सरल लाई बीजगणित: Difference between revisions

From Vigyanwiki
Line 43: Line 43:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/04/2023]]
[[Category:Created On 18/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 09:31, 16 May 2023

बीजगणित में, साधारण लाई बीजगणित एक लाई बीजगणित है जो एबेलियन लाई बीजगणित गैर-अबेलियन है और इसमें कोई गैर-शून्य उचित आदर्श नहीं है। वास्तविक साधारण लाई बीजगणित का वर्गीकरण विल्हेम किलिंग और एली कार्टन की प्रमुख उपलब्धियों में से एक है।

साधारण लाई बीजगणित के प्रत्यक्ष योग को अर्ध-साधारण लाई बीजगणित कहा जाता है।

एक साधारण लाई समूह एक जुड़ा हुआ लाई समूह है जिसका लाई बीजगणित साधारण है।

जटिल साधारण लाई बीजगणित

एक परिमित-आयामी साधारण जटिल बीजगणित निम्नलिखित में से किसी के लिए समरूपी है: , , (मौलिक लाई बीजगणित) या पाँच असाधारण लाई बीजगणित में से एक है ।[1]

प्रत्येक परिमित-आयामी जटिल अर्ध-साधारण बीजगणित के लिए , संबंधित आरेख उपस्थित है (जिसे डायनकिन आरेख कहा जाता है) जहां नोड्स साधारण जड़ों को निरूपित करते हैं, नोड्स साधारण जड़ों के बीच के कोणों के आधार पर कई पंक्तियों द्वारा जोड़ा जाता है (या संयुक्त नहीं किआ जाता है) तीर यह इंगित करने के लिए लगाए जाते हैं कि जड़ें लंबी हैं या छोटी हैं। [2] का डायनकिन आरेख जुड़ा हुआ है यदि और केवल यदि साधारण है। सभी संभव जुड़े डाइकिन डायग्राम निम्नलिखित हैं:[3]

डायनकिन डायग्राम
जहां n नोड्स (साधारण जड़ें) की संख्या है। आरेखों और जटिल साधारण लाई बीजगणित का मिलान इस प्रकार है:[2]
(एn)
(बीn)
(सीn)
(डीn)
बाकी, असाधारण लाई बीजगणित।

वास्तविक साधारण लाई बीजगणित

यदि परिमित-आयामी वास्तविक साधारण लाई बीजगणित है, इसकी जटिलता या तो (1) साधारण या (2) एक साधारण जटिल लाई बीजगणित का उत्पाद है और यह जटिल लाई बीजगणित का संयुग्म है। उदाहरण के लिए, की जटिलता वास्तविक लाई बीजगणित के रूप में सोचा जाता है . इस प्रकार, वास्तविक साधारण लाई बीजगणित को जटिल साधारण लाई बीजगणित और कुछ अतिरिक्त जानकारी के वर्गीकरण द्वारा वर्गीकृत किया जा सकता है। यह प्रमाणित आरेखों द्वारा किया जा सकता है जो डाइंकिन आरेखों का सामान्यीकरण करते हैं। वास्तविक साधारण लाई बीजगणित की आंशिक सूची के लिए लाई समूहों की तालिका असली लाई बीजगणित भी देखें।

टिप्पणियाँ


यह भी देखें

संदर्भ

  • Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics (in British English). Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.
  • Jacobson, Nathan, Lie algebras, Republication of the 1962 original. Dover Publications, Inc., New York, 1979. ISBN 0-486-63832-4; Chapter X considers a classification of simple Lie algebras over a field of characteristic zero.