सार सरल जटिल: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Mathematical object}} | {{Short description|Mathematical object}} | ||
[[Image:Simplicial complex example.svg|thumb|200px|एक 3-आयामी सार सरल परिसर का ज्यामितीय अहसास]][[साहचर्य]] में, सार [[सरल जटिल|सरल सम्मिश्र]] (एएससी), जिसे अधिकांशतः सार सम्मिश्र या सिर्फ सम्मिश्र कहा जाता है, समुच्चय का परिवार है जो [[सबसेट|उपसमुच्चय]] लेने के अनुसार बंद होता है, अर्थात परिवार में समुच्चय का हर उपसमुच्चय भी परिवार में होता है। यह साधारण सम्मिश्र की ज्यामितीय धारणा का विशुद्ध रूप से मिश्रित विवरण है।<ref name=Lee>[[John M. Lee|Lee, John M.]], Introduction to Topological Manifolds, Springer 2011, {{ISBN|1-4419-7939-5}}, p153</ref> उदाहरण के लिए, 2-आयामी साधारण परिसर में, परिवार में समुच्चय त्रिकोण ( | [[Image:Simplicial complex example.svg|thumb|200px|एक 3-आयामी सार सरल परिसर का ज्यामितीय अहसास]][[साहचर्य]] में, सार [[सरल जटिल|सरल सम्मिश्र]] (एएससी), जिसे अधिकांशतः सार सम्मिश्र या सिर्फ सम्मिश्र कहा जाता है, समुच्चय का परिवार है जो [[सबसेट|उपसमुच्चय]] लेने के अनुसार बंद होता है, अर्थात परिवार में समुच्चय का हर उपसमुच्चय भी परिवार में होता है। यह साधारण सम्मिश्र की ज्यामितीय धारणा का विशुद्ध रूप से मिश्रित विवरण है।<ref name=Lee>[[John M. Lee|Lee, John M.]], Introduction to Topological Manifolds, Springer 2011, {{ISBN|1-4419-7939-5}}, p153</ref> उदाहरण के लिए, 2-आयामी साधारण परिसर में, परिवार में समुच्चय त्रिकोण (बनावट 3 के समुच्चय), उनके किनारे (बनावट 2 के समुच्चय), और उनके शिखर (बनावट 1 के समुच्चय) हैं। | ||
[[matroid|मेट्रोइड]] और लालचोइड्स के संदर्भ में, अमूर्त साधारण परिसरों को [[स्वतंत्रता प्रणाली]] भी कहा जाता है।<ref>{{cite book|author = Korte, Bernhard|author-link = Bernhard Korte|author2=Lovász, László|author2-link=László Lovász|author3=Schrader, Rainer| year = 1991| title = लालची| publisher = Springer-Verlag | isbn = 3-540-18190-3 |page = 9}}</ref> | [[matroid|मेट्रोइड]] और लालचोइड्स के संदर्भ में, अमूर्त साधारण परिसरों को [[स्वतंत्रता प्रणाली]] भी कहा जाता है।<ref>{{cite book|author = Korte, Bernhard|author-link = Bernhard Korte|author2=Lovász, László|author2-link=László Lovász|author3=Schrader, Rainer| year = 1991| title = लालची| publisher = Springer-Verlag | isbn = 3-540-18190-3 |page = 9}}</ref> | ||
Line 7: | Line 7: | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
संग्रह Δ एक [[सेट (गणित)|समुच्चय (गणित)]] एस के | संग्रह Δ एक [[सेट (गणित)|समुच्चय (गणित)]] एस के अरिक्त परिमित उपसमुच्चय के } को समुच्चय-फ़ैमिली कहा जाता है। | ||
एक समुच्चय-फ़ैमिली Δ को अमूर्त सिम्पलीशियल सम्मिश्र कहा जाता है, यदि Δ में हर समुच्चय X के लिए, और हर | एक समुच्चय-फ़ैमिली Δ को अमूर्त सिम्पलीशियल सम्मिश्र कहा जाता है, यदि Δ में हर समुच्चय X के लिए, और हर अरिक्त उपसमुच्चय Y ⊆ X, समुच्चय Y भी Δ से संबंधित है। | ||
परिमित समुच्चय जो Δ से संबंधित हैं, परिसर के फलक कहलाते हैं, और एक फलक Y को दूसरे फलक X से संबंधित कहा जाता है यदि Y ⊆ X है, तो एक अमूर्त साधारण परिसर की परिभाषा को यह कहते हुए बहाल किया जा सकता है कि फलक का हर फलक एक सम्मिश्र Δ का स्वयं Δ का एक फलक है। Δ के शीर्ष समुच्चय को V(Δ) = ∪Δ के रूप में परिभाषित किया गया है, Δ के सभी फलकों का मिलन शीर्ष् समुच्चय के तत्वों को सम्मिश्र के ऊर्ध्वाधर कहा जाता है। Δ के प्रत्येक शीर्ष v के लिए, समुच्चय {v} सम्मिश्र का एक फलक है, और संकुल का प्रत्येक फलक शीर्ष समुच्चय का परिमित उपसमुच्चय है। | परिमित समुच्चय जो Δ से संबंधित हैं, परिसर के फलक कहलाते हैं, और एक फलक Y को दूसरे फलक X से संबंधित कहा जाता है यदि Y ⊆ X है, तो एक अमूर्त साधारण परिसर की परिभाषा को यह कहते हुए बहाल किया जा सकता है कि फलक का हर फलक एक सम्मिश्र Δ का स्वयं Δ का एक फलक है। Δ के शीर्ष समुच्चय को V(Δ) = ∪Δ के रूप में परिभाषित किया गया है, Δ के सभी फलकों का मिलन शीर्ष् समुच्चय के तत्वों को सम्मिश्र के ऊर्ध्वाधर कहा जाता है। Δ के प्रत्येक शीर्ष v के लिए, समुच्चय {v} सम्मिश्र का एक फलक है, और संकुल का प्रत्येक फलक शीर्ष समुच्चय का परिमित उपसमुच्चय है। | ||
Line 19: | Line 19: | ||
एक-आयामी सार सरल परिसर गणितीय रूप से [[सरल ग्राफ़ अप्रत्यक्ष ग्राफ]] रेखांकन के समतुल्य हैं: परिसर के शीर्ष समुच्चय को ग्राफ के शीर्ष समुच्चय के रूप में देखा जा सकता है, और सम्मिश्र के दो-तत्व पहलू एक ग्राफ के अप्रत्यक्ष किनारों के अनुरूप होते हैं। इस दृष्टि से, एक सम्मिश्र के एक-तत्व पहलू भिन्न-भिन्न शीर्षों के अनुरूप होते हैं जिनमें कोई घटना किनारे नहीं होते हैं। | एक-आयामी सार सरल परिसर गणितीय रूप से [[सरल ग्राफ़ अप्रत्यक्ष ग्राफ]] रेखांकन के समतुल्य हैं: परिसर के शीर्ष समुच्चय को ग्राफ के शीर्ष समुच्चय के रूप में देखा जा सकता है, और सम्मिश्र के दो-तत्व पहलू एक ग्राफ के अप्रत्यक्ष किनारों के अनुरूप होते हैं। इस दृष्टि से, एक सम्मिश्र के एक-तत्व पहलू भिन्न-भिन्न शीर्षों के अनुरूप होते हैं जिनमें कोई घटना किनारे नहीं होते हैं। | ||
का उपसमुच्चय | Δ का एक उपसमुच्चय एक सार सरल सम्मिश्र एल है जैसे कि एल का हर फलक Δ से संबंधित है; वह है, {{math|''L'' ⊆ Δ}} और एल एक अमूर्त साधारण परिसर है। एक उपसमुच्चय जिसमें Δ के एक ही फलक के सभी उपसमुच्चय होते हैं, उसे अधिकांशतः Δ का एक एकधा कहा जाता है। (चूंकि, कुछ लेखक एक फलक के लिए "सरल" शब्द का प्रयोग करते हैं, अपितु अस्पष्ट रूप से, दोनों फलक और एक फलक से जुड़े उपसमुच्चय के लिए, गैर-अमूर्त (ज्यामितीय) सरलीकृत सम्मिश्र शब्दावली के साथ सादृश्य द्वारा अस्पष्टता से बचने के लिए, हम इस लेख में अमूर्त परिसरों के संदर्भ में फलक के लिए "एकधा" शब्द का उपयोग नहीं करते हैं)। | ||
Δ का डी-कंकाल Δ का उपसमूह है जिसमें Δ के सभी फलक सम्मलित हैं जिनके आयाम अधिक से अधिक d हैं। विशेष रूप से, 1-[[कंकाल (टोपोलॉजी)]] को Δ का अंतर्निहित ग्राफ कहा जाता है। Δ के 0-कंकाल को इसके शीर्ष समुच्चय के साथ पहचाना जा सकता है, चूंकि औपचारिक रूप से यह पर्याप्त समान नहीं है (शीर्ष समुच्चय सभी शीर्षों का एक समुच्चय है, जबकि 0-कंकाल एकल-तत्व समुच्चय का एक परिवार है)। | Δ का डी-कंकाल Δ का उपसमूह है जिसमें Δ के सभी फलक सम्मलित हैं जिनके आयाम अधिक से अधिक d हैं। विशेष रूप से, 1-[[कंकाल (टोपोलॉजी)]] को Δ का अंतर्निहित ग्राफ कहा जाता है। Δ के 0-कंकाल को इसके शीर्ष समुच्चय के साथ पहचाना जा सकता है, चूंकि औपचारिक रूप से यह पर्याप्त समान नहीं है (शीर्ष समुच्चय सभी शीर्षों का एक समुच्चय है, जबकि 0-कंकाल एकल-तत्व समुच्चय का एक परिवार है)। | ||
Line 33: | Line 31: | ||
{{Main|सरलीकृत मानचित्र}} | {{Main|सरलीकृत मानचित्र}} | ||
दो अमूर्त सरलीकृत परिसरों, Δ और Γ को देखते हुए, एक सरलीकृत मानचित्र एक ऐसा फलन f है, जो Δ अक्ष के शीर्ष को Γ अक्ष के शीर्ष के रूप में चित्रित करता है और इसमें यह गुण होता है कि किसी भी Δ के लिए एक्स [[छवि (गणित)]] {{math| ''f'' (''X'')}} वर्ग का मुख है। वस्तुओं के रूप में सार [[सरलीकृत परिसरों]] के साथ एक श्रेणी एससीपीएक्स है और | दो अमूर्त सरलीकृत परिसरों, Δ और Γ को देखते हुए, एक सरलीकृत मानचित्र एक ऐसा फलन f है, जो Δ अक्ष के शीर्ष को Γ अक्ष के शीर्ष के रूप में चित्रित करता है और इसमें यह गुण होता है कि किसी भी Δ के लिए एक्स [[छवि (गणित)]] {{math| ''f'' (''X'')}} वर्ग का मुख है। वस्तुओं के रूप में सार [[सरलीकृत परिसरों]] के साथ एक श्रेणी एससीपीएक्स है और बनावटिकी के रूप में सरल मानचित्र हैं। यह गैर-अमूर्त साधारण परिसरों का उपयोग करके परिभाषित उपयुक्त श्रेणी के समतुल्य है। | ||
इसके अतिरिक्त, देखने का स्पष्ट बिंदु हमें एक सार सरल परिसर Δ के अंतर्निहित समुच्चय एस और Δ के शीर्ष् समुच्चय वी (Δ) ⊆ एस के बीच संबंध को कसने की अनुमति देता है: सार सरल सम्मिश्र परिसरों की एक श्रेणी को परिभाषित करने के प्रयोजनों के लिए, V(Δ) में नहीं पड़े S के तत्व अप्रासंगिक हैं। अधिक उपयुक्त रूप से, एससीपीएक्स उस श्रेणी के समतुल्य है जहां: | इसके अतिरिक्त, देखने का स्पष्ट बिंदु हमें एक सार सरल परिसर Δ के अंतर्निहित समुच्चय एस और Δ के शीर्ष् समुच्चय वी (Δ) ⊆ एस के बीच संबंध को कसने की अनुमति देता है: सार सरल सम्मिश्र परिसरों की एक श्रेणी को परिभाषित करने के प्रयोजनों के लिए, V(Δ) में नहीं पड़े S के तत्व अप्रासंगिक हैं। अधिक उपयुक्त रूप से, एससीपीएक्स उस श्रेणी के समतुल्य है जहां: | ||
* एक वस्तु एक समुच्चय S है जो | * एक वस्तु एक समुच्चय S है जो अरिक्त परिमित उपसमुच्चय Δ के संग्रह से सुसज्जित है जिसमें सभी एकल सम्मलित हैं और ऐसा है कि यदि एक्स Δ में है और वाई ⊆ एक्स रिक्त नहीं है, तो वाई भी Δ से संबंधित है। | ||
* (S, Δ) से (T, Γ) तक एक | * (S, Δ) से (T, Γ) तक एक बनावटिकी एक फलन f : S → T है जैसे कि Δ के किसी भी तत्व की छवि Γ का एक तत्व है। | ||
== ज्यामितीय बोध == | == ज्यामितीय बोध == | ||
Line 45: | Line 43: | ||
प्रत्येक ज्यामितीय साधारण परिसर (जीएससी) एक एएससी निर्धारित करता है:<ref name=":0">{{Cite Matousek 2007}}, Section 4.3</ref>{{Rp|page=14|location=}} एएससी के शिखर जीएससी के शिखर हैं, और एएससी के फलक जीएससी के चेहरों के शीर्ष-समुच्चय हैं। उदाहरण के लिए, 4 कोने {1,2,3,4} के साथ एक जीएससी पर विचार करें, जहां अधिकतम फलक {1,2,3} के बीच त्रिकोण और {2,4} और {3,4} के बीच की रेखाएं हैं। फिर, संबंधित एएससी में समुच्चय {1,2,3}, {2,4}, {3,4}, और उनके सभी उपसमुच्चय सम्मलित हैं। हम कहते हैं कि जीएससी एएससी की ज्यामितीय प्राप्ति है। | प्रत्येक ज्यामितीय साधारण परिसर (जीएससी) एक एएससी निर्धारित करता है:<ref name=":0">{{Cite Matousek 2007}}, Section 4.3</ref>{{Rp|page=14|location=}} एएससी के शिखर जीएससी के शिखर हैं, और एएससी के फलक जीएससी के चेहरों के शीर्ष-समुच्चय हैं। उदाहरण के लिए, 4 कोने {1,2,3,4} के साथ एक जीएससी पर विचार करें, जहां अधिकतम फलक {1,2,3} के बीच त्रिकोण और {2,4} और {3,4} के बीच की रेखाएं हैं। फिर, संबंधित एएससी में समुच्चय {1,2,3}, {2,4}, {3,4}, और उनके सभी उपसमुच्चय सम्मलित हैं। हम कहते हैं कि जीएससी एएससी की ज्यामितीय प्राप्ति है। | ||
प्रत्येक एएससी का एक ज्यामितीय अहसास होता है। परिमित एएससी के लिए यह देखना आसान है।''<ref name=":0" />{{Rp|page=14|location=}}'' मान लीजिये ''<math>N := |V(K)|</math>, <math>\R^N</math>'' में एक (N-1)-आयामी | प्रत्येक एएससी का एक ज्यामितीय अहसास होता है। परिमित एएससी के लिए यह देखना आसान है।''<ref name=":0" />{{Rp|page=14|location=}}'' मान लीजिये ''<math>N := |V(K)|</math>, <math>\R^N</math>'' में एक (N-1)-आयामी एकधा के शीर्षों के साथ ''<math>V(K)</math>'' में शीर्षों की पहचान करें तथा जीएससी {conv(F): F, K में एक फलक है} की रचना करें स्पष्ट रूप से, इस जीएससी से जुड़ा एएससी K के समान है, इसलिए हमने वास्तव में K के ज्यामितीय अहसास का निर्माण किया है। वास्तव में, बहुत कम आयामों का उपयोग करके एक एएससी प्राप्त किया जा सकता है। यदि एक एएससी डी-आयामी है (अर्थात, इसमें एक एकधा की अधिकतम गणनांक d+1 है), तो इसमें ''<math>\R^{2d+1}</math>'' में ज्यामितीय प्राप्ति होती है। लेकिन ''<math>\R^{2d}</math><ref name=":0" />{{Rp|page=16|location=}}'' में ज्यामितीय अहसास नहीं हो सकता है। विशेष स्थिति d=1 प्रसिद्ध तथ्य से मेल खाता है, कि किसी भी ''[[ग्राफ (असतत गणित)]]'' को ''<math>\R^{3}</math>'' में आलेख किया जा सकता है, जहां किनारे सीधी रेखाएं होती हैं, जो आम शीर्षों को छोड़कर एक-दूसरे को नहीं काटती हैं, लेकिन इस प्रकार ''<math>\R^{2}</math>'' में कोई भी ग्राफ नहीं बनाया जा सकता है। | ||
यदि K मानक कॉम्बीनेटरियल n-एकधा है, तो <math>|K|</math> को स्वाभाविक रूप से {{math|Δ<sup>''n''</sup>}} से पहचाना जा सकता है। | यदि K मानक कॉम्बीनेटरियल n-एकधा है, तो <math>|K|</math> को स्वाभाविक रूप से {{math|Δ<sup>''n''</sup>}} से पहचाना जा सकता है। | ||
Line 58: | Line 56: | ||
=== श्रेणीबद्ध परिभाषा === | === श्रेणीबद्ध परिभाषा === | ||
वैकल्पिक रूप से, मान लें कि <math>\mathcal{K}</math> उस श्रेणी को दर्शाता है जिसकी वस्तुएँ <math>\mathcal{K}</math> फलक हैं और जिनकी | वैकल्पिक रूप से, मान लें कि <math>\mathcal{K}</math> उस श्रेणी को दर्शाता है जिसकी वस्तुएँ <math>\mathcal{K}</math> फलक हैं और जिनकी बनावटिकी समावेशन है। इसके पश्चात K के शीर्ष् समुच्चय पर कुल ऑर्डर चुनें और {{mvar|K}} से टोपोलॉजिकल समष्टि की श्रेणी के लिए एक फंक्टर F को निम्नानुसार परिभाषित करें आयाम n के <math>\mathcal{K}</math> में किसी भी फलक X के लिए, {{math|''F''(''X'') {{=}} Δ<sup>''n''</sup>}} मानक n-एकधा हैं। शीर्ष् समुच्चय पर क्रम तब X के तत्वों और Δn के शीर्षों के बीच एक अद्वितीय आक्षेप को निर्दिष्ट करता है, सामान्य तरीके से {{math|''e''<sub>0</sub> < ''e''<sub>1</sub> < ... < ''e<sub>n</sub>''}} का आदेश दिया जाता है। यदि {{math|''Y'' ⊆ ''X''}} आयाम {{math|''m'' < ''n''}} का एक फलक है, तो यह आक्षेप {{math|Δ<sup>''n''</sup>}} का एक अद्वितीय m-आयामी फलक निर्दिष्ट करता है। {{math|''F''(''Y'') → ''F''(''X'')}} को {{math|Δ<sup>''m''</sup>}} के अद्वितीय [[एफ़िन]] [[affine परिवर्तन|परिवर्तन]] रैखिक [[एम्बेडिंग]] के रूप में परिभाषित करें, जो {{math|Δ<sup>''n''</sup>}} के विशिष्ट फलक के रूप में है, जैसे कि कोने पर मानचित्र क्रम-संरक्षित है। | ||
इसके पश्चात हम ज्यामितीय अहसास <math>|K|</math> को फ़ंक्टर F के कोलिमिट के रूप में परिभाषित कर सकते हैं। अधिक विशेष रूप से <math>|K|</math> असंयुक्त संघ का [[भागफल स्थान (टोपोलॉजी)]] है | इसके पश्चात हम ज्यामितीय अहसास <math>|K|</math> को फ़ंक्टर F के कोलिमिट के रूप में परिभाषित कर सकते हैं। अधिक विशेष रूप से <math>|K|</math> असंयुक्त संघ का [[भागफल स्थान (टोपोलॉजी)]] है | ||
Line 66: | Line 64: | ||
== उदाहरण == | == उदाहरण == | ||
1. मान लीजिये V [[प्रमुखता]] {{math|''n'' + 1}} का एक परिमित समुच्चय है। शीर्ष्-समुच्चय V के साथ कॉम्बिनेटरियल n-एकधा एक एएससी है, जिसके फलक V के सभी | 1. मान लीजिये V [[प्रमुखता]] {{math|''n'' + 1}} का एक परिमित समुच्चय है। शीर्ष्-समुच्चय V के साथ कॉम्बिनेटरियल n-एकधा एक एएससी है, जिसके फलक V के सभी अरिक्त उपसमुच्चय हैं (अर्थात, यह V का [[ सत्ता स्थापित |सत्ता स्थापित]] है)। यदि {{math|''V'' {{=}} ''S'' {{=}} {0, 1, ..., ''n''},}} तो इस एएससी को मानक कॉम्बीनेटरियल n-एकधा कहा जाता है। | ||
2. मान लीजिये G एक अप्रत्यक्ष ग्राफ है। G का [[क्लिक कॉम्प्लेक्स|क्लिक सम्मिश्र]] एक एएससी है जिसके फलक G के सभी [[ क्लिक (ग्राफ सिद्धांत) |क्लिक (ग्राफ सिद्धांत)]] हैं। G का [[इंडिपेंडेंस कॉम्प्लेक्स|इंडिपेंडेंस सम्मिश्र]] एक एएससी है, जिसके फलक G के सभी [[ स्वतंत्र सेट (ग्राफ सिद्धांत) |स्वतंत्र समुच्चय (ग्राफ सिद्धांत)]] हैं (यह G के [[पूरक ग्राफ]] का क्लिक सम्मिश्र है)। क्लिक सम्मिश्र [[ध्वज परिसरों]] का प्रोटोटाइपिकल उदाहरण हैं। एक ध्वज परिसर संपत्ति के साथ एक सम्मिश्र K है, जो कि तत्वों का प्रत्येक समुच्चय जो K के चेहरों से संबंधित है, स्वयं K का एक फलक है। | 2. मान लीजिये G एक अप्रत्यक्ष ग्राफ है। G का [[क्लिक कॉम्प्लेक्स|क्लिक सम्मिश्र]] एक एएससी है जिसके फलक G के सभी [[ क्लिक (ग्राफ सिद्धांत) |क्लिक (ग्राफ सिद्धांत)]] हैं। G का [[इंडिपेंडेंस कॉम्प्लेक्स|इंडिपेंडेंस सम्मिश्र]] एक एएससी है, जिसके फलक G के सभी [[ स्वतंत्र सेट (ग्राफ सिद्धांत) |स्वतंत्र समुच्चय (ग्राफ सिद्धांत)]] हैं (यह G के [[पूरक ग्राफ]] का क्लिक सम्मिश्र है)। क्लिक सम्मिश्र [[ध्वज परिसरों]] का प्रोटोटाइपिकल उदाहरण हैं। एक ध्वज परिसर संपत्ति के साथ एक सम्मिश्र K है, जो कि तत्वों का प्रत्येक समुच्चय जो K के चेहरों से संबंधित है, स्वयं K का एक फलक है। | ||
Line 76: | Line 74: | ||
5. मान लीजिये एम एक [[मीट्रिक स्पेस|मीट्रिक समष्टि]] और δ एक वास्तविक संख्या है। विएटोरिस-रिप्स सम्मिश्र एक एएससी है जिसका फलक अधिकतम δ व्यास वाले एम के परिमित उपसमुच्चय हैं। इसमें [[ समरूपता सिद्धांत |समरूपता सिद्धांत]], [[अतिशयोक्तिपूर्ण समूह]], [[ मूर्ति प्रोद्योगिकी |मूर्ति प्रोद्योगिकी]] और [[ मोबाइल तदर्थ नेटवर्क |मोबाइल तदर्थ नेटवर्क]] में अनुप्रयोग हैं। यह ध्वज परिसर का एक और उदाहरण है। | 5. मान लीजिये एम एक [[मीट्रिक स्पेस|मीट्रिक समष्टि]] और δ एक वास्तविक संख्या है। विएटोरिस-रिप्स सम्मिश्र एक एएससी है जिसका फलक अधिकतम δ व्यास वाले एम के परिमित उपसमुच्चय हैं। इसमें [[ समरूपता सिद्धांत |समरूपता सिद्धांत]], [[अतिशयोक्तिपूर्ण समूह]], [[ मूर्ति प्रोद्योगिकी |मूर्ति प्रोद्योगिकी]] और [[ मोबाइल तदर्थ नेटवर्क |मोबाइल तदर्थ नेटवर्क]] में अनुप्रयोग हैं। यह ध्वज परिसर का एक और उदाहरण है। | ||
6. मान लीजिए <math>I</math> एक बहुपद वलय <math>S = K[x_1, \dots, x_n]</math> में एक वर्ग-मुक्त एकपदी (अर्थात, चरों के उपसमुच्चय के गुणनफल द्वारा उत्पन्न आदर्श) गुणज है। फिर <math>S</math> के उन वर्ग-मुक्त एकपद्स के प्रतिपादक वैक्टर जो <math>I</math> में नहीं हैं, मानचित्र <math>\mathbf{a}\in \{0,1\}^n \mapsto \{i \in [n] : a_i = 1\}</math>, वास्तव में, एस में एन ऊर्ध्वाधर और स्क्वायर-फ्री एकपद आदर्शों पर ( | 6. मान लीजिए <math>I</math> एक बहुपद वलय <math>S = K[x_1, \dots, x_n]</math> में एक वर्ग-मुक्त एकपदी (अर्थात, चरों के उपसमुच्चय के गुणनफल द्वारा उत्पन्न आदर्श) गुणज है। फिर <math>S</math> के उन वर्ग-मुक्त एकपद्स के प्रतिपादक वैक्टर जो <math>I</math> में नहीं हैं, मानचित्र <math>\mathbf{a}\in \{0,1\}^n \mapsto \{i \in [n] : a_i = 1\}</math>, वास्तव में, एस में एन ऊर्ध्वाधर और स्क्वायर-फ्री एकपद आदर्शों पर (अरिक्त) अमूर्त सरलीकृत परिसरों के बीच एक आक्षेप है। यदि <math>I_{\Delta}</math> साधारण सम्मिश्र <math>\Delta</math> के अनुरूप वर्ग-मुक्त आदर्श है, तो भागफल <math>S/I_{\Delta}</math> को Δ के स्टेनली-रीस्नर रिंग के रूप में जाना जाता है। | ||
7. एक टोपोलॉजिकल समष्टि के किसी भी [[ खुला आवरण |विवृत आवरण]] सी के लिए, सी का [[तंत्रिका परिसर]] एक अमूर्त सरल सम्मिश्र है जिसमें सी के उप-परिवार एक | 7. एक टोपोलॉजिकल समष्टि के किसी भी [[ खुला आवरण |विवृत आवरण]] सी के लिए, सी का [[तंत्रिका परिसर]] एक अमूर्त सरल सम्मिश्र है जिसमें सी के उप-परिवार एक अरिक्त प्रतिच्छेदन के साथ होते हैं। | ||
== गणना == | == गणना == | ||
n लेबल वाले तत्वों तक (जो कि | n लेबल वाले तत्वों तक (जो कि बनावट n के एक समुच्चय S पर है) अमूर्त सरलीकृत परिसरों की संख्या nth डेडेकिंड संख्या से एक कम है। ये संख्याएँ बहुत तेज़ी से बढ़ती हैं, और मात्र n ≤ 8 के लिए जानी जाती हैं; डेडेकिंड संख्याएँ हैं (n = 0 से प्रारंभ): | ||
:1, 2, 5, 19, 167, 7580, 7828353, 2414682040997, 56130437228687557907787 ([[OEIS|ओईआईएस]] में अनुक्रम [[A014466]]) यह एक n समुच्चय के उपसमुच्चय के | :1, 2, 5, 19, 167, 7580, 7828353, 2414682040997, 56130437228687557907787 ([[OEIS|ओईआईएस]] में अनुक्रम [[A014466]]) यह एक n समुच्चय के उपसमुच्चय के अरिक्त एंटीचाइन्स की संख्या से मेल खाती है। | ||
अमूर्त साधारण परिसरों की संख्या जिनके कोने बिल्कुल एन लेबल वाले तत्व हैं, अनुक्रम "1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966" (अनुक्रम [[A006126]] [[OEIS|ओईआईएस]] में) द्वारा दिया गया है, जो n = 1 से प्रारंभ होता है। यह लेबल वाले एन-समुच्चय के एंटीचैन कवर की संख्या से मेल खाता है; उनके अधिकतम चेहरों के संदर्भ में वर्णित एन तत्वों पर एक एन-समुच्चय और साधारण परिसरों के एंटीचैन कवर के बीच एक स्पष्ट आपत्ति है। | अमूर्त साधारण परिसरों की संख्या जिनके कोने बिल्कुल एन लेबल वाले तत्व हैं, अनुक्रम "1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966" (अनुक्रम [[A006126]] [[OEIS|ओईआईएस]] में) द्वारा दिया गया है, जो n = 1 से प्रारंभ होता है। यह लेबल वाले एन-समुच्चय के एंटीचैन कवर की संख्या से मेल खाता है; उनके अधिकतम चेहरों के संदर्भ में वर्णित एन तत्वों पर एक एन-समुच्चय और साधारण परिसरों के एंटीचैन कवर के बीच एक स्पष्ट आपत्ति है। | ||
Line 105: | Line 103: | ||
{{Reflist}} | {{Reflist}} | ||
{{DEFAULTSORT:Abstract Simplicial Complex}} | {{DEFAULTSORT:Abstract Simplicial Complex}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Abstract Simplicial Complex]] | ||
[[Category:Created On 01/05/2023]] | [[Category:Created On 01/05/2023|Abstract Simplicial Complex]] | ||
[[Category:Lua-based templates|Abstract Simplicial Complex]] | |||
[[Category:Machine Translated Page|Abstract Simplicial Complex]] | |||
[[Category:Pages with script errors|Abstract Simplicial Complex]] | |||
[[Category:Templates Vigyan Ready|Abstract Simplicial Complex]] | |||
[[Category:Templates that add a tracking category|Abstract Simplicial Complex]] | |||
[[Category:Templates that generate short descriptions|Abstract Simplicial Complex]] | |||
[[Category:Templates using TemplateData|Abstract Simplicial Complex]] | |||
[[Category:बीजगणितीय टोपोलॉजी|Abstract Simplicial Complex]] | |||
[[Category:साधारण सेट|Abstract Simplicial Complex]] | |||
[[Category:सेट के परिवार|Abstract Simplicial Complex]] |
Latest revision as of 16:50, 17 May 2023
साहचर्य में, सार सरल सम्मिश्र (एएससी), जिसे अधिकांशतः सार सम्मिश्र या सिर्फ सम्मिश्र कहा जाता है, समुच्चय का परिवार है जो उपसमुच्चय लेने के अनुसार बंद होता है, अर्थात परिवार में समुच्चय का हर उपसमुच्चय भी परिवार में होता है। यह साधारण सम्मिश्र की ज्यामितीय धारणा का विशुद्ध रूप से मिश्रित विवरण है।[1] उदाहरण के लिए, 2-आयामी साधारण परिसर में, परिवार में समुच्चय त्रिकोण (बनावट 3 के समुच्चय), उनके किनारे (बनावट 2 के समुच्चय), और उनके शिखर (बनावट 1 के समुच्चय) हैं।
मेट्रोइड और लालचोइड्स के संदर्भ में, अमूर्त साधारण परिसरों को स्वतंत्रता प्रणाली भी कहा जाता है।[2]
स्टैनली-रीस्नर रिंग बनाकर अमूर्त एकधा का बीजगणितीय रूप से अध्ययन किया जा सकता है; यह कॉम्बिनेटरिक्स और क्रम विनिमय बीजगणित के बीच शक्तिशाली संबंध स्थापित करता है।
परिभाषाएँ
संग्रह Δ एक समुच्चय (गणित) एस के अरिक्त परिमित उपसमुच्चय के } को समुच्चय-फ़ैमिली कहा जाता है।
एक समुच्चय-फ़ैमिली Δ को अमूर्त सिम्पलीशियल सम्मिश्र कहा जाता है, यदि Δ में हर समुच्चय X के लिए, और हर अरिक्त उपसमुच्चय Y ⊆ X, समुच्चय Y भी Δ से संबंधित है।
परिमित समुच्चय जो Δ से संबंधित हैं, परिसर के फलक कहलाते हैं, और एक फलक Y को दूसरे फलक X से संबंधित कहा जाता है यदि Y ⊆ X है, तो एक अमूर्त साधारण परिसर की परिभाषा को यह कहते हुए बहाल किया जा सकता है कि फलक का हर फलक एक सम्मिश्र Δ का स्वयं Δ का एक फलक है। Δ के शीर्ष समुच्चय को V(Δ) = ∪Δ के रूप में परिभाषित किया गया है, Δ के सभी फलकों का मिलन शीर्ष् समुच्चय के तत्वों को सम्मिश्र के ऊर्ध्वाधर कहा जाता है। Δ के प्रत्येक शीर्ष v के लिए, समुच्चय {v} सम्मिश्र का एक फलक है, और संकुल का प्रत्येक फलक शीर्ष समुच्चय का परिमित उपसमुच्चय है।
Δ के अधिकतम फलक (अर्थात् वे फलक जो किसी अन्य फलक के उपसमुच्चय नहीं हैं) सम्मिश्र के फलक कहलाते हैं। Δ में फलक X के आयाम को मंद (X) = |X| के रूप में परिभाषित किया गया है - 1: एकल तत्व वाले फलक शून्य-आयामी होते हैं, दो तत्वों वाले फलक एक-आयामी होते हैं, आदि सम्मिश्र मंद (Δ) के आयाम को इसके किसी भी फलक के सबसे बड़े आयाम या अनन्तता के रूप में परिभाषित किया जाता है यदि फलकों के आयाम पर कोई परिमित सीमा नहीं है।
सम्मिश्र Δ को परिमित कहा जाता है यदि इसके बहुत से फलक होते हैं, या समतुल्य रूप से यदि इसका शीर्ष समुच्चय परिमित है। इसके अतिरिक्त, Δ को शुद्ध कहा जाता है यदि यह परिमित-आयामी है (लेकिन आवश्यक नहीं कि परिमित हो) और हर पहलू का एक ही आयाम हो दूसरे शब्दों में, Δ शुद्ध है यदि मंद (Δ) परिमित है और प्रत्येक फलक आयाम मंद (Δ) के पहलू में समाहित है।
एक-आयामी सार सरल परिसर गणितीय रूप से सरल ग्राफ़ अप्रत्यक्ष ग्राफ रेखांकन के समतुल्य हैं: परिसर के शीर्ष समुच्चय को ग्राफ के शीर्ष समुच्चय के रूप में देखा जा सकता है, और सम्मिश्र के दो-तत्व पहलू एक ग्राफ के अप्रत्यक्ष किनारों के अनुरूप होते हैं। इस दृष्टि से, एक सम्मिश्र के एक-तत्व पहलू भिन्न-भिन्न शीर्षों के अनुरूप होते हैं जिनमें कोई घटना किनारे नहीं होते हैं।
Δ का एक उपसमुच्चय एक सार सरल सम्मिश्र एल है जैसे कि एल का हर फलक Δ से संबंधित है; वह है, L ⊆ Δ और एल एक अमूर्त साधारण परिसर है। एक उपसमुच्चय जिसमें Δ के एक ही फलक के सभी उपसमुच्चय होते हैं, उसे अधिकांशतः Δ का एक एकधा कहा जाता है। (चूंकि, कुछ लेखक एक फलक के लिए "सरल" शब्द का प्रयोग करते हैं, अपितु अस्पष्ट रूप से, दोनों फलक और एक फलक से जुड़े उपसमुच्चय के लिए, गैर-अमूर्त (ज्यामितीय) सरलीकृत सम्मिश्र शब्दावली के साथ सादृश्य द्वारा अस्पष्टता से बचने के लिए, हम इस लेख में अमूर्त परिसरों के संदर्भ में फलक के लिए "एकधा" शब्द का उपयोग नहीं करते हैं)।
Δ का डी-कंकाल Δ का उपसमूह है जिसमें Δ के सभी फलक सम्मलित हैं जिनके आयाम अधिक से अधिक d हैं। विशेष रूप से, 1-कंकाल (टोपोलॉजी) को Δ का अंतर्निहित ग्राफ कहा जाता है। Δ के 0-कंकाल को इसके शीर्ष समुच्चय के साथ पहचाना जा सकता है, चूंकि औपचारिक रूप से यह पर्याप्त समान नहीं है (शीर्ष समुच्चय सभी शीर्षों का एक समुच्चय है, जबकि 0-कंकाल एकल-तत्व समुच्चय का एक परिवार है)।
Δ में एक फलक Y का लिंक, जिसे अधिकांशतः Δ/Y या lkΔ(Y) के रूप में निरूपित किया जाता है, Δ का उपसमुच्चय है जिसे परिभाषित किया गया है।
ध्यान दें कि रिक्त समुच्चय का लिंक Δ ही है।
सरलीकृत मानचित्र
दो अमूर्त सरलीकृत परिसरों, Δ और Γ को देखते हुए, एक सरलीकृत मानचित्र एक ऐसा फलन f है, जो Δ अक्ष के शीर्ष को Γ अक्ष के शीर्ष के रूप में चित्रित करता है और इसमें यह गुण होता है कि किसी भी Δ के लिए एक्स छवि (गणित) f (X) वर्ग का मुख है। वस्तुओं के रूप में सार सरलीकृत परिसरों के साथ एक श्रेणी एससीपीएक्स है और बनावटिकी के रूप में सरल मानचित्र हैं। यह गैर-अमूर्त साधारण परिसरों का उपयोग करके परिभाषित उपयुक्त श्रेणी के समतुल्य है।
इसके अतिरिक्त, देखने का स्पष्ट बिंदु हमें एक सार सरल परिसर Δ के अंतर्निहित समुच्चय एस और Δ के शीर्ष् समुच्चय वी (Δ) ⊆ एस के बीच संबंध को कसने की अनुमति देता है: सार सरल सम्मिश्र परिसरों की एक श्रेणी को परिभाषित करने के प्रयोजनों के लिए, V(Δ) में नहीं पड़े S के तत्व अप्रासंगिक हैं। अधिक उपयुक्त रूप से, एससीपीएक्स उस श्रेणी के समतुल्य है जहां:
- एक वस्तु एक समुच्चय S है जो अरिक्त परिमित उपसमुच्चय Δ के संग्रह से सुसज्जित है जिसमें सभी एकल सम्मलित हैं और ऐसा है कि यदि एक्स Δ में है और वाई ⊆ एक्स रिक्त नहीं है, तो वाई भी Δ से संबंधित है।
- (S, Δ) से (T, Γ) तक एक बनावटिकी एक फलन f : S → T है जैसे कि Δ के किसी भी तत्व की छवि Γ का एक तत्व है।
ज्यामितीय बोध
हम किसी भी अमूर्त सिम्प्लीशियल सम्मिश्र (एएससी) K को एक टोपोलॉजिकल समष्टि से जोड़ सकते हैं, जिसे इसका ज्यामितीय अहसास कहा जाता है। को परिभाषित करने के कई तरीके हैं।
ज्यामितीय परिभाषा
प्रत्येक ज्यामितीय साधारण परिसर (जीएससी) एक एएससी निर्धारित करता है:[3]: 14 एएससी के शिखर जीएससी के शिखर हैं, और एएससी के फलक जीएससी के चेहरों के शीर्ष-समुच्चय हैं। उदाहरण के लिए, 4 कोने {1,2,3,4} के साथ एक जीएससी पर विचार करें, जहां अधिकतम फलक {1,2,3} के बीच त्रिकोण और {2,4} और {3,4} के बीच की रेखाएं हैं। फिर, संबंधित एएससी में समुच्चय {1,2,3}, {2,4}, {3,4}, और उनके सभी उपसमुच्चय सम्मलित हैं। हम कहते हैं कि जीएससी एएससी की ज्यामितीय प्राप्ति है।
प्रत्येक एएससी का एक ज्यामितीय अहसास होता है। परिमित एएससी के लिए यह देखना आसान है।[3]: 14 मान लीजिये , में एक (N-1)-आयामी एकधा के शीर्षों के साथ में शीर्षों की पहचान करें तथा जीएससी {conv(F): F, K में एक फलक है} की रचना करें स्पष्ट रूप से, इस जीएससी से जुड़ा एएससी K के समान है, इसलिए हमने वास्तव में K के ज्यामितीय अहसास का निर्माण किया है। वास्तव में, बहुत कम आयामों का उपयोग करके एक एएससी प्राप्त किया जा सकता है। यदि एक एएससी डी-आयामी है (अर्थात, इसमें एक एकधा की अधिकतम गणनांक d+1 है), तो इसमें में ज्यामितीय प्राप्ति होती है। लेकिन [3]: 16 में ज्यामितीय अहसास नहीं हो सकता है। विशेष स्थिति d=1 प्रसिद्ध तथ्य से मेल खाता है, कि किसी भी ग्राफ (असतत गणित) को में आलेख किया जा सकता है, जहां किनारे सीधी रेखाएं होती हैं, जो आम शीर्षों को छोड़कर एक-दूसरे को नहीं काटती हैं, लेकिन इस प्रकार में कोई भी ग्राफ नहीं बनाया जा सकता है।
यदि K मानक कॉम्बीनेटरियल n-एकधा है, तो को स्वाभाविक रूप से Δn से पहचाना जा सकता है।
एक ही एएससी के हर दो ज्यामितीय अहसास, यहां तक कि विभिन्न आयामों के यूक्लिडियन समष्टि में भी, होमोमोर्फिज्म हैं।[3]: 14 इसलिए, एक एएससी के दिए जाने पर, कोई के के ज्यामितीय प्राप्ति के बारे में बात कर सकता है।
सामयिक परिभाषा
निर्माण निम्नानुसार होता है। सबसे पहले, को के उपसमुच्चय के रूप में परिभाषित करें जिसमें दो शर्तें पूरी करने वाले फ़ंक्शन सम्मलित हैं:
अब के तत्वों के समुच्चय को परिमित समर्थन के साथ की सीधी सीमा के रूप में सोचें, जहां A, S के परिमित उपसमुच्चय से अधिक है , और उस सीधी सीमा को प्रेरित अंतिम टोपोलॉजी प्रदान की जा सकती है। अब सबसमष्टि टोपोलॉजी प्रदान करें।
श्रेणीबद्ध परिभाषा
वैकल्पिक रूप से, मान लें कि उस श्रेणी को दर्शाता है जिसकी वस्तुएँ फलक हैं और जिनकी बनावटिकी समावेशन है। इसके पश्चात K के शीर्ष् समुच्चय पर कुल ऑर्डर चुनें और K से टोपोलॉजिकल समष्टि की श्रेणी के लिए एक फंक्टर F को निम्नानुसार परिभाषित करें आयाम n के में किसी भी फलक X के लिए, F(X) = Δn मानक n-एकधा हैं। शीर्ष् समुच्चय पर क्रम तब X के तत्वों और Δn के शीर्षों के बीच एक अद्वितीय आक्षेप को निर्दिष्ट करता है, सामान्य तरीके से e0 < e1 < ... < en का आदेश दिया जाता है। यदि Y ⊆ X आयाम m < n का एक फलक है, तो यह आक्षेप Δn का एक अद्वितीय m-आयामी फलक निर्दिष्ट करता है। F(Y) → F(X) को Δm के अद्वितीय एफ़िन परिवर्तन रैखिक एम्बेडिंग के रूप में परिभाषित करें, जो Δn के विशिष्ट फलक के रूप में है, जैसे कि कोने पर मानचित्र क्रम-संरक्षित है।
इसके पश्चात हम ज्यामितीय अहसास को फ़ंक्टर F के कोलिमिट के रूप में परिभाषित कर सकते हैं। अधिक विशेष रूप से असंयुक्त संघ का भागफल स्थान (टोपोलॉजी) है
तुल्यता संबंध द्वारा जो एक बिंदु y ∈ F(Y) को मानचित्र F(Y) → F(X) के अनुसार प्रत्येक समावेशन Y ⊆ X के लिए उसकी छवि के साथ पहचानता है।
उदाहरण
1. मान लीजिये V प्रमुखता n + 1 का एक परिमित समुच्चय है। शीर्ष्-समुच्चय V के साथ कॉम्बिनेटरियल n-एकधा एक एएससी है, जिसके फलक V के सभी अरिक्त उपसमुच्चय हैं (अर्थात, यह V का सत्ता स्थापित है)। यदि V = S = {0, 1, ..., n}, तो इस एएससी को मानक कॉम्बीनेटरियल n-एकधा कहा जाता है।
2. मान लीजिये G एक अप्रत्यक्ष ग्राफ है। G का क्लिक सम्मिश्र एक एएससी है जिसके फलक G के सभी क्लिक (ग्राफ सिद्धांत) हैं। G का इंडिपेंडेंस सम्मिश्र एक एएससी है, जिसके फलक G के सभी स्वतंत्र समुच्चय (ग्राफ सिद्धांत) हैं (यह G के पूरक ग्राफ का क्लिक सम्मिश्र है)। क्लिक सम्मिश्र ध्वज परिसरों का प्रोटोटाइपिकल उदाहरण हैं। एक ध्वज परिसर संपत्ति के साथ एक सम्मिश्र K है, जो कि तत्वों का प्रत्येक समुच्चय जो K के चेहरों से संबंधित है, स्वयं K का एक फलक है।
3. मान लीजिये H एक हाइपरग्राफ है। H एक हाइपरग्राफ में मिलान H के किनारों का एक समुच्चय है, जिसमें प्रत्येक दो किनारों को भिन्न किया जाता है। H का मिलान परिसर एक एएससी है जिसके सभी फलक H में मेल खाते हैं। यह एच के रेखा ग्राफ का स्वतंत्रता परिसर है।
4. मान लीजिए कि P आंशिक रूप से आदेशित समुच्चय (पॉसमुच्चय) है। P का ऑर्डर सम्मिश्र एक एएससी है जिसके फलक P में सभी परिमित श्रृंखलाएँ हैं। इसके होमोलॉजी समूह और अन्य टोपोलॉजिकल अपरिवर्तनीय में पोसमुच्चय पी के बारे में महत्वपूर्ण जानकारी होती है।
5. मान लीजिये एम एक मीट्रिक समष्टि और δ एक वास्तविक संख्या है। विएटोरिस-रिप्स सम्मिश्र एक एएससी है जिसका फलक अधिकतम δ व्यास वाले एम के परिमित उपसमुच्चय हैं। इसमें समरूपता सिद्धांत, अतिशयोक्तिपूर्ण समूह, मूर्ति प्रोद्योगिकी और मोबाइल तदर्थ नेटवर्क में अनुप्रयोग हैं। यह ध्वज परिसर का एक और उदाहरण है।
6. मान लीजिए एक बहुपद वलय में एक वर्ग-मुक्त एकपदी (अर्थात, चरों के उपसमुच्चय के गुणनफल द्वारा उत्पन्न आदर्श) गुणज है। फिर के उन वर्ग-मुक्त एकपद्स के प्रतिपादक वैक्टर जो में नहीं हैं, मानचित्र , वास्तव में, एस में एन ऊर्ध्वाधर और स्क्वायर-फ्री एकपद आदर्शों पर (अरिक्त) अमूर्त सरलीकृत परिसरों के बीच एक आक्षेप है। यदि साधारण सम्मिश्र के अनुरूप वर्ग-मुक्त आदर्श है, तो भागफल को Δ के स्टेनली-रीस्नर रिंग के रूप में जाना जाता है।
7. एक टोपोलॉजिकल समष्टि के किसी भी विवृत आवरण सी के लिए, सी का तंत्रिका परिसर एक अमूर्त सरल सम्मिश्र है जिसमें सी के उप-परिवार एक अरिक्त प्रतिच्छेदन के साथ होते हैं।
गणना
n लेबल वाले तत्वों तक (जो कि बनावट n के एक समुच्चय S पर है) अमूर्त सरलीकृत परिसरों की संख्या nth डेडेकिंड संख्या से एक कम है। ये संख्याएँ बहुत तेज़ी से बढ़ती हैं, और मात्र n ≤ 8 के लिए जानी जाती हैं; डेडेकिंड संख्याएँ हैं (n = 0 से प्रारंभ):
- 1, 2, 5, 19, 167, 7580, 7828353, 2414682040997, 56130437228687557907787 (ओईआईएस में अनुक्रम A014466) यह एक n समुच्चय के उपसमुच्चय के अरिक्त एंटीचाइन्स की संख्या से मेल खाती है।
अमूर्त साधारण परिसरों की संख्या जिनके कोने बिल्कुल एन लेबल वाले तत्व हैं, अनुक्रम "1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966" (अनुक्रम A006126 ओईआईएस में) द्वारा दिया गया है, जो n = 1 से प्रारंभ होता है। यह लेबल वाले एन-समुच्चय के एंटीचैन कवर की संख्या से मेल खाता है; उनके अधिकतम चेहरों के संदर्भ में वर्णित एन तत्वों पर एक एन-समुच्चय और साधारण परिसरों के एंटीचैन कवर के बीच एक स्पष्ट आपत्ति है।
n = 1 से प्रारंभ होने वाले अनुक्रम "1, 2, 5, 20, 180, 16143" (ओईआईएस में अनुक्रम A006602) द्वारा अनुक्रमित सरलीकृत परिसरों की संख्या वास्तव में n लेबल रहित तत्वों पर दी गई है।
अभिकलनात्मक समस्याएं
साधारण सम्मिश्र मान्यता समस्या है: एक परिमित एएससी दिया गया है, यह तय करें कि क्या ज्यामितीय प्राप्ति किसी दिए गए ज्यामितीय वस्तु के लिए होमोमोर्फिक है। यह समस्या डी ≥ 5 के लिए किसी भी डी-आयामी मैनिफोल्ड के लिए अनिर्णीत समस्या है।
अन्य अवधारणाओं से संबंध
एक अतिरिक्त संपत्ति के साथ एक सार सरल परिसर जिसे वृद्धि संपत्ति या विनिमय संपत्ति कहा जाता है, एक मैट्रॉइड उत्पन्न करता है। निम्नलिखित अभिव्यक्ति शर्तों के बीच संबंधों को दर्शाती है:
(हाइपरग्राफ = समुच्चय-परिवार ⊃ स्वतंत्रता-प्रणाली = सार-सरल-परिसर ⊃ मैट्रोइड्स)
यह भी देखें
- क्रुस्कल-काटोना प्रमेय
- सरल समुच्चय
संदर्भ
- ↑ Lee, John M., Introduction to Topological Manifolds, Springer 2011, ISBN 1-4419-7939-5, p153
- ↑ Korte, Bernhard; Lovász, László; Schrader, Rainer (1991). लालची. Springer-Verlag. p. 9. ISBN 3-540-18190-3.
- ↑ 3.0 3.1 3.2 3.3 Matoušek, Jiří (2007). Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry (2nd ed.). Berlin-Heidelberg: Springer-Verlag. ISBN 978-3-540-00362-5.
Written in cooperation with Anders Björner and Günter M. Ziegler
, Section 4.3