सामान्यीकृत चतुर्भुज: Difference between revisions
No edit summary |
|||
Line 22: | Line 22: | ||
== रेखांकन == | == रेखांकन == | ||
[[File:GQ24.svg|250px|right|thumb| सामान्यीकृत चतुर्भुज का [[लाइन ग्राफ]] {{nowrap|GQ(2,4)}}]]एक सामान्यीकृत चतुर्भुज से दो दिलचस्प रेखांकन प्राप्त किए जा सकते हैं। | [[File:GQ24.svg|250px|right|thumb| सामान्यीकृत चतुर्भुज का [[लाइन ग्राफ]] {{nowrap|GQ(2,4)}}]]एक सामान्यीकृत चतुर्भुज से दो दिलचस्प रेखांकन प्राप्त किए जा सकते हैं। | ||
* | * कोलीनियरिटी ग्राफ़ में एक सामान्यीकृत चतुर्भुज के बिंदु होते हैं, जिसमें कोलीनियर पॉइंट जुड़े होते हैं। यह ग्राफ़ मापदंडों ((s+1)(st+1), s(t+1), s-1, t+1) के साथ एक दृढ़ता से नियमित ग्राफ़ है जहां (s,t) GQ का क्रम है। | ||
* घटना ग्राफ जिसके | *घटना ग्राफ जिसके शीर्ष सामान्यीकृत चतुर्भुज के बिंदु और रेखाएँ हैं और दो कोने आसन्न हैं यदि एक बिंदु है, तो दूसरा एक रेखा है और बिंदु रेखा पर स्थित है। एक सामान्यीकृत चतुष्कोण का घटना ग्राफ चार के [[व्यास (ग्राफ सिद्धांत)|व्यास]] और आठ के घेरे के साथ जुड़ा हुआ, द्विदलीय ग्राफ होने की विशेषता है। इसलिए यह एक [[केज (ग्राफ सिद्धांत)|केज]] का उदाहरण है। विन्यास के घटना ग्राफ को आज आम तौर पर लेवी ग्राफ कहा जाता है, लेकिन मूल [[लेवी ग्राफ]] GQ(2,2) का घटना ग्राफ था। | ||
== द्वैत == | == द्वैत == | ||
अगर (''P'',''B'',I) पैरामीटर (''s'',''t'') के साथ एक सामान्यीकृत चतुर्भुज है, तो (''B'',''P'',I<sup>−1</sup>), I<sup>−1</sup> के साथ व्युत्क्रम घटना संबंध भी एक सामान्यीकृत चतुर्भुज है। यह दोहरा सामान्यीकृत चतुष्कोण है। इसके पैरामीटर हैं (''t'',''s'') यहां तक कि अगर ''s'' = ''t'', दोहरी संरचना को मूल संरचना के साथ आइसोमॉर्फिक होने की आवश्यकता नहीं है। | |||
== आकार 3 | == सामान्यीकृत चतुष्कोण आकार 3 की रेखाओं के साथ == | ||
वास्तव में पाँच ( | वास्तव में पाँच (संभवतः पतित) सामान्यीकृत चतुष्कोण हैं जहाँ प्रत्येक रेखा के साथ तीन बिंदु आपस में जुड़े हुए हैं, एक खाली रेखा सेट के साथ चतुर्भुज, पवनचक्की ग्राफ Wd(3,n) के अनुरूप एक निश्चित बिंदु के माध्यम से सभी रेखाओं वाला चतुर्भुज, आकार 3x3 का ग्रिड, GQ(2,2) चतुर्भुज और अद्वितीय GQ(2,4)। ये पांच चतुष्कोण एडीई कक्षाओं ''A<sub>n</sub>'', ''D<sub>n</sub>'', ''E<sub>6</sub>'', ''E<sub>7</sub>'' and ''E<sub>8</sub>'' में पांच वर्ग प्रणाली के अनुरूप हैं, यानी सरल रूप से वर्ग प्रणाली। <ref>Cameron P.J.; Goethals, J.M.; Seidel, J.J; Shult, E. E. ''Line graphs, root systems and elliptic geometry''</ref>और<ref>http://www.win.tue.nl/~aeb/2WF02/genq.pdf {{Bare URL PDF|date=March 2022}}</ref> देखें। | ||
== चिरसम्मत सामान्यीकृत चतुष्कोण == | |||
== | |||
कम से कम तीन रैंक के ध्रुवीय स्थानों के लिए अलग-अलग मामलों को देखते हुए, और उन्हें रैंक 2 पर एक्सट्रपलेशन करते हुए, इन (परिमित) सामान्यीकृत चतुष्कोणों को पाता है: | कम से कम तीन रैंक के ध्रुवीय स्थानों के लिए अलग-अलग मामलों को देखते हुए, और उन्हें रैंक 2 पर एक्सट्रपलेशन करते हुए, इन (परिमित) सामान्यीकृत चतुष्कोणों को पाता है: | ||
Revision as of 11:18, 15 May 2023
ज्यामिति में, एक सामान्यीकृत चतुष्कोण एक घटना संरचना है जिसकी मुख्य विशेषता किसी भी त्रिभुज की कमी है (फिर भी कई चतुर्भुज होते हैं)। परिभाषा के अनुसार एक सामान्यीकृत चतुष्कोण कोटि दो का ध्रुवीय स्थान है। वे n = 4 के साथ सामान्यीकृत n-gons और n = 2 के साथ लगभग 2n-gons हैं। वे आंशिक ज्यामिति pg(s,t,α) α = 1 के साथ भी सटीक रूप से हैं।
परिभाषा
एक सामान्यीकृत चतुर्भुज एक आपतन संरचना (P,B,I) है, जिसमें I ⊆ P × B एक आपतन संबंध के रूप में है, जो कुछ स्वयंसिद्धों को संतुष्ट करता है। परिभाषा के अनुसार P के अवयव सामान्यीकृत चतुष्कोण के बिंदु हैं, और B के अवयव रेखाएँ हैं। स्वयंसिद्ध निम्नलिखित हैं:
- एक s (s ≥ 1) इस प्रकार है कि प्रत्येक रेखा पर ठीक s + 1 बिंदु हैं। दो अलग-अलग रेखाओं पर अधिकतम एक बिंदु होता है।
- एक t (t ≥ 1) ऐसा है कि हर बिंदु के माध्यम से बिल्कुल t + 1 रेखाएं होती हैं। दो भिन्न बिन्दुओं से होकर जाने वाली अधिकतम एक रेखा है।
- प्रत्येक बिंदु p के लिए जो रेखा L पर नहीं है, एक अद्वितीय रेखा M और एक अद्वितीय बिंदु q है, जैसे कि p, M पर है और q, M और L पर है।
(s,t) सामान्यीकृत चतुष्कोण के मापदंड हैं। मापदंडों को अनंत होने की अनुमति है। यदि या तो s या t एक है, तो सामान्यीकृत चतुष्कोण नगण्य कहलाता है। उदाहरण के लिए, P = {1,2,3,4,5,6,7,8,9} और B = {123, 456, 789, 147, 258, 369} के साथ 3x3 ग्रिड एक तुच्छ GQ है s = 2 और t = 1। प्राचलों (s,t) के साथ एक सामान्यीकृत चतुष्कोण को अक्सर GQ(s,t) द्वारा निरूपित किया जाता है।
सबसे छोटा गैर-तुच्छ सामान्यीकृत चतुष्कोण GQ(2,2) है, जिसका प्रतिनिधित्व 1973 में स्टेन पायने द्वारा "द डोइली" अनुबंध दिया गया है।
गुण
रेखांकन
एक सामान्यीकृत चतुर्भुज से दो दिलचस्प रेखांकन प्राप्त किए जा सकते हैं।
- कोलीनियरिटी ग्राफ़ में एक सामान्यीकृत चतुर्भुज के बिंदु होते हैं, जिसमें कोलीनियर पॉइंट जुड़े होते हैं। यह ग्राफ़ मापदंडों ((s+1)(st+1), s(t+1), s-1, t+1) के साथ एक दृढ़ता से नियमित ग्राफ़ है जहां (s,t) GQ का क्रम है।
- घटना ग्राफ जिसके शीर्ष सामान्यीकृत चतुर्भुज के बिंदु और रेखाएँ हैं और दो कोने आसन्न हैं यदि एक बिंदु है, तो दूसरा एक रेखा है और बिंदु रेखा पर स्थित है। एक सामान्यीकृत चतुष्कोण का घटना ग्राफ चार के व्यास और आठ के घेरे के साथ जुड़ा हुआ, द्विदलीय ग्राफ होने की विशेषता है। इसलिए यह एक केज का उदाहरण है। विन्यास के घटना ग्राफ को आज आम तौर पर लेवी ग्राफ कहा जाता है, लेकिन मूल लेवी ग्राफ GQ(2,2) का घटना ग्राफ था।
द्वैत
अगर (P,B,I) पैरामीटर (s,t) के साथ एक सामान्यीकृत चतुर्भुज है, तो (B,P,I−1), I−1 के साथ व्युत्क्रम घटना संबंध भी एक सामान्यीकृत चतुर्भुज है। यह दोहरा सामान्यीकृत चतुष्कोण है। इसके पैरामीटर हैं (t,s) यहां तक कि अगर s = t, दोहरी संरचना को मूल संरचना के साथ आइसोमॉर्फिक होने की आवश्यकता नहीं है।
सामान्यीकृत चतुष्कोण आकार 3 की रेखाओं के साथ
वास्तव में पाँच (संभवतः पतित) सामान्यीकृत चतुष्कोण हैं जहाँ प्रत्येक रेखा के साथ तीन बिंदु आपस में जुड़े हुए हैं, एक खाली रेखा सेट के साथ चतुर्भुज, पवनचक्की ग्राफ Wd(3,n) के अनुरूप एक निश्चित बिंदु के माध्यम से सभी रेखाओं वाला चतुर्भुज, आकार 3x3 का ग्रिड, GQ(2,2) चतुर्भुज और अद्वितीय GQ(2,4)। ये पांच चतुष्कोण एडीई कक्षाओं An, Dn, E6, E7 and E8 में पांच वर्ग प्रणाली के अनुरूप हैं, यानी सरल रूप से वर्ग प्रणाली। [1]और[2] देखें।
चिरसम्मत सामान्यीकृत चतुष्कोण
कम से कम तीन रैंक के ध्रुवीय स्थानों के लिए अलग-अलग मामलों को देखते हुए, और उन्हें रैंक 2 पर एक्सट्रपलेशन करते हुए, इन (परिमित) सामान्यीकृत चतुष्कोणों को पाता है:
- एक अतिशयोक्तिपूर्ण चतुर्भुज , एक परवलयिक चतुर्भुज और एक अण्डाकार चतुर्भुज प्रोजेक्टिव इंडेक्स 1 के साथ परिमित क्षेत्रों पर प्रोजेक्टिव स्पेस में एकमात्र संभावित क्वाड्रिक्स हैं। हम क्रमशः इन पैरामीटरों को ढूंढते हैं:
- (यह सिर्फ एक ग्रिड है)
- एक हर्मिटियन किस्म प्रक्षेपी सूचकांक 1 है अगर और केवल अगर n 3 या 4 है। हम पाते हैं:
- में एक सहानुभूतिपूर्ण ध्रुवीयता आयाम 1 का एक अधिकतम समस्थानिक उप-स्थान है यदि और केवल यदि . यहाँ, हम एक व्यापक चतुर्भुज पाते हैं , साथ .
सामान्यीकृत चतुष्कोण से व्युत्पन्न के द्वैत के साथ हमेशा समरूपी होता है , और वे दोनों स्व-द्वैत हैं और इस प्रकार एक दूसरे के लिए समरूप हैं यदि और केवल यदि सम है।
गैर-शास्त्रीय उदाहरण
- मान लीजिए O एक hyperoval है क्यू के साथ एक समान प्रधान शक्ति, और उस प्रक्षेपी (डेसार्गेसियन) विमान को एम्बेड करें में . अब घटना संरचना पर विचार करें जहां सभी बिंदु अंदर नहीं हैं , वे पंक्तियाँ हैं जो चालू नहीं हैं , प्रतिच्छेद करना ओ के एक बिंदु में, और घटना प्राकृतिक है। यह एक (q-1,q+1)-सामान्यीकृत चतुष्कोण है।
- चलो क्यू एक प्रमुख शक्ति (विषम या सम) हो और एक सहानुभूतिपूर्ण ध्रुवीयता पर विचार करें में . एक मनमाना बिंदु पी चुनें और परिभाषित करें . हमारी घटना संरचना की रेखाओं को सभी निरपेक्ष रेखाओं पर न होने दें पी के माध्यम से सभी लाइनों के साथ जो चालू नहीं हैं , और बिंदुओं को सभी बिंदु होने दें उन लोगों को छोड़कर . घटना फिर से स्वाभाविक है। हम एक बार फिर एक (q-1,q+1)-सामान्यीकृत चतुष्कोण प्राप्त करते हैं
मापदंडों पर प्रतिबंध
ग्रिड और दोहरे ग्रिड का उपयोग करके, कोई भी पूर्णांक z, z ≥ 1 पैरामीटर (1, z) और (z, 1) के साथ सामान्यीकृत चतुष्कोणों की अनुमति देता है। इसके अलावा, अभी तक केवल निम्नलिखित पैरामीटर संभव पाए गए हैं, क्यू के साथ मनमाना प्रधान शक्ति:
- और
- और
- और
संदर्भ
- ↑ Cameron P.J.; Goethals, J.M.; Seidel, J.J; Shult, E. E. Line graphs, root systems and elliptic geometry
- ↑ http://www.win.tue.nl/~aeb/2WF02/genq.pdf[bare URL PDF]
- S. E. Payne and J. A. Thas. Finite generalized quadrangles. Research Notes in Mathematics, 110. Pitman (Advanced Publishing Program), Boston, MA, 1984. vi+312 pp. ISBN 0-273-08655-3, link http://cage.ugent.be/~bamberg/FGQ.pdf