सरल लाई बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Lie groups}}
{{Lie groups}}
बीजगणित में, सरल लाई बीजगणित एक लाई बीजगणित है जो एबेलियन लाई बीजगणित गैर-अबेलियन है और इसमें कोई गैर-शून्य उचित आदर्श नहीं है। वास्तविक सरल [[झूठ बीजगणित|लाई बीजगणित]] का वर्गीकरण [[विल्हेम हत्या|विल्हेम किलिंग]] और एली कार्टन की प्रमुख उपलब्धियों में से एक है।
बीजगणित में, साधारण लाई बीजगणित एक लाई बीजगणित है जो एबेलियन लाई बीजगणित गैर-अबेलियन है और इसमें कोई गैर-शून्य उचित आदर्श नहीं है। वास्तविक साधारण [[झूठ बीजगणित|लाई बीजगणित]] का वर्गीकरण [[विल्हेम हत्या|विल्हेम किलिंग]] और एली कार्टन की प्रमुख उपलब्धियों में से एक है।


साधारण लाई बीजगणित के प्रत्यक्ष योग को अर्धसरल लाई बीजगणित कहा जाता है।
साधारण लाई बीजगणित के प्रत्यक्ष योग को अर्ध-साधारण लाई बीजगणित कहा जाता है।


एक साधारण लाई समूह एक जुड़ा हुआ लाई समूह है जिसका लाई बीजगणित सरल है।
एक साधारण लाई समूह एक जुड़ा हुआ लाई समूह है जिसका लाई बीजगणित साधारण है।


== जटिल सरल लाई बीजगणित ==
== जटिल साधारण लाई बीजगणित ==
{{Main|मूल प्रक्रिया}}
{{Main|मूल प्रक्रिया}}


एक परिमित-आयामी सरल जटिल बीजगणित निम्नलिखित में से किसी के लिए समरूपी है: <math>\mathfrak{sl}_n \mathbb{C}</math>, <math>\mathfrak{so}_n \mathbb{C}</math>, <math>\mathfrak{sp}_{2n} \mathbb{C}</math> ([[शास्त्रीय झूठ बीजगणित|शास्त्रीय लाई बीजगणित]]) या पाँच [[असाधारण झूठ बीजगणित|असाधारण लाई बीजगणित]] में से एक है ।<ref>{{harvnb|Fulton|Harris|1991|loc=Theorem 9.26.}}</ref>
एक परिमित-आयामी साधारण जटिल बीजगणित निम्नलिखित में से किसी के लिए समरूपी है: <math>\mathfrak{sl}_n \mathbb{C}</math>, <math>\mathfrak{so}_n \mathbb{C}</math>, <math>\mathfrak{sp}_{2n} \mathbb{C}</math> ([[शास्त्रीय झूठ बीजगणित|मौलिक लाई बीजगणित]]) या पाँच [[असाधारण झूठ बीजगणित|असाधारण लाई बीजगणित]] में से एक है ।<ref>{{harvnb|Fulton|Harris|1991|loc=Theorem 9.26.}}</ref>


प्रत्येक परिमित-आयामी जटिल अर्ध-सरल बीजगणित <math>\mathfrak{g}</math> के लिए , संबंधित आरेख मौजूद है (जिसे [[डायनकिन आरेख]] कहा जाता है) जहां नोड्स सरल जड़ों को निरूपित करते हैं, नोड्स सरल जड़ों के बीच के कोणों के आधार पर कई पंक्तियों द्वारा जोड़ा जाता है  (या संयुक्त नहीं किआ जाता है) | सरल जड़ों और तीरों के बीच के कोणों के आधार पर  यह इंगित करने के लिए रखा जाता है  कि क्या जड़ें लंबी या छोटी हैं। <ref name="21.1.">{{harvnb|Fulton|Harris|1991|loc=§ 21.1.}}</ref> <math>\mathfrak{g}</math> का डायनकिन आरेख जुड़ा हुआ है अगर और केवल अगर  <math>\mathfrak{g}</math> साधारण है। सभी संभव कनेक्टेड डाइकिन डायग्राम निम्नलिखित हैं:<ref>{{harvnb|Fulton|Harris|1991|loc=§ 21.2.}}</ref>
प्रत्येक परिमित-आयामी जटिल अर्ध-साधारण बीजगणित <math>\mathfrak{g}</math> के लिए , संबंधित आरेख उपस्थित है (जिसे [[डायनकिन आरेख]] कहा जाता है) जहां नोड्स साधारण जड़ों को निरूपित करते हैं, नोड्स साधारण जड़ों के बीच के कोणों के आधार पर कई पंक्तियों द्वारा जोड़ा जाता है  (या संयुक्त नहीं किआ जाता है) | साधारण जड़ों और तीरों के बीच के कोणों के आधार पर  यह संकेत देने  के लिए रखा जाता है  कि क्या जड़ें लंबी या छोटी हैं। <ref name="21.1.">{{harvnb|Fulton|Harris|1991|loc=§ 21.1.}}</ref> <math>\mathfrak{g}</math> का डायनकिन आरेख जुड़ा हुआ है अगर और केवल अगर  <math>\mathfrak{g}</math> साधारण है। सभी संभव कनेक्टेड डाइकिन डायग्राम निम्नलिखित हैं:<ref>{{harvnb|Fulton|Harris|1991|loc=§ 21.2.}}</ref>
:[[File:Finite_Dynkin_diagrams.svg|डायनकिन डायग्राम|480px]]जहां n      जहां n नोड्स (सरल जड़ें) की संख्या है। आरेखों और जटिल सरल लाई बीजगणित का मिलान इस प्रकार है:<ref name="21.1." />
:[[File:Finite_Dynkin_diagrams.svg|डायनकिन डायग्राम|480px]]जहां n      जहां n नोड्स (साधारण जड़ें) की संख्या है। आरेखों और जटिल साधारण लाई बीजगणित का मिलान इस प्रकार है:<ref name="21.1." />
:(ए<sub>''n''</sub>) <math>\quad \mathfrak{sl}_{n+1} \mathbb{C}</math>
:(ए<sub>''n''</sub>) <math>\quad \mathfrak{sl}_{n+1} \mathbb{C}</math>
:(बी<sub>''n''</sub>) <math>\quad \mathfrak{so}_{2n+1} \mathbb{C}</math>
:(बी<sub>''n''</sub>) <math>\quad \mathfrak{so}_{2n+1} \mathbb{C}</math>
Line 19: Line 19:
:बाकी, असाधारण लाई बीजगणित।
:बाकी, असाधारण लाई बीजगणित।


== वास्तविक सरल लाई बीजगणित ==
== वास्तविक साधारण लाई बीजगणित ==
अगर <math>\mathfrak{g}_0</math> परिमित-आयामी वास्तविक सरल लाई बीजगणित है, इसकी जटिलता या तो (1) सरल या (2) एक साधारण जटिल लाई बीजगणित का  उत्पाद है और यह जटिल लाई बीजगणित का संयुग्म है। उदाहरण के लिए,<math>\mathfrak{sl}_n \mathbb{C}</math> की जटिलता  वास्तविक लाई बीजगणित के रूप में सोचा जाता है <math>\mathfrak{sl}_n \mathbb{C} \times \overline{\mathfrak{sl}_n \mathbb{C}}</math>. इस प्रकार, वास्तविक सरल लाई बीजगणित को जटिल सरल लाई बीजगणित और कुछ अतिरिक्त जानकारी के वर्गीकरण द्वारा वर्गीकृत किया जा सकता है। यह दावा आरेखों द्वारा किया जा सकता है जो डाइंकिन आरेखों का सामान्यीकरण करते हैं। वास्तविक सरल लाई बीजगणित की आंशिक सूची के लिए लाई समूहों की तालिका असली लाई बीजगणित भी देखें।
अगर <math>\mathfrak{g}_0</math> परिमित-आयामी वास्तविक साधारण लाई बीजगणित है, इसकी जटिलता या तो (1) साधारण या (2) एक साधारण जटिल लाई बीजगणित का  उत्पाद है और यह जटिल लाई बीजगणित का संयुग्म है। उदाहरण के लिए,<math>\mathfrak{sl}_n \mathbb{C}</math> की जटिलता  वास्तविक लाई बीजगणित के रूप में सोचा जाता है <math>\mathfrak{sl}_n \mathbb{C} \times \overline{\mathfrak{sl}_n \mathbb{C}}</math>. इस प्रकार, वास्तविक साधारण लाई बीजगणित को जटिल साधारण लाई बीजगणित और कुछ अतिरिक्त जानकारी के वर्गीकरण द्वारा वर्गीकृत किया जा सकता है। यह प्रमाणित आरेखों द्वारा किया जा सकता है जो डाइंकिन आरेखों का सामान्यीकरण करते हैं। वास्तविक साधारण लाई बीजगणित की आंशिक सूची के लिए लाई समूहों की तालिका असली लाई बीजगणित भी देखें।


'''बीजगणित कहा जाता है।'''
'''बीजगणित कहा जाता है।'''


'''एक साधारण लाई समूह एक जुड़ा हुआ लाई समूह है जिसका लाई बीजगणित सरल है।'''
'''एक साधारण लाई समूह एक जुड़ा हुआ लाई समूह है जिसका लाई बीजगणित साधारण है।'''


== टिप्पणियाँ ==
== टिप्पणियाँ ==
Line 31: Line 31:


== यह भी देखें ==
== यह भी देखें ==
* सरल लाई समूह
* साधारण लाई समूह
* [[वोगेल विमान]]
* [[वोगेल विमान]]



Revision as of 13:55, 21 April 2023

बीजगणित में, साधारण लाई बीजगणित एक लाई बीजगणित है जो एबेलियन लाई बीजगणित गैर-अबेलियन है और इसमें कोई गैर-शून्य उचित आदर्श नहीं है। वास्तविक साधारण लाई बीजगणित का वर्गीकरण विल्हेम किलिंग और एली कार्टन की प्रमुख उपलब्धियों में से एक है।

साधारण लाई बीजगणित के प्रत्यक्ष योग को अर्ध-साधारण लाई बीजगणित कहा जाता है।

एक साधारण लाई समूह एक जुड़ा हुआ लाई समूह है जिसका लाई बीजगणित साधारण है।

जटिल साधारण लाई बीजगणित

एक परिमित-आयामी साधारण जटिल बीजगणित निम्नलिखित में से किसी के लिए समरूपी है: , , (मौलिक लाई बीजगणित) या पाँच असाधारण लाई बीजगणित में से एक है ।[1]

प्रत्येक परिमित-आयामी जटिल अर्ध-साधारण बीजगणित के लिए , संबंधित आरेख उपस्थित है (जिसे डायनकिन आरेख कहा जाता है) जहां नोड्स साधारण जड़ों को निरूपित करते हैं, नोड्स साधारण जड़ों के बीच के कोणों के आधार पर कई पंक्तियों द्वारा जोड़ा जाता है (या संयुक्त नहीं किआ जाता है) | साधारण जड़ों और तीरों के बीच के कोणों के आधार पर यह संकेत देने के लिए रखा जाता है कि क्या जड़ें लंबी या छोटी हैं। [2] का डायनकिन आरेख जुड़ा हुआ है अगर और केवल अगर साधारण है। सभी संभव कनेक्टेड डाइकिन डायग्राम निम्नलिखित हैं:[3]

डायनकिन डायग्रामजहां n जहां n नोड्स (साधारण जड़ें) की संख्या है। आरेखों और जटिल साधारण लाई बीजगणित का मिलान इस प्रकार है:[2]
(एn)
(बीn)
(सीn)
(डीn)
बाकी, असाधारण लाई बीजगणित।

वास्तविक साधारण लाई बीजगणित

अगर परिमित-आयामी वास्तविक साधारण लाई बीजगणित है, इसकी जटिलता या तो (1) साधारण या (2) एक साधारण जटिल लाई बीजगणित का उत्पाद है और यह जटिल लाई बीजगणित का संयुग्म है। उदाहरण के लिए, की जटिलता वास्तविक लाई बीजगणित के रूप में सोचा जाता है . इस प्रकार, वास्तविक साधारण लाई बीजगणित को जटिल साधारण लाई बीजगणित और कुछ अतिरिक्त जानकारी के वर्गीकरण द्वारा वर्गीकृत किया जा सकता है। यह प्रमाणित आरेखों द्वारा किया जा सकता है जो डाइंकिन आरेखों का सामान्यीकरण करते हैं। वास्तविक साधारण लाई बीजगणित की आंशिक सूची के लिए लाई समूहों की तालिका असली लाई बीजगणित भी देखें।

बीजगणित कहा जाता है।

एक साधारण लाई समूह एक जुड़ा हुआ लाई समूह है जिसका लाई बीजगणित साधारण है।

टिप्पणियाँ


यह भी देखें

संदर्भ

  • Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics (in British English). Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.
  • Jacobson, Nathan, Lie algebras, Republication of the 1962 original. Dover Publications, Inc., New York, 1979. ISBN 0-486-63832-4; Chapter X considers a classification of simple Lie algebras over a field of characteristic zero.