संदर्भ में मूल की किसी निश्चित घात के योग को व्यक्त करते हैं।
विशेष प्रकार के सममित बहुपद
चर X1, X2, …, Xn में कुछ प्रकार के सममित बहुपद हैं जो आधारभूत हैं।
प्रारंभिक सममित बहुपद
प्रत्येक गैर-ऋणात्मक पूर्णांक k के लिए, प्रारंभिक सममित बहुपद ek(X1, …, Xn) k विशिष्ट चर के सभी विशिष्ट उत्पादों का योग है। (कुछ लेखक इसे इसके बजाय σk द्वारा निरूपित करते हैं।) k = 0 के लिए केवल खाली उत्पाद है इसलिए e0(X1, …, Xn) = 1, जबकि k > n के लिए, कोई भी उत्पाद नहीं बनाया जा सकता है, इसलिए ek(X1, X2, …, Xn) = 0 इन मामलों में है। शेष n प्रारंभिक सममित बहुपद इन चरों में सभी सममित बहुपदों के लिए बिल्डिंग ब्लॉक्स हैं: जैसा कि ऊपर उल्लेख किया गया है, चरों में किसी भी सममित बहुपद को केवल गुणन और परिवर्धन का उपयोग करके इन प्रारंभिक सममित बहुपदों से प्राप्त किया जा सकता है। वास्तव में निम्नलिखित अधिक विस्तृत तथ्य हैं:
- X1, …, Xn में कोई सममित बहुपद P बहुपद ek(X1, …, Xn) में बहुपद अभिव्यक्ति के रूप में 1 ≤ k ≤ n के साथ लिखा जा सकता है;
- यह व्यंजक बहुपद व्यंजकों की तुल्यता तक अद्वितीय है;
- यदि P में पूर्णांक गुणांक हैं, तो बहुपद व्यंजक में पूर्णांक गुणांक भी होते हैं।
उदाहरण के लिए, n = 2 के लिए प्रासंगिक प्रारंभिक सममित बहुपद e1(X1, X2) = X1 + X2 और e2(X1, X2) = X1X2 हैं। उपरोक्त उदाहरणों की सूची में पहले बहुपद को तब इस प्रकार लिखा जा सकता है
(गणितीय प्रमाण के लिए कि यह हमेशा संभव है, सममित बहुपदों का आधारभूत प्रमेय देखें)।
एकपदी सममित बहुपद
प्रारंभिक सममित बहुपदों की घात और गुणनफल अपेक्षाकृत जटिल व्यंजकों के लिए फलन करते हैं। यदि कोई सममित बहुपदों के लिए बुनियादी योज्य निर्माण ब्लॉक की तलाश करता है, तो उन सममित बहुपदों को लेना एक अधिक स्वाभाविक विकल्प है जिसमें केवल एक प्रकार का एकपद होता है, समरूपता प्राप्त करने के लिए केवल उन्हीं प्रतियों की आवश्यकता होती है। X1, …, Xn में कोई एकपद X1α1…Xnαn के रूप में लिखा जा सकता है जहां घातांक αi प्राकृतिक संख्याएं हैं (संभवतः शून्य); लिखना α = (α1,…,αn) इसे X α से संक्षिप्त किया जा सकता है, एकपदी सममित बहुपद mα(X1, …, Xn) को सभी एकपदी xβ के योग के रूप में जहां β (α1,…,αn) परिभाषित किया गया है उदाहरण के लिए एक है
- ,
स्पष्ट रूप से mα = mβ जब β, α का क्रमचय होता है, तो आमतौर पर केवल उन्हीं mα पर विचार किया जाता है जिसके लिए α1 ≥ α2 ≥ … ≥ αn, दूसरे शब्दों में जिसके लिए α एक विभाजन (संख्या सिद्धांत) है। ये एकपद सममित बहुपद सदिश समष्टि आधार (रैखिक बीजगणित) बनाते हैं: प्रत्येक सममित बहुपद P को एकपद सममित बहुपदों के रैखिक संयोजन के रूप में लिखा जा सकता है। ऐसा करने के लिए यह P में होने वाले विभिन्न प्रकार के एकपद को अलग करने के लिए पर्याप्त है। विशेष रूप से यदि P में पूर्णांक गुणांक हैं, तो रैखिक संयोजन भी होता है।
प्रारंभिक सममित बहुपद एकपदी सममित बहुपद के विशेष मामले हैं: 0 ≤ k ≤ n के लिए एक है
- जहाँ α k का k भागों 1 में विभाजन है (इसके बाद n − k शून्य)।
घात-योग सममित बहुपद
प्रत्येक पूर्णांक k ≥ 1 के लिए, एकपदी सममित बहुपद m(k,0,…,0)(X1, …, Xn) विशेष रुचि है। यह घात योग सममित बहुपद है, जिसे परिभाषित किया गया है
- सभी सममित बहुपदों को पहले n घात योग सममित बहुपदों से जोड़ और गुणा करके प्राप्त किया जा सकता है, संभवतः परिमेय संख्या गुणांकों को शामिल करते हुए। ज्यादा ठीक,
- X1, …, Xn में कोई सममित बहुपद घात योग सममित बहुपद p1(X1, …, Xn), …, pn(X1, …, Xn) में तर्कसंगत गुणांक के साथ बहुपद अभिव्यक्ति के रूप में व्यक्त किया जा सकता है।
विशेष रूप से, शेष घात योग बहुपद pk(X1, …, Xn) k > n के लिए पहले n घात योग बहुपदों में व्यक्त किया जा सकता है; उदाहरण के लिए
प्रारंभिक और पूर्ण सजातीय बहुपदों के लिए स्थिति के विपरीत, पूर्णांक गुणांक वाले n चरों में सममित बहुपद को घात योग सममित बहुपदों के अभिन्न गुणांकों के साथ बहुपद फलन नहीं होना चाहिए। उदाहरण के लिए, n = 2 के लिए, सममित बहुपद
अभिव्यक्ति है
तीन चरों का उपयोग करने से भिन्न व्यंजक प्राप्त होता है
समरूपी व्यंजक दो चरों के लिए भी मान्य था (यह X3 शून्य तक सेट करने के लिए पर्याप्त है), लेकिन चूंकि इसमें p3 शामिल है, इसका उपयोग n = 2 के लिए कथन को चित्रित करने के लिए नहीं किया जा सकता है। उदाहरण से पता चलता है कि किसी दिए गए एकपद सममित बहुपद के लिए पहले n घात योग बहुपद के संदर्भ में अभिव्यक्ति में तर्कसंगत गुणांक शामिल हैं या नहीं, यह n पर निर्भर हो सकता है। लेकिन प्रारंभिक सममित बहुपदों को व्यक्त करने के लिए हमेशा तर्कसंगत गुणांक की (स्थिर लोगों को छोड़कर, और e1 जो पहले घात योग के साथ मेल खाता है) घात योग बहुपद के संदर्भ में आवश्यकता होती है। न्यूटन सर्वसमिका ऐसा करने के लिए स्पष्ट विधि प्रदान करती है; इसमें n तक पूर्णांकों द्वारा विभाजन शामिल है, जो परिमेय गुणांकों की व्याख्या करता है। इन विभाजनों के कारण, उल्लिखित कथन सामान्य रूप से विफल हो जाता है जब गुणांक परिमित विशेषता (बीजगणित) के क्षेत्र (गणित) में लिया जाता है; हालाँकि, यह तर्कसंगत संख्याओं वाले किसी भी वलय (गणित) में गुणांक के साथ मान्य है।
पूर्ण सजातीय सममित बहुपद
प्रत्येक गैर-ऋणात्मक पूर्णांक k के लिए, पूर्ण सजातीय सममित बहुपद hk(एक्स1, …, एक्सn) चर X में एक बहुपद k की डिग्री के सभी अलग-अलग मोनोमियल्स का योग है1, …, एक्सn. उदाहरण के लिए
बहुपद एचk(एक्स1, …, एक्सn) X में डिग्री k के सभी विशिष्ट एकपदी सममित बहुपदों का योग भी है1, …, एक्सn, उदाहरण के लिए दिए गए उदाहरण के लिए
इन चरों में सभी सममित बहुपदों को पूर्ण सजातीय बहुपदों से बनाया जा सकता है: X में कोई भी सममित बहुपद1, …, एक्सn पूर्ण सजातीय सममित बहुपद h से प्राप्त किया जा सकता है1(एक्स1, …, एक्सn), …, एचn(एक्स1, …, एक्सn) गुणा और जोड़ के माध्यम से। ज्यादा ठीक:
- X में कोई भी सममित बहुपद P1, …, एक्सn बहुपद h में बहुपद व्यंजक के रूप में लिखा जा सकता हैk(एक्स1, …, एक्सn) 1 ≤ k ≤ n के साथ।
- यदि पी में अभिन्न गुणांक हैं, तो बहुपद अभिव्यक्ति में अभिन्न गुणांक भी हैं।
उदाहरण के लिए, n = 2 के लिए प्रासंगिक पूर्ण सजातीय सममित बहुपद हैं h1(X1, X2) = X1 + X2 और h2(X1, X2) = X12 + X1X2 + X22. उपरोक्त उदाहरणों की सूची में पहले बहुपद को तब इस प्रकार लिखा जा सकता है
घात योगों के मामले में, दिया गया कथन विशेष रूप से h से परे पूर्ण सजातीय सममित बहुपदों पर लागू होता हैn(एक्स1, …, एक्सn), उन्हें उस बिंदु तक के संदर्भ में व्यक्त करने की अनुमति देता है; परिणामी पहचान फिर से अमान्य हो जाती है जब चर की संख्या बढ़ जाती है।
पूर्ण सजातीय सममित बहुपदों का एक महत्वपूर्ण पहलू प्रारंभिक सममित बहुपदों से उनका संबंध है, जिसे सर्वसमिकाओं के रूप में व्यक्त किया जा सकता है
- , सभी k > 0, और चरों की संख्या n के लिए।
चूंकि ई0(एक्स1, …, एक्सn) और वह0(एक्स1, …, एक्सn) दोनों 1 के बराबर हैं, कोई इन योगों के पहले या अंतिम पद को अलग कर सकता है; पूर्व समीकरणों का एक सेट देता है जो प्रारंभिक सममित बहुपदों के संदर्भ में उत्तरोत्तर पूर्ण सजातीय सममित बहुपदों को पुनरावर्ती रूप से व्यक्त करने की अनुमति देता है, और बाद वाला समीकरणों का एक सेट देता है जो व्युत्क्रम करने की अनुमति देता है। यह स्पष्ट रूप से दर्शाता है कि किसी भी सममित बहुपद को h के रूप में व्यक्त किया जा सकता हैk(एक्स1, …, एक्सn) 1 ≤ k ≤ n के साथ: एक पहले सममित बहुपद को प्रारंभिक सममित बहुपद के संदर्भ में व्यक्त करता है, और फिर उन्हें उल्लिखित पूर्ण सजातीय बहुपद के संदर्भ में व्यक्त करता है।
शूर बहुपद
सममित बहुपदों का एक अन्य वर्ग शूर बहुपदों का है, जो सममित बहुपदों के प्रतिनिधित्व सिद्धांत के अनुप्रयोगों में मूलभूत महत्व के हैं। हालांकि अन्य प्रकार के विशेष सममित बहुपदों के रूप में उनका वर्णन करना उतना आसान नहीं है; विवरण के लिए मुख्य लेख देखें।
बीजगणित में सममित बहुपद
रैखिक बीजगणित, प्रतिनिधित्व सिद्धांत और गैल्वा सिद्धांत के लिए सममित बहुपद महत्वपूर्ण हैं। वे कॉम्बिनेटरिक्स में भी महत्वपूर्ण हैं, जहां उनका ज्यादातर सममित फलन की वलय के माध्यम से अध्ययन किया जाता है, जो हर समय एक निश्चित संख्या में चर को ले जाने से बचा जाता है।
वैकल्पिक बहुपद
सममित बहुपदों के अनुरूप वैकल्पिक बहुपद हैं: बहुपद, जो प्रविष्टियों के क्रमपरिवर्तन के तहत अपरिवर्तनीय होने के बजाय क्रमचय के संकेत के अनुसार बदलते हैं।
ये सभी वेंडरमोंड बहुपद और एक सममित बहुपद के उत्पाद हैं, और सममित बहुपदों की वलय का द्विघात विस्तार बनाते हैं: वैंडरमोंड बहुपद विवेचक का एक वर्गमूल है।
यह भी देखें
- सममित फलन
- न्यूटन की पहचान
- स्टेनली सममित फलन
- मुइरहेड की असमानता
संदर्भ
- Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556, Zbl 0984.00001
- Macdonald, I.G. (1979), Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. Oxford: Clarendon Press.
- I.G. Macdonald (1995), Symmetric Functions and Hall Polynomials, second ed. Oxford: Clarendon Press. ISBN 0-19-850450-0 (paperback, 1998).
- Richard P. Stanley (1999), Enumerative Combinatorics, Vol. 2. Cambridge: Cambridge University Press. ISBN 0-521-56069-1