समान-प्रबलता समोच्च: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 8: Line 8:


== फ्लेचर-मुनसन वक्र ==
== फ्लेचर-मुनसन वक्र ==
[[File:Lindos4.svg|400px|right]]1933 में कान विभिन्न स्तरों पर विभिन्न आवृत्तियों को कैसे सुनता है, इस विषय पर पहला शोध फ्लेचर और मुनसन द्वारा आयोजित किया गया था। 1956 में रॉबिन्सन और डैडसन द्वारा पुन: निर्धारण किया गया, जो ISO 226 मानक का आधार बना है ।
[[File:Lindos4.svg|400px|right]]1933 में कान विभिन्न स्तरों पर विभिन्न आवृत्तियों को कैसे सुनता है, इस विषय पर पहला शोध फ्लेचर और मुनसन द्वारा आयोजित किया गया था। 1956 में रॉबिन्सन और डैडसन द्वारा पुन: निर्धारण किया गया, जो आईएसओ 226 मानक का आधार बना है ।


अब सामान्य शब्द इक्वल-प्रबलता कॉन्ट्रोवर्स का उपयोग करना उत्तम है, जिनमें से फ्लेचर-मुनसन वक्र अब उप-समूह हैं,<ref>{{cite web |title = Fletcher Munson Curve: The Equal Loudness Contour of Human Hearing | url =https://ledgernote.com/columns/mixing-mastering/fletcher-munson-curve/ |website = Ledger Note | date =16 November 2017 | access-date = November 17, 2017 }}</ref> और विशेष रूप से आईएसओ द्वारा 2003 के सर्वेक्षण के बाद से नए मानक में घटता को फिर से परिभाषित किया गया है ।<ref name="ISO 226">{{citation |url=http://www.nedo.go.jp/itd/grant-e/report/00pdf/is-01e.pdf |title=ISO 226:2003 |archive-url=https://web.archive.org/web/20070927210848/http://www.nedo.go.jp/itd/grant-e/report/00pdf/is-01e.pdf |archive-date=September 27, 2007 }}</ref>
अब सामान्य शब्द इक्वल-प्रबलता कॉन्ट्रोवर्स का उपयोग करना उत्तम है, जिनमें से फ्लेचर-मुनसन वक्र अब उप-समूह हैं,<ref>{{cite web |title = Fletcher Munson Curve: The Equal Loudness Contour of Human Hearing | url =https://ledgernote.com/columns/mixing-mastering/fletcher-munson-curve/ |website = Ledger Note | date =16 November 2017 | access-date = November 17, 2017 }}</ref> और विशेष रूप से आईएसओ द्वारा 2003 के सर्वेक्षण के बाद से नए मानक में घटता को फिर से परिभाषित किया गया है ।<ref name="ISO 226">{{citation |url=http://www.nedo.go.jp/itd/grant-e/report/00pdf/is-01e.pdf |title=ISO 226:2003 |archive-url=https://web.archive.org/web/20070927210848/http://www.nedo.go.jp/itd/grant-e/report/00pdf/is-01e.pdf |archive-date=September 27, 2007 }}</ref>
Line 14: Line 14:


== प्रायोगिक निर्धारण ==
== प्रायोगिक निर्धारण ==
मानव श्रवण प्रणाली लगभग 20 [[ हेटर्स |हेटर्स]] से अधिकतम लगभग 20,000 हर्ट्ज़ की आवृत्तियों के प्रति संवेदनशील है, चूँकि उम्र के साथ सुनने की ऊपरी सीमा कम हो जाती है। इस सीमा के अंदर, [[मानव कान]] 2 और 5 [[kHz]] के बीच सबसे अधिक संवेदनशील होता है, मुख्य रूप से कान नहर की प्रतिध्वनि और मध्य कान के अस्थि-पंजर के स्थानांतरण कार्य के कारण होता है।
मानव श्रवण प्रणाली लगभग 20 [[ हेटर्स |हेटर्स]] से अधिकतम लगभग 20,000 हर्ट्ज़ की आवृत्तियों के प्रति संवेदनशील है, चूँकि उम्र के साथ सुनने की ऊपरी सीमा कम हो जाती है। इस सीमा के अंदर, [[मानव कान]] 2 और 5 [[kHz|किलोहर्ट्ज़]] के बीच सबसे अधिक संवेदनशील होता है, मुख्य रूप से कान नहर की प्रतिध्वनि और मध्य कान के अस्थि-पंजर के स्थानांतरण कार्य के कारण होता है।


फ्लेचर और मुनसन ने सबसे पहले [[हेडफोन]] (1933) का उपयोग करके समान-प्रबलता समोच्च को मापा जाता है। अपने अध्ययन में, परीक्षण के विषयों ने विभिन्न आवृत्तियों पर शुद्ध स्वरों को सुना और प्रोत्साहन तीव्रता में 10 dB से अधिक वृद्धि की प्रत्येक आवृत्ति और तीव्रता के लिए, श्रोता ने 1000 Hz पर संदर्भ टोन भी सुना है। फ्लेचर और मुनसन ने संदर्भ स्वर को तब तक समायोजित किया जब तक कि श्रोता को यह नहीं लग गया कि यह परीक्षण स्वर के समान ही है। प्रबलता, मनोवैज्ञानिक मात्रा होने के कारण, मापना कठिन है, इसलिए उचित औसत प्राप्त करने के लिए फ्लेचर और मुनसन ने कई परीक्षण विषयों पर अपने परिणामों का औसत निकाला जाता है। सबसे कम समान-प्रबलता समोच्च सबसे शांत श्रव्य स्वर का प्रतिनिधित्व करता है - सुनने की पूर्ण सीमा उच्चतम समोच्च [[दर्द की दहलीज]] है।
फ्लेचर और मुनसन ने सबसे पहले [[हेडफोन]] (1933) का उपयोग करके समान-प्रबलता समोच्च को मापा जाता है। अपने अध्ययन में, परीक्षण के विषयों ने विभिन्न आवृत्तियों पर शुद्ध स्वरों को सुना और प्रोत्साहन तीव्रता में 10 डीबी से अधिक वृद्धि की प्रत्येक आवृत्ति और तीव्रता के लिए, श्रोता ने 1000 हर्ट्ज पर संदर्भ टोन भी सुना है। फ्लेचर और मुनसन ने संदर्भ स्वर को तब तक समायोजित किया जब तक कि श्रोता को यह नहीं लग गया कि यह परीक्षण स्वर के समान ही है। प्रबलता, मनोवैज्ञानिक मात्रा होने के कारण, मापना कठिन है, इसलिए उचित औसत प्राप्त करने के लिए फ्लेचर और मुनसन ने कई परीक्षण विषयों पर अपने परिणामों का औसत निकाला जाता है। सबसे कम समान-प्रबलता समोच्च सबसे शांत श्रव्य स्वर का प्रतिनिधित्व करता है - सुनने की पूर्ण सीमा उच्चतम समोच्च [[दर्द की दहलीज]] है।


चर्चर और किंग ने 1937 में दूसरा दृढ़ संकल्प किया, किन्तु उनके परिणाम और फ्लेचर और मुनसन ने श्रवण आरेख के कुछ भाग में काफी विसंगतियां दिखाईं।<ref>D W Robinson et al., [http://www.iop.org/EJ/abstract/0508-3443/7/5/302 "A re-determination of the equal-loudness relations for pure tones"], ''Br. J. Appl. Phys. '' '''7''' (1956), pp.166–181.</ref>
चर्चर और किंग ने 1937 में दूसरा दृढ़ संकल्प किया, किन्तु उनके परिणाम और फ्लेचर और मुनसन ने श्रवण आरेख के कुछ भाग में काफी विसंगतियां दिखाईं।<ref>D W Robinson et al., [http://www.iop.org/EJ/abstract/0508-3443/7/5/302 "A re-determination of the equal-loudness relations for pure tones"], ''Br. J. Appl. Phys. '' '''7''' (1956), pp.166–181.</ref>
Line 25: Line 25:
प्रारंभिक और अधिक वर्तमान के निर्धारणों के बीच कथित विसंगतियों ने आईएसओ 226 में मानक घटता को संशोधित करने के लिए अंतर्राष्ट्रीय मानकीकरण संगठन (आईएसओ) का नेतृत्व किया गया। उन्होंने ऐसा विद्युत संचार अनुसंधान संस्थान, तोहोकू विश्वविद्यालय, जापान द्वारा समन्वित अध्ययन में पक्षसमर्थन के उत्तर में किया था। जापान, जर्मनी, डेनमार्क, यूके और यूएस के शोधकर्ताओं द्वारा किए गए कई अध्ययनों के परिणामों को मिलाकर अध्ययन ने नए कर्व बनाए गये। (लगभग 40% डेटा के साथ जापान का सबसे बड़ा योगदानकर्ता था।)
प्रारंभिक और अधिक वर्तमान के निर्धारणों के बीच कथित विसंगतियों ने आईएसओ 226 में मानक घटता को संशोधित करने के लिए अंतर्राष्ट्रीय मानकीकरण संगठन (आईएसओ) का नेतृत्व किया गया। उन्होंने ऐसा विद्युत संचार अनुसंधान संस्थान, तोहोकू विश्वविद्यालय, जापान द्वारा समन्वित अध्ययन में पक्षसमर्थन के उत्तर में किया था। जापान, जर्मनी, डेनमार्क, यूके और यूएस के शोधकर्ताओं द्वारा किए गए कई अध्ययनों के परिणामों को मिलाकर अध्ययन ने नए कर्व बनाए गये। (लगभग 40% डेटा के साथ जापान का सबसे बड़ा योगदानकर्ता था।)


इसके परिणामस्वरूप ISO 226:2003 के रूप में मानकीकृत वक्र के नए समूह की वर्तमान में स्वीकृति हुई है। सूची आश्चर्यजनक रूप से बड़े अंतरों पर टिप्पणी करती है, और तथ्य यह है कि मूल फ्लेचर-मुनसन रूपरेखा रॉबिन्सन-डैडसन की तुलना में वर्तमान के परिणामों के साथ उत्तम समझौते में हैं, जो विशेष रूप से कम-आवृत्ति में 10-15 डीबी तक भिन्न दिखाई देते हैं। क्षेत्र, कारणों की व्याख्या नहीं की गई थी।<ref>Yôiti Suzuki, et al., [http://www.nedo.go.jp/itd/grant-e/report/00pdf/is-01e.pdf "Precise and Full-range Determination of Two-dimensional Equal Loudness Contours"] {{webarchive|url=https://web.archive.org/web/20070927210848/http://www.nedo.go.jp/itd/grant-e/report/00pdf/is-01e.pdf |date=2007-09-27 }}.</ref>
इसके परिणामस्वरूप आईएसओ 226:2003 के रूप में मानकीकृत वक्र के नए समूह की वर्तमान में स्वीकृति हुई है। सूची आश्चर्यजनक रूप से बड़े अंतरों पर टिप्पणी करती है, और तथ्य यह है कि मूल फ्लेचर-मुनसन रूपरेखा रॉबिन्सन-डैडसन की तुलना में वर्तमान के परिणामों के साथ उत्तम समझौते में हैं, जो विशेष रूप से कम-आवृत्ति में 10-15 डीबी तक भिन्न दिखाई देते हैं। क्षेत्र, कारणों की व्याख्या नहीं की गई थी।<ref>Yôiti Suzuki, et al., [http://www.nedo.go.jp/itd/grant-e/report/00pdf/is-01e.pdf "Precise and Full-range Determination of Two-dimensional Equal Loudness Contours"] {{webarchive|url=https://web.archive.org/web/20070927210848/http://www.nedo.go.jp/itd/grant-e/report/00pdf/is-01e.pdf |date=2007-09-27 }}.</ref>


आईएसओ सूची के अनुसार, रॉबिन्सन-डैडसन के परिणाम विषम थे, फ्लेचर-मुनसन वक्रों की तुलना में वर्तमान मानक से अधिक भिन्न थे। सूची में कहा गया है कि यह सौभाग्य की बात है कि 40-फोन फ्लेचर-मुन्सन वक्र, जिस पर [[ए-भार]] मानक आधारित था, आधुनिक निर्धारणों के अनुरूप निकला है।<ref name="ISO 226" />
आईएसओ सूची के अनुसार, रॉबिन्सन-डैडसन के परिणाम विषम थे, फ्लेचर-मुनसन वक्रों की तुलना में वर्तमान मानक से अधिक भिन्न थे। सूची में कहा गया है कि यह सौभाग्य की बात है कि 40-फोन फ्लेचर-मुन्सन वक्र, जिस पर [[ए-भार]] मानक आधारित था, आधुनिक निर्धारणों के अनुरूप निकला है।<ref name="ISO 226" />
Line 36: Line 36:


== पार्श्व बनाम ललाट प्रस्तुति ==
== पार्श्व बनाम ललाट प्रस्तुति ==
यथोचित दूर के स्रोत से वास्तविक जीवन की ध्वनियाँ तलीय तरंगों के रूप में आती हैं। यदि ध्वनि का स्रोत सीधे श्रोता के सामने है, तो दोनों कानों को समान तीव्रता प्राप्त होती है, किन्तु लगभग 1 kHz से ऊपर की आवृत्तियों पर कान नहर में प्रवेश करने वाली ध्वनि आंशिक रूप से [[ सिर की छाया |सिर की छाया]] द्वारा कम हो जाती है, और साथ ही परावर्तन पर अत्यधिक निर्भर होती है। पिन्ना (शरीर रचना) (बाहरी कान)। ऑफ-सेंटर ध्वनियों के परिणामस्वरूप कान पर सिर का आवरण बढ़ जाता है, और पिन्ना के प्रभाव में सूक्ष्म परिवर्तन होता है, विशेष रूप से दूसरे कान में हेड-मास्किंग और पिन्ना प्रतिबिंब के इस संयुक्त प्रभाव को त्रि-आयामी अंतरिक्ष में घटता के समूह में परिमाणित किया जाता है जिसे [[सिर से संबंधित स्थानांतरण समारोह]] (एचआरटीएफ) कहा जाता है। समान-ज़ोर की रूपरेखा प्राप्त करते समय ललाट प्रस्तुति को अब उत्तम माना जाता है, और नवीनतम आईएसओ मानक विशेष रूप से ललाट और केंद्रीय प्रस्तुति पर आधारित है।
यथोचित दूर के स्रोत से वास्तविक जीवन की ध्वनियाँ तलीय तरंगों के रूप में आती हैं। यदि ध्वनि का स्रोत सीधे श्रोता के सामने है, तो दोनों कानों को समान तीव्रता प्राप्त होती है, किन्तु लगभग 1 किलोहर्ट्ज़ से ऊपर की आवृत्तियों पर कान नहर में प्रवेश करने वाली ध्वनि आंशिक रूप से [[ सिर की छाया |सिर की छाया]] द्वारा कम हो जाती है, और साथ ही परावर्तन पर अत्यधिक निर्भर होती है। पिन्ना (शरीर रचना) (बाहरी कान)। ऑफ-सेंटर ध्वनियों के परिणामस्वरूप कान पर सिर का आवरण बढ़ जाता है, और पिन्ना के प्रभाव में सूक्ष्म परिवर्तन होता है, विशेष रूप से दूसरे कान में हेड-मास्किंग और पिन्ना प्रतिबिंब के इस संयुक्त प्रभाव को त्रि-आयामी अंतरिक्ष में घटता के समूह में परिमाणित किया जाता है जिसे [[सिर से संबंधित स्थानांतरण समारोह]] (एचआरटीएफ) कहा जाता है। समान-ज़ोर की रूपरेखा प्राप्त करते समय ललाट प्रस्तुति को अब उत्तम माना जाता है, और नवीनतम आईएसओ मानक विशेष रूप से ललाट और केंद्रीय प्रस्तुति पर आधारित है।


क्योंकि सामान्य हेडफ़ोन सुनने में कोई एचआरटीएफ सम्मिलित नहीं है, हेडफ़ोन का उपयोग करके प्राप्त समान-प्रबलता वक्र केवल उस विशेष स्थिति के लिए मान्य हैं जिसे ललाट प्रस्तुति कहा जाता है, जो कि हम सामान्य रूप से नहीं सुनते हैं।
क्योंकि सामान्य हेडफ़ोन सुनने में कोई एचआरटीएफ सम्मिलित नहीं है, हेडफ़ोन का उपयोग करके प्राप्त समान-प्रबलता वक्र केवल उस विशेष स्थिति के लिए मान्य हैं जिसे ललाट प्रस्तुति कहा जाता है, जो कि हम सामान्य रूप से नहीं सुनते हैं।
Line 45: Line 45:
अच्छे हेडफ़ोन, कान के लिए अच्छी तरह से सील, उच्च तीव्रता पर भी कम विरूपण के साथ, कान नहर को समतल कम आवृत्ति दबाव प्रतिक्रिया प्रदान करते हैं। कम आवृत्तियों पर, कान विशुद्ध रूप से दबाव के प्रति संवेदनशील होता है, और हेडफ़ोन और कान के बीच बनी गुहा संशोधित अनुनादों को प्रस्तुत करने के लिए बहुत छोटी होती है। इसलिए, हेडफ़ोन परीक्षण लगभग 500 हर्ट्ज के नीचे समान-प्रबलता समोच्च प्राप्त करने का अच्छा विधि है, चूँकि श्रवण की वास्तविक सीमा का निर्धारण करते समय हेडफ़ोन माप की वैधता के बारे में आरक्षण व्यक्त किया गया है, जो इस अवलोकन पर आधारित है कि ईयर कैनाल को बंद करने से उत्पन्न होता है। कान के अंदर रक्त प्रवाह की ध्वनि के प्रति संवेदनशीलता बढ़ जाती है, जिसे मस्तिष्क सामान्य सुनने की स्थिति में छिपा लेता है। उच्च आवृत्तियों पर, हेडफ़ोन माप अविश्वसनीय हो जाता है, और पिनी (बाहरी कान) और कान नहरों के विभिन्न अनुनाद हेडफ़ोन गुहा से निकटता से गंभीर रूप से प्रभावित होते हैं।
अच्छे हेडफ़ोन, कान के लिए अच्छी तरह से सील, उच्च तीव्रता पर भी कम विरूपण के साथ, कान नहर को समतल कम आवृत्ति दबाव प्रतिक्रिया प्रदान करते हैं। कम आवृत्तियों पर, कान विशुद्ध रूप से दबाव के प्रति संवेदनशील होता है, और हेडफ़ोन और कान के बीच बनी गुहा संशोधित अनुनादों को प्रस्तुत करने के लिए बहुत छोटी होती है। इसलिए, हेडफ़ोन परीक्षण लगभग 500 हर्ट्ज के नीचे समान-प्रबलता समोच्च प्राप्त करने का अच्छा विधि है, चूँकि श्रवण की वास्तविक सीमा का निर्धारण करते समय हेडफ़ोन माप की वैधता के बारे में आरक्षण व्यक्त किया गया है, जो इस अवलोकन पर आधारित है कि ईयर कैनाल को बंद करने से उत्पन्न होता है। कान के अंदर रक्त प्रवाह की ध्वनि के प्रति संवेदनशीलता बढ़ जाती है, जिसे मस्तिष्क सामान्य सुनने की स्थिति में छिपा लेता है। उच्च आवृत्तियों पर, हेडफ़ोन माप अविश्वसनीय हो जाता है, और पिनी (बाहरी कान) और कान नहरों के विभिन्न अनुनाद हेडफ़ोन गुहा से निकटता से गंभीर रूप से प्रभावित होते हैं।


वक्ताओं के साथ, विपरीत सच है। समतल निम्न-आवृत्ति प्रतिक्रिया प्राप्त करना कठिन है—जमीन के ऊपर मुक्त स्थान को छोड़कर, या बहुत बड़े और अप्रतिध्वनिक कक्ष में जो 20 Hz तक के प्रतिबिंबों से मुक्त है। वर्तमान ही तक, कुल हार्मोनिक विरूपण के उच्च स्तर के बिना 20 हर्ट्ज तक की आवृत्तियों पर उच्च स्तर प्राप्त करना संभव नहीं था। आज भी, सबसे अच्छे वक्ताओं के कुल हार्मोनिक विरूपण का लगभग 1 से 3% उत्पन्न होने की संभावना है, जो मूल से 30 से 40 dB कम है। लगभग 100 हर्ट्ज से कम समान-प्रबलता वक्रों द्वारा प्रकट आवृत्ति के साथ प्रबलता में अत्यधिक वृद्धि (24 dB प्रति सप्तक तक) को देखते हुए यह पर्याप्त नहीं है। अच्छे प्रयोगकर्ता को यह सुनिश्चित करना चाहिए कि परीक्षण विषय वास्तव में मौलिक और हार्मोनिक्स नहीं सुनते हैं - विशेष रूप से तीसरा हार्मोनिक, जो विशेष रूप से शक्तिशाली होता है क्योंकि स्पीकर शंकु की यात्रा सीमित हो जाती है क्योंकि इसका निलंबन अनुपालन की सीमा तक पहुंच जाता है। समस्या को हल करने का संभावित विधि ध्वनिक प्रकीर्णन का उपयोग करना है, जैसे स्पीकर सेटअप में गुंजयमान गुहा द्वारा दूसरी ओर, 20 kHz तक समतल मुक्त क्षेत्र उच्च-आवृत्ति प्रतिक्रिया, आधुनिक स्पीकर पर अक्ष के साथ तुलनात्मक रूप से आसान है। समान-ज़ोर की रूपरेखाओं को मापने के विभिन्न प्रयासों के परिणामों की तुलना करते समय इन प्रभावों पर विचार किया जाना चाहिए।
वक्ताओं के साथ, विपरीत सच है। समतल निम्न-आवृत्ति प्रतिक्रिया प्राप्त करना कठिन है—जमीन के ऊपर मुक्त स्थान को छोड़कर, या बहुत बड़े और अप्रतिध्वनिक कक्ष में जो 20 हर्ट्ज़ तक के प्रतिबिंबों से मुक्त है। वर्तमान ही तक, कुल हार्मोनिक विरूपण के उच्च स्तर के बिना 20 हर्ट्ज तक की आवृत्तियों पर उच्च स्तर प्राप्त करना संभव नहीं था। आज भी, सबसे अच्छे वक्ताओं के कुल हार्मोनिक विरूपण का लगभग 1 से 3% उत्पन्न होने की संभावना है, जो मूल से 30 से 40 डीबी कम है। लगभग 100 हर्ट्ज से कम समान-प्रबलता वक्रों द्वारा प्रकट आवृत्ति के साथ प्रबलता में अत्यधिक वृद्धि (24 डीबी प्रति सप्तक तक) को देखते हुए यह पर्याप्त नहीं है। अच्छे प्रयोगकर्ता को यह सुनिश्चित करना चाहिए कि परीक्षण विषय वास्तव में मौलिक और हार्मोनिक्स नहीं सुनते हैं - विशेष रूप से तीसरा हार्मोनिक, जो विशेष रूप से शक्तिशाली होता है क्योंकि स्पीकर शंकु की यात्रा सीमित हो जाती है क्योंकि इसका निलंबन अनुपालन की सीमा तक पहुंच जाता है। समस्या को हल करने का संभावित विधि ध्वनिक प्रकीर्णन का उपयोग करना है, जैसे स्पीकर सेटअप में गुंजयमान गुहा द्वारा दूसरी ओर, 20 किलोहर्ट्ज़ तक समतल मुक्त क्षेत्र उच्च-आवृत्ति प्रतिक्रिया, आधुनिक स्पीकर पर अक्ष के साथ तुलनात्मक रूप से आसान है। समान-ज़ोर की रूपरेखाओं को मापने के विभिन्न प्रयासों के परिणामों की तुलना करते समय इन प्रभावों पर विचार किया जाना चाहिए।


== ध्वनि स्तर और [[शोर माप|ध्वनि माप]] के लिए प्रासंगिकता ==
== ध्वनि स्तर और [[शोर माप|ध्वनि माप]] के लिए प्रासंगिकता ==
ध्वनि माप के लिए व्यापक उपयोग में ए-प्रतीक्षा वक्र-कहा जाता है कि यह 40-फोन फ्लेचर-मुनसन वक्र पर आधारित है। चूँकि , 1960 के दशक में किए गए शोध ने प्रदर्शित किया कि शुद्ध स्वरों का उपयोग करके किए गए समान-ज़ोर के निर्धारण ध्वनि की हमारी धारणा के लिए सीधे प्रासंगिक नहीं हैं।<ref>Bauer, B., Torick, E., [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=1161864&isnumber=26056 "Researches in loudness measurement"], ''IEEE Transactions on Audio and Electroacoustics'', Vol. 14:3 (Sep 1966), pp.141–151.</ref> ऐसा इसलिए है क्योंकि हमारे आंतरिक कान में कोक्लीअ वर्णक्रमीय सामग्री के संदर्भ में ध्वनि का विश्लेषण करता है, प्रत्येक बाल-कोशिका महत्वपूर्ण बैंड के रूप में जानी जाने वाली आवृत्तियों के संकीर्ण बैंड का उत्तर देती है। उच्च-आवृत्ति बैंड कम-आवृत्ति बैंड की तुलना में पूर्ण रूप [[से]] व्यापक हैं, और इसलिए ध्वनि स्रोत से आनुपातिक रूप से अधिक शक्ति एकत्र करते हैं। चूँकि , जब से अधिक महत्वपूर्ण बैंड को उत्तेजित किया जाता है, तो मस्तिष्क के संकेत विभिन्न बैंडों को जोड़ देते हैं जिससे जोर की छाप उत्पन्न हो सके। इन कारणों से नॉइज़ बैंड का उपयोग करके प्राप्त किए गए समान-प्रबलता वक्र, शुद्ध टोन का उपयोग करके प्राप्त किए गए वक्रों की तुलना में 1 kHz से ऊपर की ओर झुकाव और 1 kHz से नीचे की ओर झुकाव दिखाते हैं।
ध्वनि माप के लिए व्यापक उपयोग में ए-प्रतीक्षा वक्र-कहा जाता है कि यह 40-फोन फ्लेचर-मुनसन वक्र पर आधारित है। चूँकि , 1960 के दशक में किए गए शोध ने प्रदर्शित किया कि शुद्ध स्वरों का उपयोग करके किए गए समान-ज़ोर के निर्धारण ध्वनि की हमारी धारणा के लिए सीधे प्रासंगिक नहीं हैं।<ref>Bauer, B., Torick, E., [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=1161864&isnumber=26056 "Researches in loudness measurement"], ''IEEE Transactions on Audio and Electroacoustics'', Vol. 14:3 (Sep 1966), pp.141–151.</ref> ऐसा इसलिए है क्योंकि हमारे आंतरिक कान में कोक्लीअ वर्णक्रमीय सामग्री के संदर्भ में ध्वनि का विश्लेषण करता है, प्रत्येक बाल-कोशिका महत्वपूर्ण बैंड के रूप में जानी जाने वाली आवृत्तियों के संकीर्ण बैंड का उत्तर देती है। उच्च-आवृत्ति बैंड कम-आवृत्ति बैंड की तुलना में पूर्ण रूप [[से]] व्यापक हैं, और इसलिए ध्वनि स्रोत से आनुपातिक रूप से अधिक शक्ति एकत्र करते हैं। चूँकि , जब से अधिक महत्वपूर्ण बैंड को उत्तेजित किया जाता है, तो मस्तिष्क के संकेत विभिन्न बैंडों को जोड़ देते हैं जिससे जोर की छाप उत्पन्न हो सके। इन कारणों से नॉइज़ बैंड का उपयोग करके प्राप्त किए गए समान-प्रबलता वक्र, शुद्ध टोन का उपयोग करके प्राप्त किए गए वक्रों की तुलना में 1 किलोहर्ट्ज़ से ऊपर की ओर झुकाव और 1 किलोहर्ट्ज़ से नीचे की ओर झुकाव दिखाते हैं।


1960 के दशक में, विशेष रूप से [[ऑडियो गुणवत्ता माप]]न के लिए DIN 4550 मानक के भाग के रूप में, विभिन्न [[भार वक्र]] प्राप्त किए गए थे, जो A-भार वक्र से भिन्न थे, जो लगभग 6 kHz के अधिक शिखर को दर्शाता है। ये ऑडियो उपकरणों पर ध्वनि का अधिक सार्थक व्यक्तिपरक माप प्रदान करते हैं, विशेष रूप से [[ DOLBY |डॉल्बी]] ध्वनि में कमी के साथ नए आविष्कार किए गए [[कॉम्पैक्ट कैसेट]] टेप अभिलेखी पर, जो उच्च आवृत्तियों के प्रभुत्व वाले ध्वनि स्पेक्ट्रम की विशेषता थी।
1960 के दशक में, विशेष रूप से [[ऑडियो गुणवत्ता माप]]न के लिए डीआईएन 4550 मानक के भाग के रूप में, विभिन्न [[भार वक्र]] प्राप्त किए गए थे, -भार वक्र से भिन्न थे, जो लगभग 6 किलोहर्ट्ज़ के अधिक शिखर को दर्शाता है। ये ऑडियो उपकरणों पर ध्वनि का अधिक सार्थक व्यक्तिपरक माप प्रदान करते हैं, विशेष रूप से [[ DOLBY |डॉल्बी]] ध्वनि में कमी के साथ नए आविष्कार किए गए [[कॉम्पैक्ट कैसेट]] टेप अभिलेखी पर, जो उच्च आवृत्तियों के प्रभुत्व वाले ध्वनि स्पेक्ट्रम की विशेषता थी।


[[बीबीसी रिसर्च|बीबीसी शोध]] ने प्रसारण उपकरणों में ध्वनि को मापते समय उपयोग के लिए सबसे अच्छा प्रतीक्षा कर्व और सुधारक संयोजन खोजने के प्रयास में श्रवण परीक्षण किया, टोन के अतिरिक्त ध्वनि के संदर्भ में विभिन्न नए प्रतीक्षा वक्र की जांच की थी, यह पुष्टि करते हुए कि वे ए की तुलना में बहुत अधिक वैध थे। ध्वनि की व्यक्तिपरक प्रबलता को मापने का प्रयास करते समय भारित करना है। इस कार्य ने स्वर-विस्फोट, क्लिक, [[गुलाबी शोर|गुलाबी]] ध्वनि और कई अन्य ध्वनियों के लिए मानव सुनवाई की प्रतिक्रिया की भी जांच की थी, जो उनके संक्षिप्त आवेगी स्वभाव के कारण कान और मस्तिष्क को प्रतिक्रिया देने के लिए पर्याप्त समय नहीं देते हैं। परिणाम बीबीसी शोध सूची EL-17 1968/8 में ऑडियो आवृत्ति परिपथ में ध्वनि का आकलन शीर्षक से सूची किए गए थे।
[[बीबीसी रिसर्च|बीबीसी शोध]] ने प्रसारण उपकरणों में ध्वनि को मापते समय उपयोग के लिए सबसे अच्छा प्रतीक्षा कर्व और सुधारक संयोजन खोजने के प्रयास में श्रवण परीक्षण किया, टोन के अतिरिक्त ध्वनि के संदर्भ में विभिन्न नए प्रतीक्षा वक्र की जांच की थी, यह पुष्टि करते हुए कि वे ए की तुलना में बहुत अधिक वैध थे। ध्वनि की व्यक्तिपरक प्रबलता को मापने का प्रयास करते समय भारित करना है। इस कार्य ने स्वर-विस्फोट, क्लिक, [[गुलाबी शोर|गुलाबी]] ध्वनि और कई अन्य ध्वनियों के लिए मानव सुनवाई की प्रतिक्रिया की भी जांच की थी, जो उनके संक्षिप्त आवेगी स्वभाव के कारण कान और मस्तिष्क को प्रतिक्रिया देने के लिए पर्याप्त समय नहीं देते हैं। परिणाम बीबीसी शोध सूची ईएल-17 1968/8 में ऑडियो आवृत्ति परिपथ में ध्वनि का आकलन शीर्षक से सूची किए गए थे।


आईटीयू-R 468 नॉइज़ प्रतीक्षा कर्व, मूल रूप से धूमकेतु सलाहकार इंटरनेशनल पोर ला रेडियो पक्षसमर्थन 468 में प्रस्तावित था, किन्तु बाद में कई मानक निकायों ([[इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन]], [[ब्रिटिश मानक संस्थान]], [[जापानी औद्योगिक मानक]], [[अंतर्राष्ट्रीय दूरसंचार संघ]]) द्वारा अपनाया गया था, जो शोध पर आधारित था। , और शॉर्ट बर्स्ट और क्लिक के प्रति हमारी कम संवेदनशीलता को ध्यान में रखते हुए विशेष [[अर्ध-शिखर डिटेक्टर|अर्ध-शिखर संसूचक]] सम्मिलित करता है।<ref>Ken’ichiro Masaoka, Kazuho Ono, and Setsu Komiyama, [https://www.jstage.jst.go.jp/article/ast/22/1/22_1_35/_article/-char/en "A measurement of equal-loudness level contours for tone burst"], ''Acoustical Science and Technology'', Vol. 22 (2001), No. 1 pp.35–39.</ref> प्रसारकों और ऑडियो कुशल द्वारा इसका व्यापक रूप से उपयोग किया जाता है जब वे प्रसारण पथ और ऑडियो उपकरण पर ध्वनि को मापते हैं, इसलिए वे अलग-अलग ध्वनि स्पेक्ट्रा और विशेषताओं के साथ उपकरण प्रकारों की तुलना कर सकते हैं।
आईटीयू-आर 468 नॉइज़ प्रतीक्षा कर्व, मूल रूप से धूमकेतु सलाहकार इंटरनेशनल पोर ला रेडियो पक्षसमर्थन 468 में प्रस्तावित था, किन्तु बाद में कई मानक निकायों ([[इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन]], [[ब्रिटिश मानक संस्थान]], [[जापानी औद्योगिक मानक]], [[अंतर्राष्ट्रीय दूरसंचार संघ]]) द्वारा अपनाया गया था, जो शोध पर आधारित था। , और शॉर्ट बर्स्ट और क्लिक के प्रति हमारी कम संवेदनशीलता को ध्यान में रखते हुए विशेष [[अर्ध-शिखर डिटेक्टर|अर्ध-शिखर संसूचक]] सम्मिलित करता है।<ref>Ken’ichiro Masaoka, Kazuho Ono, and Setsu Komiyama, [https://www.jstage.jst.go.jp/article/ast/22/1/22_1_35/_article/-char/en "A measurement of equal-loudness level contours for tone burst"], ''Acoustical Science and Technology'', Vol. 22 (2001), No. 1 pp.35–39.</ref> प्रसारकों और ऑडियो कुशल द्वारा इसका व्यापक रूप से उपयोग किया जाता है जब वे प्रसारण पथ और ऑडियो उपकरण पर ध्वनि को मापते हैं, इसलिए वे अलग-अलग ध्वनि स्पेक्ट्रा और विशेषताओं के साथ उपकरण प्रकारों की तुलना कर सकते हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 12:59, 23 April 2023

Equalआईएसओ 226:2003 से -लाउडनेस कंटूर मूल आईएसओ मानक के साथ दिखाया गया है।
मानकीकरण के लिए अंतर्राष्ट्रीय संगठन हर्ट्ज में आवृत्ति के साथ समान-प्रबलता समोच्च ।

एक समान- प्रबलता समोच्च आवृत्ति स्पेक्ट्रम पर ध्वनि दबाव स्तर का माप है, जिसके लिए शुद्ध स्थिर टोन के साथ प्रस्तुत किए जाने पर श्रोता निरंतर ज़ोर का अनुभव करता है।[1] ध्वनि के स्तर को मापने की इकाई फोन है और इसे समान तीव्रता की रूपरेखा के संदर्भ में प्राप्त किया जाता है। परिभाषा के अनुसार, अलग-अलग आवृत्तियों की दो साइन तरंगों को फोन में मापा गया समान-प्रबलता स्तर कहा जाता है, अगर उन्हें औसत युवा व्यक्ति द्वारा महत्वपूर्ण सुनवाई हानि के बिना समान रूप से जोर से माना जाता है।

फ्लेचर-मुनसन वक्र मानव कान के लिए समान-प्रबलता समोच्च के कई समुहो में से हैं, जिसे हार्वे फ्लेचर और वाइल्डन ए. मुनसन द्वारा प्रयोगात्मक रूप से निर्धारित किया गया था, और 1933 में प्रबलता , इसकी परिभाषा, माप और गणना शीर्षक वाले पेपर में सूची किया गया था। अमेरिका की एकॉस्टिकल सोसायटी का जर्नल[2] फ्लेचर-मुनसन वक्रों को हटा दिया गया है और नए मानकों में सम्मिलित किया गया है। निश्चित वक्र वे हैं जो मानकीकरण के लिए अंतर्राष्ट्रीय संगठन से आईएसओ 226 में परिभाषित हैं, जो विभिन्न देशों में किए गए आधुनिक निर्धारणों की समीक्षा पर आधारित हैं।

एम्पलीफायरों में अधिकांशतः प्रबलता बटन होता है, जिसे विधि रूप से प्रबलता क्षतिपूर्ति के रूप में जाना जाता है, जो ध्वनि के कम और उच्च आवृत्ति वाले घटकों को बढ़ाता है। इनका उद्देश्य उन आवृत्तियों पर विशेष रूप से कम मात्रा के स्तर पर स्पष्ट जोर से गिरावट को ऑफसेट करना है। इन आवृत्तियों को बढ़ावा देने से चापलूसी समान-जोरदार समोच्च उत्पन्न होता है जो कम मात्रा में भी जोर से दिखाई देता है, कथित ध्वनि को मध्य-आवृत्तियों पर प्रभाव होने से रोकता है जहां कान सबसे संवेदनशील होते हैं।

फ्लेचर-मुनसन वक्र

Lindos4.svg

1933 में कान विभिन्न स्तरों पर विभिन्न आवृत्तियों को कैसे सुनता है, इस विषय पर पहला शोध फ्लेचर और मुनसन द्वारा आयोजित किया गया था। 1956 में रॉबिन्सन और डैडसन द्वारा पुन: निर्धारण किया गया, जो आईएसओ 226 मानक का आधार बना है ।

अब सामान्य शब्द इक्वल-प्रबलता कॉन्ट्रोवर्स का उपयोग करना उत्तम है, जिनमें से फ्लेचर-मुनसन वक्र अब उप-समूह हैं,[3] और विशेष रूप से आईएसओ द्वारा 2003 के सर्वेक्षण के बाद से नए मानक में घटता को फिर से परिभाषित किया गया है ।[4]


प्रायोगिक निर्धारण

मानव श्रवण प्रणाली लगभग 20 हेटर्स से अधिकतम लगभग 20,000 हर्ट्ज़ की आवृत्तियों के प्रति संवेदनशील है, चूँकि उम्र के साथ सुनने की ऊपरी सीमा कम हो जाती है। इस सीमा के अंदर, मानव कान 2 और 5 किलोहर्ट्ज़ के बीच सबसे अधिक संवेदनशील होता है, मुख्य रूप से कान नहर की प्रतिध्वनि और मध्य कान के अस्थि-पंजर के स्थानांतरण कार्य के कारण होता है।

फ्लेचर और मुनसन ने सबसे पहले हेडफोन (1933) का उपयोग करके समान-प्रबलता समोच्च को मापा जाता है। अपने अध्ययन में, परीक्षण के विषयों ने विभिन्न आवृत्तियों पर शुद्ध स्वरों को सुना और प्रोत्साहन तीव्रता में 10 डीबी से अधिक वृद्धि की प्रत्येक आवृत्ति और तीव्रता के लिए, श्रोता ने 1000 हर्ट्ज पर संदर्भ टोन भी सुना है। फ्लेचर और मुनसन ने संदर्भ स्वर को तब तक समायोजित किया जब तक कि श्रोता को यह नहीं लग गया कि यह परीक्षण स्वर के समान ही है। प्रबलता, मनोवैज्ञानिक मात्रा होने के कारण, मापना कठिन है, इसलिए उचित औसत प्राप्त करने के लिए फ्लेचर और मुनसन ने कई परीक्षण विषयों पर अपने परिणामों का औसत निकाला जाता है। सबसे कम समान-प्रबलता समोच्च सबसे शांत श्रव्य स्वर का प्रतिनिधित्व करता है - सुनने की पूर्ण सीमा उच्चतम समोच्च दर्द की दहलीज है।

चर्चर और किंग ने 1937 में दूसरा दृढ़ संकल्प किया, किन्तु उनके परिणाम और फ्लेचर और मुनसन ने श्रवण आरेख के कुछ भाग में काफी विसंगतियां दिखाईं।[5]

1956 में रॉबिन्सन-डैडसन वक्र ने नया प्रायोगिक दृढ़ संकल्प प्रस्तुत किया, जिसके बारे में उनका मानना ​​था कि यह अधिक स्पष्ट था। यह मानक (आईएसओ 226) का आधार बन गया जिसे 2003 तक निश्चित माना गया जब आईएसओ ने दुनिया भर के अनुसंधान समूहों द्वारा वर्तमान के आकलन के आधार पर मानक को संशोधित किया है ।

अधिक स्पष्ट निर्धारण के उद्देश्य से हालिया संशोधन - आईएसओ 226: 2003

प्रारंभिक और अधिक वर्तमान के निर्धारणों के बीच कथित विसंगतियों ने आईएसओ 226 में मानक घटता को संशोधित करने के लिए अंतर्राष्ट्रीय मानकीकरण संगठन (आईएसओ) का नेतृत्व किया गया। उन्होंने ऐसा विद्युत संचार अनुसंधान संस्थान, तोहोकू विश्वविद्यालय, जापान द्वारा समन्वित अध्ययन में पक्षसमर्थन के उत्तर में किया था। जापान, जर्मनी, डेनमार्क, यूके और यूएस के शोधकर्ताओं द्वारा किए गए कई अध्ययनों के परिणामों को मिलाकर अध्ययन ने नए कर्व बनाए गये। (लगभग 40% डेटा के साथ जापान का सबसे बड़ा योगदानकर्ता था।)

इसके परिणामस्वरूप आईएसओ 226:2003 के रूप में मानकीकृत वक्र के नए समूह की वर्तमान में स्वीकृति हुई है। सूची आश्चर्यजनक रूप से बड़े अंतरों पर टिप्पणी करती है, और तथ्य यह है कि मूल फ्लेचर-मुनसन रूपरेखा रॉबिन्सन-डैडसन की तुलना में वर्तमान के परिणामों के साथ उत्तम समझौते में हैं, जो विशेष रूप से कम-आवृत्ति में 10-15 डीबी तक भिन्न दिखाई देते हैं। क्षेत्र, कारणों की व्याख्या नहीं की गई थी।[6]

आईएसओ सूची के अनुसार, रॉबिन्सन-डैडसन के परिणाम विषम थे, फ्लेचर-मुनसन वक्रों की तुलना में वर्तमान मानक से अधिक भिन्न थे। सूची में कहा गया है कि यह सौभाग्य की बात है कि 40-फोन फ्लेचर-मुन्सन वक्र, जिस पर ए-भार मानक आधारित था, आधुनिक निर्धारणों के अनुरूप निकला है।[4]

सूची कम आवृत्ति वाले क्षेत्र में दिखाई देने वाले बड़े अंतरों पर भी टिप्पणी करती है, जिनकी व्याख्या नहीं की जा सकी है। संभावित स्पष्टीकरण हैं:[4]

  • उपयोग किए गए उपकरण ठीक से कैलिब्रेट नहीं किए गए थे।
  • अलग-अलग आवृत्ति पर एकसमान प्रबलता को जज करने के लिए उपयोग किए जाने वाले मानदंड अलग-अलग थे।
  • विषयों को पहले से दिनों के लिए ठीक से आराम नहीं दिया गया था, या परीक्षण के लिए यात्रा करने में जोर ध्वनि से अवगत कराया गया था, जो कम आवृत्ति यांत्रिक युग्मन को नियंत्रित करने वाले टेंसर टाइम्पानी और स्टेपेडियस मांसपेशियों को तंग करता था।

पार्श्व बनाम ललाट प्रस्तुति

यथोचित दूर के स्रोत से वास्तविक जीवन की ध्वनियाँ तलीय तरंगों के रूप में आती हैं। यदि ध्वनि का स्रोत सीधे श्रोता के सामने है, तो दोनों कानों को समान तीव्रता प्राप्त होती है, किन्तु लगभग 1 किलोहर्ट्ज़ से ऊपर की आवृत्तियों पर कान नहर में प्रवेश करने वाली ध्वनि आंशिक रूप से सिर की छाया द्वारा कम हो जाती है, और साथ ही परावर्तन पर अत्यधिक निर्भर होती है। पिन्ना (शरीर रचना) (बाहरी कान)। ऑफ-सेंटर ध्वनियों के परिणामस्वरूप कान पर सिर का आवरण बढ़ जाता है, और पिन्ना के प्रभाव में सूक्ष्म परिवर्तन होता है, विशेष रूप से दूसरे कान में हेड-मास्किंग और पिन्ना प्रतिबिंब के इस संयुक्त प्रभाव को त्रि-आयामी अंतरिक्ष में घटता के समूह में परिमाणित किया जाता है जिसे सिर से संबंधित स्थानांतरण समारोह (एचआरटीएफ) कहा जाता है। समान-ज़ोर की रूपरेखा प्राप्त करते समय ललाट प्रस्तुति को अब उत्तम माना जाता है, और नवीनतम आईएसओ मानक विशेष रूप से ललाट और केंद्रीय प्रस्तुति पर आधारित है।

क्योंकि सामान्य हेडफ़ोन सुनने में कोई एचआरटीएफ सम्मिलित नहीं है, हेडफ़ोन का उपयोग करके प्राप्त समान-प्रबलता वक्र केवल उस विशेष स्थिति के लिए मान्य हैं जिसे ललाट प्रस्तुति कहा जाता है, जो कि हम सामान्य रूप से नहीं सुनते हैं।

रॉबिन्सन-डैडसन के निर्धारण में ध्वनि-विस्तारक यंत्र का उपयोग किया गया था, और लंबे समय तक फ्लेचर-मुनसन वक्र से अंतर को आंशिक रूप से इस आधार पर समझाया गया था कि बाद वाले हेडफ़ोन का उपयोग करते थे। चूँकि , आईएसओ सूची वास्तव में बाद वाले को क्षतिपूर्ति वाले हेडफ़ोन का उपयोग करने के रूप में सूचीबद्ध करती है, चूँकि यह स्पष्ट नहीं करता है कि रॉबिन्सन-डैडसन ने क्षतिपूर्ति कैसे प्राप्त किया था।

हेडफ़ोन बनाम लाउडस्पीकर परीक्षण

अच्छे हेडफ़ोन, कान के लिए अच्छी तरह से सील, उच्च तीव्रता पर भी कम विरूपण के साथ, कान नहर को समतल कम आवृत्ति दबाव प्रतिक्रिया प्रदान करते हैं। कम आवृत्तियों पर, कान विशुद्ध रूप से दबाव के प्रति संवेदनशील होता है, और हेडफ़ोन और कान के बीच बनी गुहा संशोधित अनुनादों को प्रस्तुत करने के लिए बहुत छोटी होती है। इसलिए, हेडफ़ोन परीक्षण लगभग 500 हर्ट्ज के नीचे समान-प्रबलता समोच्च प्राप्त करने का अच्छा विधि है, चूँकि श्रवण की वास्तविक सीमा का निर्धारण करते समय हेडफ़ोन माप की वैधता के बारे में आरक्षण व्यक्त किया गया है, जो इस अवलोकन पर आधारित है कि ईयर कैनाल को बंद करने से उत्पन्न होता है। कान के अंदर रक्त प्रवाह की ध्वनि के प्रति संवेदनशीलता बढ़ जाती है, जिसे मस्तिष्क सामान्य सुनने की स्थिति में छिपा लेता है। उच्च आवृत्तियों पर, हेडफ़ोन माप अविश्वसनीय हो जाता है, और पिनी (बाहरी कान) और कान नहरों के विभिन्न अनुनाद हेडफ़ोन गुहा से निकटता से गंभीर रूप से प्रभावित होते हैं।

वक्ताओं के साथ, विपरीत सच है। समतल निम्न-आवृत्ति प्रतिक्रिया प्राप्त करना कठिन है—जमीन के ऊपर मुक्त स्थान को छोड़कर, या बहुत बड़े और अप्रतिध्वनिक कक्ष में जो 20 हर्ट्ज़ तक के प्रतिबिंबों से मुक्त है। वर्तमान ही तक, कुल हार्मोनिक विरूपण के उच्च स्तर के बिना 20 हर्ट्ज तक की आवृत्तियों पर उच्च स्तर प्राप्त करना संभव नहीं था। आज भी, सबसे अच्छे वक्ताओं के कुल हार्मोनिक विरूपण का लगभग 1 से 3% उत्पन्न होने की संभावना है, जो मूल से 30 से 40 डीबी कम है। लगभग 100 हर्ट्ज से कम समान-प्रबलता वक्रों द्वारा प्रकट आवृत्ति के साथ प्रबलता में अत्यधिक वृद्धि (24 डीबी प्रति सप्तक तक) को देखते हुए यह पर्याप्त नहीं है। अच्छे प्रयोगकर्ता को यह सुनिश्चित करना चाहिए कि परीक्षण विषय वास्तव में मौलिक और हार्मोनिक्स नहीं सुनते हैं - विशेष रूप से तीसरा हार्मोनिक, जो विशेष रूप से शक्तिशाली होता है क्योंकि स्पीकर शंकु की यात्रा सीमित हो जाती है क्योंकि इसका निलंबन अनुपालन की सीमा तक पहुंच जाता है। समस्या को हल करने का संभावित विधि ध्वनिक प्रकीर्णन का उपयोग करना है, जैसे स्पीकर सेटअप में गुंजयमान गुहा द्वारा दूसरी ओर, 20 किलोहर्ट्ज़ तक समतल मुक्त क्षेत्र उच्च-आवृत्ति प्रतिक्रिया, आधुनिक स्पीकर पर अक्ष के साथ तुलनात्मक रूप से आसान है। समान-ज़ोर की रूपरेखाओं को मापने के विभिन्न प्रयासों के परिणामों की तुलना करते समय इन प्रभावों पर विचार किया जाना चाहिए।

ध्वनि स्तर और ध्वनि माप के लिए प्रासंगिकता

ध्वनि माप के लिए व्यापक उपयोग में ए-प्रतीक्षा वक्र-कहा जाता है कि यह 40-फोन फ्लेचर-मुनसन वक्र पर आधारित है। चूँकि , 1960 के दशक में किए गए शोध ने प्रदर्शित किया कि शुद्ध स्वरों का उपयोग करके किए गए समान-ज़ोर के निर्धारण ध्वनि की हमारी धारणा के लिए सीधे प्रासंगिक नहीं हैं।[7] ऐसा इसलिए है क्योंकि हमारे आंतरिक कान में कोक्लीअ वर्णक्रमीय सामग्री के संदर्भ में ध्वनि का विश्लेषण करता है, प्रत्येक बाल-कोशिका महत्वपूर्ण बैंड के रूप में जानी जाने वाली आवृत्तियों के संकीर्ण बैंड का उत्तर देती है। उच्च-आवृत्ति बैंड कम-आवृत्ति बैंड की तुलना में पूर्ण रूप से व्यापक हैं, और इसलिए ध्वनि स्रोत से आनुपातिक रूप से अधिक शक्ति एकत्र करते हैं। चूँकि , जब से अधिक महत्वपूर्ण बैंड को उत्तेजित किया जाता है, तो मस्तिष्क के संकेत विभिन्न बैंडों को जोड़ देते हैं जिससे जोर की छाप उत्पन्न हो सके। इन कारणों से नॉइज़ बैंड का उपयोग करके प्राप्त किए गए समान-प्रबलता वक्र, शुद्ध टोन का उपयोग करके प्राप्त किए गए वक्रों की तुलना में 1 किलोहर्ट्ज़ से ऊपर की ओर झुकाव और 1 किलोहर्ट्ज़ से नीचे की ओर झुकाव दिखाते हैं।

1960 के दशक में, विशेष रूप से ऑडियो गुणवत्ता मापन के लिए डीआईएन 4550 मानक के भाग के रूप में, विभिन्न भार वक्र प्राप्त किए गए थे, ए -भार वक्र से भिन्न थे, जो लगभग 6 किलोहर्ट्ज़ के अधिक शिखर को दर्शाता है। ये ऑडियो उपकरणों पर ध्वनि का अधिक सार्थक व्यक्तिपरक माप प्रदान करते हैं, विशेष रूप से डॉल्बी ध्वनि में कमी के साथ नए आविष्कार किए गए कॉम्पैक्ट कैसेट टेप अभिलेखी पर, जो उच्च आवृत्तियों के प्रभुत्व वाले ध्वनि स्पेक्ट्रम की विशेषता थी।

बीबीसी शोध ने प्रसारण उपकरणों में ध्वनि को मापते समय उपयोग के लिए सबसे अच्छा प्रतीक्षा कर्व और सुधारक संयोजन खोजने के प्रयास में श्रवण परीक्षण किया, टोन के अतिरिक्त ध्वनि के संदर्भ में विभिन्न नए प्रतीक्षा वक्र की जांच की थी, यह पुष्टि करते हुए कि वे ए की तुलना में बहुत अधिक वैध थे। ध्वनि की व्यक्तिपरक प्रबलता को मापने का प्रयास करते समय भारित करना है। इस कार्य ने स्वर-विस्फोट, क्लिक, गुलाबी ध्वनि और कई अन्य ध्वनियों के लिए मानव सुनवाई की प्रतिक्रिया की भी जांच की थी, जो उनके संक्षिप्त आवेगी स्वभाव के कारण कान और मस्तिष्क को प्रतिक्रिया देने के लिए पर्याप्त समय नहीं देते हैं। परिणाम बीबीसी शोध सूची ईएल-17 1968/8 में ऑडियो आवृत्ति परिपथ में ध्वनि का आकलन शीर्षक से सूची किए गए थे।

आईटीयू-आर 468 नॉइज़ प्रतीक्षा कर्व, मूल रूप से धूमकेतु सलाहकार इंटरनेशनल पोर ला रेडियो पक्षसमर्थन 468 में प्रस्तावित था, किन्तु बाद में कई मानक निकायों (इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन, ब्रिटिश मानक संस्थान, जापानी औद्योगिक मानक, अंतर्राष्ट्रीय दूरसंचार संघ) द्वारा अपनाया गया था, जो शोध पर आधारित था। , और शॉर्ट बर्स्ट और क्लिक के प्रति हमारी कम संवेदनशीलता को ध्यान में रखते हुए विशेष अर्ध-शिखर संसूचक सम्मिलित करता है।[8] प्रसारकों और ऑडियो कुशल द्वारा इसका व्यापक रूप से उपयोग किया जाता है जब वे प्रसारण पथ और ऑडियो उपकरण पर ध्वनि को मापते हैं, इसलिए वे अलग-अलग ध्वनि स्पेक्ट्रा और विशेषताओं के साथ उपकरण प्रकारों की तुलना कर सकते हैं।

यह भी देखें

टिप्पणियाँ

  1. Suzuki, Yôiti; Takeshima, Hisashi (2004). "प्योर टोन के लिए समान-लाउडनेस-स्तर की रूपरेखा". The Journal of the Acoustical Society of America. 116 (2): 918–933. Bibcode:2004ASAJ..116..918S. doi:10.1121/1.1763601. ISSN 0001-4966. PMID 15376658.
  2. Fletcher, H. and Munson, W.A. "Loudness, its definition, measurement and calculation", Journal of the Acoustical Society of America 5, 82–108 (1933).
  3. "Fletcher Munson Curve: The Equal Loudness Contour of Human Hearing". Ledger Note. 16 November 2017. Retrieved November 17, 2017.
  4. 4.0 4.1 4.2 ISO 226:2003 (PDF), archived from the original (PDF) on September 27, 2007
  5. D W Robinson et al., "A re-determination of the equal-loudness relations for pure tones", Br. J. Appl. Phys. 7 (1956), pp.166–181.
  6. Yôiti Suzuki, et al., "Precise and Full-range Determination of Two-dimensional Equal Loudness Contours" Archived 2007-09-27 at the Wayback Machine.
  7. Bauer, B., Torick, E., "Researches in loudness measurement", IEEE Transactions on Audio and Electroacoustics, Vol. 14:3 (Sep 1966), pp.141–151.
  8. Ken’ichiro Masaoka, Kazuho Ono, and Setsu Komiyama, "A measurement of equal-loudness level contours for tone burst", Acoustical Science and Technology, Vol. 22 (2001), No. 1 pp.35–39.


संदर्भ

  • Audio Engineer's Reference Book, 2nd Ed., 1999, edited Michael Talbot Smith, Focal Press.
  • An Introduction to the Psychology of Hearing 5th ed, Brian C.J. Moore, Elsevier Press.


बाहरी संबंध