कोसाइन समानता: Difference between revisions
No edit summary |
No edit summary |
||
(14 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Similarity measure for number sequences}} | {{Short description|Similarity measure for number sequences}} | ||
[[डेटा विश्लेषण]] में, कोसाइन समानता [[आंतरिक उत्पाद स्थान|आंतरिक | [[डेटा विश्लेषण]] में, कोसाइन समानता [[आंतरिक उत्पाद स्थान|आंतरिक गुणन क्षेत्र]] में परिभाषित दो गैर-शून्य सदिश के बीच समानता का माप है। [[कोज्या|कोसाइन]] समानता सदिशों के बीच के कोण की कोज्या होती है; अर्थात्, यह उनकी लंबाई के गुणनफल से विभाजित सदिशों का डॉट गुणनफल है। इससे यह पता चलता है कि कोज्या समानता सदिशों के परिमाण पर निर्भर नहीं करती है, लेकिन केवल उनके कोण पर निर्भर करती है। कोसाइन समानता अधिकांशतः अंतराल <math>[-1, 1].</math> से संबंधित होती है। उदाहरण के लिए दो [[आनुपातिक वैक्टर|समानुपाती सदिशों]] में 1 की कोज्या समानता होती है और इस प्रकार दो [[ऑर्थोगोनल वैक्टर|लंबकोणीय]] [[आनुपातिक वैक्टर|सदिशों]] की कोसाइन समानता 0 होती है और दो [[विपरीत (गणित)|विपरीत]] सदिश में -1 की समानता होती है। कुछ संदर्भों में, सदिशों के घटक मान ऋणात्मक नहीं हो सकते है और जिस स्थिति में कोसाइन समानता <math>[0,1]</math>.के रूप में सीमित होती है | ||
उदाहरण के लिए | उदाहरण के लिए सूचना पुनर्प्राप्ति और पाठ माइनिंग में, प्रत्येक शब्द को भिन्न निर्देशांक दिया जाता है और दस्तावेज़ में प्रत्येक शब्द की घटनाओं की संख्या के सदिश द्वारा दस्तावेज़ का प्रतिनिधित्व किया जाता है। कोसाइन समानता तब इस बात का उपयोगी माप देता है कि उनकी विषय वस्तु के संदर्भ में और दस्तावेज़ों की लंबाई के अनुसार स्वतंत्र रूप से दो दस्तावेज़ों के समान होने की कितनी संभावना होती है।<ref>[[Amit Singhal|Singhal, Amit]] (2001). "[http://singhal.info/ieee2001.pdf Modern Information Retrieval: A Brief Overview]". ''Bulletin of the IEEE Computer Society Technical Committee on Data Engineering'' 24 (4): 35–43.</ref> | ||
[[डेटा खनन|डेटा]] माइनिंग के क्षेत्र में क्लस्टर के भीतर सामंजस्य को मापने के लिए प्रोद्योगिकीय का उपयोग किया जाता है।<ref>P.-N. Tan, M. Steinbach & V. Kumar, ''Introduction to Data Mining'', Addison-Wesley (2005), {{ISBN|0-321-32136-7}}, chapter 8; page 500.</ref> | [[डेटा खनन|डेटा]] माइनिंग के क्षेत्र में क्लस्टर के भीतर सामंजस्य को मापने के लिए प्रोद्योगिकीय का उपयोग किया जाता है।<ref>P.-N. Tan, M. Steinbach & V. Kumar, ''Introduction to Data Mining'', Addison-Wesley (2005), {{ISBN|0-321-32136-7}}, chapter 8; page 500.</ref> | ||
कोसाइन समानता का एक लाभ यह है कि इसकी संगणनात्मक जटिलता जो विशेष रूप से [[विरल मैट्रिक्स|असामान्य | कोसाइन समानता का एक लाभ यह है कि इसकी संगणनात्मक जटिलता जो विशेष रूप से [[विरल मैट्रिक्स|असामान्य आव्यूह]] के रूप में होती है और इस प्रकार केवल गैर-शून्य निर्देशांक पर विचार करने की आवश्यकता है। | ||
कोसाइन समानता के लिए अन्य नामों में ओतसुका ओरचिनी समानता के समरूपी कोसाइन गुणांक के रूप में सम्मलित होते है। कोसाइन समरूपी [[बाइनरी डेटा|बाइनरी]] आंकड़ों पर लागू किया गया है जिसे नीचे दिखाया गया है | कोसाइन समानता के लिए अन्य नामों में ओतसुका ओरचिनी समानता के समरूपी कोसाइन गुणांक के रूप में सम्मलित होते है। कोसाइन समरूपी [[बाइनरी डेटा|बाइनरी]] आंकड़ों पर लागू किया गया है जिसे नीचे दिखाया गया है | ||
Line 13: | Line 13: | ||
== परिभाषा == | == परिभाषा == | ||
यूक्लिडियन | दो गैर शून्य सदिश की कोसाइन यूक्लिडियन डॉट गुणन फॉर्मूला का उपयोग करके प्राप्त किया जा सकता है। | ||
:<math>\mathbf{A}\cdot\mathbf{B} | :<math>\mathbf{A}\cdot\mathbf{B} | ||
=\left\|\mathbf{A}\right\|\left\|\mathbf{B}\right\|\cos\theta</math> | =\left\|\mathbf{A}\right\|\left\|\mathbf{B}\right\|\cos\theta</math> | ||
दो n आयामी [[वेक्टर (ज्यामितीय)|सदिश (ज्यामितीय)]] के गुण को देखते हुए A और B कोसाइन समानता {{math|cos(θ)}}, एक सदिश गुणन और परिमाण (गणित) का उपयोग करके दर्शाया जाता है। | |||
:<math>\text{cosine similarity} =S_C (A,B):= \cos(\theta) = {\mathbf{A} \cdot \mathbf{B} \over \|\mathbf{A}\| \|\mathbf{B}\|} = \frac{ \sum\limits_{i=1}^{n}{A_i B_i} }{ \sqrt{\sum\limits_{i=1}^{n}{A_i^2}} \sqrt{\sum\limits_{i=1}^{n}{B_i^2}} },</math> | :<math>\text{cosine similarity} =S_C (A,B):= \cos(\theta) = {\mathbf{A} \cdot \mathbf{B} \over \|\mathbf{A}\| \|\mathbf{B}\|} = \frac{ \sum\limits_{i=1}^{n}{A_i B_i} }{ \sqrt{\sum\limits_{i=1}^{n}{A_i^2}} \sqrt{\sum\limits_{i=1}^{n}{B_i^2}} },</math> | ||
जहाँ <math>A_i</math> और <math>B_i</math> क्रमशः यूक्लिडियन सदिशों <math>\mathbf{A}</math> और <math>\mathbf{B}</math> के <math>i</math>वें घटकों के रूप में होते है। | |||
परिणामी समानता -1 से लेकर होती है जिसका अर्थ बिल्कुल विपरीत होता है | परिणामी समानता -1 से लेकर होती है जिसका अर्थ बिल्कुल विपरीत होता है और 1 का अर्थ बिल्कुल समान होता है और इस प्रकार 0 के साथ [[ओर्थोगोनालिटी|लंबकोणीयता]] या सहसंबंध का संकेत मिलता है, जबकि बीच के मान मध्यवर्ती समानता या असमानता का संकेत देते हैं। | ||
[[ | [[पाठ मिलान]] के लिए, सामान्यतया विशेषता सदिश A और B दस्तावेजों के आवृत्ति सदिश शब्द के रूप में होते हैं। कोसाइन समानता को तुलना के समय [[सामान्यीकरण (सांख्यिकी)]] दस्तावेज़ लंबाई की एक विधि के रूप में देखा जा सकता है। सूचना पुनर्प्राप्ति के स्थितियों में दो दस्तावेज़ों की कोसाइन समानता की सीमा <math>0 \to 1</math> के रूप में होती है, क्योंकि शब्द आवृत्ति ऋणात्मक नहीं हो सकती। यह टीएफ-आईडीएफ (शब्द आवृत्ति व्युत्क्रम दस्तावेज़ आवृत्ति) भार का उपयोग करते समय सही साबित होता है। दो शब्द आवृत्ति वैक्टर के बीच का कोण 90 डिग्री से अधिक नहीं हो सकता | ||
यदि सदिश के घटाव द्वारा गुणनफल सदिश को सामान्यीकृत किया जाता है, अर्थात <math>A - \bar{A}</math>), तो माप को केंद्रित कोसाइन समानता कहा जाता है और [[पियर्सन सहसंबंध गुणांक]] के बराबर होता है। केंद्रीकरण के उदाहरण के लिए इस रूप में होते है, <math>\text{if}\, A = [A_1, A_2]^T, \text{ then } \bar{A} = \left[\frac{(A_1+A_2)}{2},\frac{(A_1+A_2)}{2}\right]^T, \text{ so } A-\bar{A}= \left[\frac{(A_1-A_2)}{2},\frac{(-A_1+A_2)}{2}\right]^T.</math> | |||
=== कोसाइन दूरी === | === कोसाइन दूरी === | ||
शब्द कोसाइन दूरी<ref>{{cite web |url=https://reference.wolfram.com/language/ref/CosineDistance.html |title=कोसाइनडिस्टैंक - वोल्फ्राम लैंग्वेज डॉक्यूमेंटेशन|author=Wolfram Research (2007) |website=wolfram.com}}</ref> सामान्यतः | शब्द कोसाइन दूरी<ref>{{cite web |url=https://reference.wolfram.com/language/ref/CosineDistance.html |title=कोसाइनडिस्टैंक - वोल्फ्राम लैंग्वेज डॉक्यूमेंटेशन|author=Wolfram Research (2007) |website=wolfram.com}}</ref> सामान्यतः सकारात्मक क्षेत्र में कोसाइन समानता के पूरक के लिए उपयोग किया जाता है। | ||
: <math> \text{cosine distance} = D_C(A,B) := 1 - S_C(A,B).</math> यह ध्यान रखना महत्वपूर्ण है कि कोसाइन दूरी | : <math> \text{cosine distance} = D_C(A,B) := 1 - S_C(A,B).</math> | ||
:यह ध्यान रखना महत्वपूर्ण है कि कोसाइन दूरी वास्तविक क्षेत्र [[दूरी मीट्रिक|मीट्रिक]] नहीं होता है, क्योंकि इसमें त्रिकोण असमानता गुण को प्रदर्शित नहीं नहीं करती है या फिर औपचारिक रूप से श्वार्ज़ असमानता तथा यह संयोग एक्सिओम का उल्लंघन करती है। यह देखने की एक विधि है कि कोसाइन दूरी सदिश के <math>L_2</math> सामान्यीकरण की यूक्लिडियन दूरी का आधा होता है और और यूक्लिडियन दूरी का वर्ग त्रिभुज असमानता को भी संतुष्ट नहीं करता है और इस प्रकार समान क्रम को बनाए रखते हुए त्रिभुज असमानता गुण की पूर्वावस्था के लिए कोणीय दूरी या यूक्लिडियन दूरी में परिवर्तित कर दिया जाता है और इस प्रकार वैकल्पिक रूप से कोसाइन के संदर्भ में त्रिकोणीय असमानता जो कोणीय दूरियां बनाने के लिए काम करती है वे सीधे कोसाइन के संदर्भ में व्यक्त की जा सकती है। जिसे नीचे दिखाया गया है। | |||
=== कोणीय दूरी और समानता === | === कोणीय दूरी और समानता === | ||
किसी भी दो वैक्टर <math>A</math> और <math>B</math> के बीच में सामान्य कोण को कोणीय दूरी कहा जाता है और यह औपचारिक दूरी मीट्रिक होता है इसकी गणना कोसाइन समानता से की जा सकती है।<ref>{{Cite web|title=कोसाइन दूरी, कोसाइन समानता, कोणीय कोसाइन दूरी, कोणीय कोसाइन समानता|url=https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/cosdist.htm|access-date=2020-07-11|website=www.itl.nist.gov}}</ref> तब कोणीय दूरी मीट्रिक का पूरक का प्रयोग कोणीय समानता फलन को 0 और 1 के बीच परिबद्ध करने के लिए किया जा सकता है। | |||
जब सदिश तत्व धनात्मक या ऋणात्मक हो सकते हैं | जब सदिश तत्व धनात्मक या ऋणात्मक हो सकते हैं, | ||
:<math>\text{angular distance} = D_{\theta} := \frac{ \arccos( \text{cosine similarity} ) }{ \pi } = \frac{\theta}{\pi}</math> | :<math>\text{angular distance} = D_{\theta} := \frac{ \arccos( \text{cosine similarity} ) }{ \pi } = \frac{\theta}{\pi}</math> | ||
:<math>\text{angular similarity} = S_{\theta} := 1 - \text{angular distance} = 1 - \frac{\theta}{\pi}</math> | :<math>\text{angular similarity} = S_{\theta} := 1 - \text{angular distance} = 1 - \frac{\theta}{\pi}</math> | ||
यदि सदिश तत्व अधिकांशतः सकारात्मक रूप में होते हैं | |||
:<math>\text{angular distance} = D_{\theta} := \frac{ 2 \cdot \arccos( \text{cosine similarity} ) }{ \pi } = \frac{2\theta}{\pi}</math> | :<math>\text{angular distance} = D_{\theta} := \frac{ 2 \cdot \arccos( \text{cosine similarity} ) }{ \pi } = \frac{2\theta}{\pi}</math> | ||
:<math>\text{angular similarity} = S_{\theta} := 1 - \text{angular distance} = 1 - \frac{2\theta}{\pi}</math> | :<math>\text{angular similarity} = S_{\theta} := 1 - \text{angular distance} = 1 - \frac{2\theta}{\pi}</math> | ||
दुर्भाग्यवश, व्युत्क्रम कोसाइन ({{math|अरक्कोस}}) फलन की गणना धीमी गति से की जाती है, जिससे अधिक सामान्य मीट्रिक कोसाइन दूरी का उपयोग करने की तुलना में कोणीय दूरी का उपयोग अधिक संगणनात्मक रूप से महंगा हो जाता है। | |||
=== | === L<sub>2</sub>सामान्यीकृत यूक्लिडियन दूरी === | ||
कोसाइन दूरी के लिए एक और प्रभावी प्रतिनिधि | कोसाइन दूरी के लिए एक और प्रभावी प्रतिनिधि यूक्लिडियन सदिश <math>L_2</math> के सामान्यीकरण द्वारा प्राप्त किया जा सकता है और उसके बाद सामान्य [[यूक्लिडियन दूरी]] के अनुप्रयोग के बाद इस प्रोद्योगिकीय का उपयोग करते है और इस प्रकार प्रत्येक सदिश में प्रत्येक पद को पहले सदिश के परिमाण से विभाजित किया जाता है, जिससे इकाई लंबाई का सदिश प्राप्त होता है। फिर किन्हीं दो सदिशों के अंत-बिंदुओं पर यूक्लिडियन दूरी यथार्थ मीट्रिक के रूप में होता है, जो सदिशों की किसी भी तुलना के लिए कोसाइन दूरी के समान क्रम के रूप में देता है और इस प्रकार यूक्लिडियन दूरी का [[मोनोटोनिक परिवर्तन|एकदिष्ट परिवर्तन]] को इस प्रकार दिखाया जाता है और इसके अतिरिक्त यह सदिशों की तुलना से बचता है और उचित मीट्रिक प्राप्त करने के लिए संभावित रूप से बहुमूल्य त्रिकोणमितीय संचालन की आवश्यकता होती है। एक बार सामान्यीकरण हो जाने के बाद सदिश क्षेत्र का उपयोग किसी भी यूक्लिडियन क्षेत्र के लिए उपलब्ध प्रोद्योगिकीय की पूरी श्रृंखला के साथ किया जाता है और विशेष रूप से मानक [[आयामीता में कमी|विमीयता में कमी]] प्रोद्योगिकीय के रूप में होती है। यह सामान्यीकृत फॉर्म दूरी अधिकांशतः कई गहन शिक्षण कलन विधि में उपयोग की जाती है। | ||
=== ओत्सुका-ओचियाई गुणांक === | === ओत्सुका-ओचियाई गुणांक === | ||
जीव विज्ञान में, एक ऐसी ही अवधारणा है जिसे ओत्सुका | जीव विज्ञान में, एक ऐसी ही अवधारणा है जिसे ओत्सुका ओचियाई गुणांक के रूप में जाना जाता है।<ref name="Omori">{{cite journal | ||
| author = Omori, Masae | | author = Omori, Masae | ||
| title = Geological idea of Yanosuke Otuka, who built the foundation of neotectonics (geoscientist) | | title = Geological idea of Yanosuke Otuka, who built the foundation of neotectonics (geoscientist) | ||
Line 64: | Line 64: | ||
| doi = 10.15080/agcjchikyukagaku.58.4_256 | | doi = 10.15080/agcjchikyukagaku.58.4_256 | ||
| url = https://www.jstage.jst.go.jp/article/agcjchikyukagaku/58/4/58_KJ00004410060/_pdf/-char/en | | url = https://www.jstage.jst.go.jp/article/agcjchikyukagaku/58/4/58_KJ00004410060/_pdf/-char/en | ||
}}</ref> | }}</ref> जिसका नाम यानोसुके ओत्सुका के नाम पर रखा गया है, जिसे ओत्सुका, ऊत्सुका या ओटुका जापानी और अकीरा ओचियाई जापानी: 落合 明 भी कहा जाता है,<ref name="Ochiai1957">{{cite journal | ||
| author = Ochiai, Akira | | author = Ochiai, Akira | ||
| title = Zoogeographical studies on the soleoid fishes found in Japan and its neighhouring regions-II | | title = Zoogeographical studies on the soleoid fishes found in Japan and its neighhouring regions-II | ||
Line 83: | Line 75: | ||
| url = https://www.jstage.jst.go.jp/article/suisan1932/22/9/22_9_526/_pdf/-char/en | | url = https://www.jstage.jst.go.jp/article/suisan1932/22/9/22_9_526/_pdf/-char/en | ||
| doi-access = free | | doi-access = free | ||
}}</ref> ओचियाई-बार्कमैन के रूप में | }}</ref> ओचियाई-बार्कमैन या ओचियाई गुणांक के रूप में जाना जाता है<ref name="Barkman1958">{{cite book | ||
| author = Barkman, Jan J. | | author = Barkman, Jan J. | ||
| title = Phytosociology and Ecology of Cryptogamic Epiphytes: Including a Taxonomic Survey and Description of Their Vegetation Units in Europe | | title = Phytosociology and Ecology of Cryptogamic Epiphytes: Including a Taxonomic Survey and Description of Their Vegetation Units in Europe | ||
Line 89: | Line 81: | ||
| year = 1958 | | year = 1958 | ||
| location = Assen | | location = Assen | ||
}}</ref> | }}</ref> जिसे इस प्रकार दर्शाया जा सकता है,<ref name="Romesburg1984">{{cite book | ||
| author = H. Charles Romesburg | | author = H. Charles Romesburg | ||
| title = Cluster Analysis for Researchers | | title = Cluster Analysis for Researchers | ||
Line 97: | Line 89: | ||
| page = 149 | | page = 149 | ||
| url = {{Google books|ZuIPv7OKm10C|page=149|plainurl=yes}} | | url = {{Google books|ZuIPv7OKm10C|page=149|plainurl=yes}} | ||
}}</ref> | }}</ref> | ||
:<math>K =\frac{|A \cap B|}{\sqrt{|A| \times |B|}}</math> | :<math>K =\frac{|A \cap B|}{\sqrt{|A| \times |B|}}</math> | ||
यहाँ, <math>A</math> और <math>B</math> [[सेट (गणित)]] हैं | यहाँ, <math>A</math> और <math>B</math> [[सेट (गणित)|समुच्चय (गणित)]] के रूप में हैं और <math>|A|</math> तत्वों की संख्या है <math>A</math>. यदि समुच्चय को बिट सदिश के रूप में दर्शाया जाता है, तो ओत्सुका-ओचियाई गुणांक कोसाइन समानता के समान देखा जा सकता है। | ||
हाल की एक किताब में,<ref name="Howarth2017">{{cite book | हाल की एक किताब में,<ref name="Howarth2017">{{cite book | ||
Line 112: | Line 104: | ||
| s2cid = 67081034 | | s2cid = 67081034 | ||
| url = {{Google books|MNwlDwAAQBAJ|page=421|plainurl=yes}} | | url = {{Google books|MNwlDwAAQBAJ|page=421|plainurl=yes}} | ||
}}</ref> गुणांक को ओत्सुका परिवार के नाम वाले एक अन्य जापानी शोधकर्ता को गलत विधि | }}</ref> गुणांक को ओत्सुका परिवार के नाम वाले एक अन्य जापानी शोधकर्ता को गलत विधि से आरोपित किया गया है। इससे भ्रम उत्पन्न होता है क्योंकि 1957 में अकीरा ओचियाई गुणांक को केवल ओत्सुका के लिए जिम्मेदार ठहराते हैं। <ref name="Ochiai1957"/> इकुसो हमाई के एक लेख का हवाला देते हुए जापानी लेख में पहले इसका उल्लेख नहीं किया गया है,<ref name="Hamai1955">{{cite journal | ||
| author = Hamai, Ikuso | | author = Hamai, Ikuso | ||
| title = Stratification of community by means of "community coefficient" (continued) | | title = Stratification of community by means of "community coefficient" (continued) | ||
Line 122: | Line 114: | ||
| doi = 10.18960/seitai.5.1_41 | | doi = 10.18960/seitai.5.1_41 | ||
| url = https://www.jstage.jst.go.jp/article/seitai/5/1/5_KJ00002869450/_pdf/-char/en | | url = https://www.jstage.jst.go.jp/article/seitai/5/1/5_KJ00002869450/_pdf/-char/en | ||
}}</ref> जो बदले में यानोसुके ओत्सुका के मूल 1936 के लेख का हवाला देते हैं।<ref name="Otsuka1936"/> | }}</ref> जो बदले में यानोसुके ओत्सुका के मूल 1936 के लेख का हवाला देते हैं।<ref name="Otsuka1936">{{cite journal | ||
| author = Otsuka, Yanosuke | |||
| title = The faunal character of the Japanese Pleistocene marine Mollusca, as evidence of the climate having become colder during the Pleistocene in Japan | |||
| journal = Bulletin of the Biogeographical Society of Japan | |||
| year = 1936 | |||
| volume = 6 | |||
| issue = 16 | |||
| pages = 165–170 | |||
}}</ref> | |||
== गुण == | == गुण == | ||
कोसाइन समानता | कोसाइन समानता का सर्वाधिक उल्लेखनीय गुण यह है कि यह भिन्न -भिन्न सदिश आयामों की तुलना में निरपेक्ष के अतिरिक्त पूर्ण सम्बन्ध को दर्शाता है। किसी भी स्थिरांक <math>a</math> और सदिश <math>V</math> के लिए सदिश <math>V</math> और <math>aV</math> अधिकतम रूप में समान होते हैं। इस प्रकार माप डेटा के लिए सबसे उपयुक्त होता है जहां आवृत्ति निरपेक्ष मूल्यों की तुलना में अधिक महत्वपूर्ण होती है और विशेष रूप से दस्तावेजों में शब्द आवृत्ति के रूप में होती है। चूंकि, जेन्सेन शैनन एसईडी और त्रिकोणीय विचलन जैसे सूचना सिद्धांत में ग्राउंडिंग के साथ हालिया मेट्रिक्स को कम से कम कुछ संदर्भों में अच्छे शब्दार्थ के रूप में दिखाया गया है।<ref>{{cite conference | ||
चूंकि | |||
<ref>{{cite conference | |||
|url=https://link.springer.com/chapter/10.1007/978-3-319-46759-7_16 | |url=https://link.springer.com/chapter/10.1007/978-3-319-46759-7_16 | ||
|title= A Tale of Four Metrics | |title= A Tale of Four Metrics | ||
Line 138: | Line 135: | ||
|doi= 10.1007/978-3-319-46759-7_16 | |doi= 10.1007/978-3-319-46759-7_16 | ||
|conference= Similarity Search and Applications | |conference= Similarity Search and Applications | ||
|id=}}</ref> | |id=}}</ref> | ||
कोसाइन समानता यूक्लिडियन दूरी से निम्नानुसार संबंधित है। यूक्लिडियन दूरी को सामान्य रूप से | |||
कोसाइन समानता यूक्लिडियन दूरी से निम्नानुसार संबंधित होती है। यूक्लिडियन दूरी को सामान्य रूप से <math>\|A - B\|</math> के रूप में निरूपित और निरीक्षण करते है। | |||
:<math>\|A - B\|^2 = (A - B) \cdot (A - B) = \|A\|^2 + \|B\|^2 - 2 (A \cdot B)\ </math> (ध्रुवीकरण पहचान#Relation_to_the_law_of_cosines) | :<math>\|A - B\|^2 = (A - B) \cdot (A - B) = \|A\|^2 + \|B\|^2 - 2 (A \cdot B)\ </math> (ध्रुवीकरण पहचान#Relation_to_the_law_of_cosines) | ||
[[बहुपद विस्तार]] | [[बहुपद विस्तार]] द्वारा जब {{mvar|A}} और {{mvar|B}} इकाई लंबाई <math>\|A\|^2 = \|B\|^2 = 1</math> के लिए सामान्यीकृत किया जाता है, तो यह अभिव्यक्ति | ||
:<math>2 (1 - \cos(A, B)).</math> | :<math>2 (1 - \cos(A, B)).</math>के बराबर होती है। | ||
संक्षेप में, कोसाइन दूरी को यूक्लिडियन दूरी के रूप में व्यक्त किया जा सकता है | संक्षेप में, कोसाइन दूरी को यूक्लिडियन दूरी के रूप में व्यक्त किया जा सकता है | ||
:<math>D_C(A, B) = \frac{\|A - B\|^2}{2}\quad\mathrm{when}\quad\|A\|^2 = \|B\|^2 = 1</math>. | :<math>D_C(A, B) = \frac{\|A - B\|^2}{2}\quad\mathrm{when}\quad\|A\|^2 = \|B\|^2 = 1</math>. | ||
यूक्लिडियन दूरी को जीवा दूरी कहा जाता है | यूक्लिडियन दूरी को जीवा दूरी कहा जाता है, क्योंकि यह यूनिट वृत्त पर जीवा की लंबाई है और यह सदिशों के बीच यूक्लिडियन दूरी होती है, जो उनके भीतर वर्ग मानों के इकाई योग के लिए सामान्यीकृत रूप में होते है। | ||
'[[अशक्त वितरण]]:' डेटा के लिए | '[[अशक्त वितरण|शून्य वितरण]]:' डेटा, जो कोसाइन समानता के लिए ऋणात्मक तथा धनात्मक हो सकता है, दो स्वतंत्र यादृच्छिक इकाई सदिश के डॉट गुणन का वितरण है। इस बंटन का माध्य शून्य और विचरण <math>1/n</math> के रूप में होता है, जहाँ <math>n</math> आयामों की संख्या है और यद्यपि वितरण -1 और +1 के बीच सीमित रूप में है, जैसे <math>n</math> बड़ा होता है वितरण [[सामान्य वितरण]] द्वारा तेजी से अच्छी तरह से अनुमानित होता है।<ref>{{cite journal | ||
| author = Spruill, Marcus C. | | author = Spruill, Marcus C. | ||
| year = 2007 | | year = 2007 | ||
Line 159: | Line 157: | ||
| doi = 10.1214/ECP.v12-1294 | | doi = 10.1214/ECP.v12-1294 | ||
| doi-access = free | | doi-access = free | ||
}}</ref><ref>{{cite web |url=https://stats.stackexchange.com/q/85916 |work=CrossValidated |title=Distribution of dot products between two random unit vectors in RD }}</ref> अन्य प्रकार के डेटा जैसे [[ bitstream ]] | }}</ref><ref>{{cite web |url=https://stats.stackexchange.com/q/85916 |work=CrossValidated |title=Distribution of dot products between two random unit vectors in RD }}</ref> अन्य प्रकार के डेटा जैसे [[ bitstream |बिटस्ट्रीम]] जो केवल मान 0 या 1 के रूप में लेते हैं, [[अशक्त वितरण|शून्य]] वितरण एक भिन्न के रूप में लेता है और इसका एक गैर-शून्य माध्य होता है।<ref>{{cite journal | author = Graham L. Giller | year = 2012| title = रैंडम बिटस्ट्रीम के सांख्यिकीय गुण और कोसाइन समानता का नमूना वितरण| journal = Giller Investments Research Notes | number = 20121024/1 | doi = 10.2139/ssrn.2167044| s2cid = 123332455}}</ref> | ||
== कोज्या समानता के लिए त्रिभुज असमानता == | == कोज्या समानता के लिए त्रिभुज असमानता == | ||
कोणों के लिए साधारण त्रिभुज असमानता | कोणों के लिए साधारण त्रिभुज में असमानता होती है अर्थात इकाई अति क्षेत्र पर चाप की लंबाई के रूप में हमें देती है | ||
:<math>|~\angle{AC} - \angle{CB}~| \le ~\angle{AB}~ \le ~\angle{AC}~ + ~\angle{CB}~.</math> | :<math>|~\angle{AC} - \angle{CB}~| \le ~\angle{AB}~ \le ~\angle{AC}~ + ~\angle{CB}~.</math> | ||
क्योंकि कोज्या फलन एक कोण के रूप में घटता है {{math|[0, {{pi}}]}} रेडियन बढ़ता है, तो इन असमानताओं की भावना उलट जाती है जब हम प्रत्येक | क्योंकि कोज्या फलन एक कोण के रूप में घटता है {{math|[0, {{pi}}]}} रेडियन बढ़ता है, तो इन असमानताओं की भावना उलट जाती है जब हम प्रत्येक मान का कोसाइन लेते हैं | ||
:<math>\cos(\angle{AC} - \angle{CB}) \ge \cos(\angle{AB}) \ge \cos(\angle{AC} + \angle{CB}).</math> | :<math>\cos(\angle{AC} - \angle{CB}) \ge \cos(\angle{AB}) \ge \cos(\angle{AC} + \angle{CB}).</math> | ||
कोसाइन जोड़ और घटाव सूत्रों का उपयोग करके, इन दो असमानताओं को मूल कोसाइन के रूप में लिखा जा सकता है, | कोसाइन जोड़ और घटाव सूत्रों का उपयोग करके, इन दो असमानताओं को मूल कोसाइन के रूप में लिखा जा सकता है, | ||
:<math>\cos(A,C) \cdot \cos(C,B) + \sqrt{\left(1-\cos(A,C)^2\right)\cdot\left(1-\cos(C,B)^2\right)} \geq \cos(A,B),</math> | :<math>\cos(A,C) \cdot \cos(C,B) + \sqrt{\left(1-\cos(A,C)^2\right)\cdot\left(1-\cos(C,B)^2\right)} \geq \cos(A,B),</math> | ||
:<math>\cos(A,B) \geq \cos(A,C) \cdot \cos(C,B) - \sqrt{\left(1-\cos(A,C)^2\right)\cdot\left(1-\cos(C,B)^2\right)}.</math> | :<math>\cos(A,B) \geq \cos(A,C) \cdot \cos(C,B) - \sqrt{\left(1-\cos(A,C)^2\right)\cdot\left(1-\cos(C,B)^2\right)}.</math> | ||
त्रिभुज असमानता के इस रूप का उपयोग दो वस्तुओं | त्रिभुज असमानता के इस रूप का उपयोग दो वस्तुओं A और B की न्यूनतम और अधिकतम समानता को सीमित करने के लिए किया जाता है यदि किसी संदर्भ में वस्तु सी की समानता पहले से ही ज्ञात हो तो इसका उपयोग उदाहरण के लिए मीट्रिक डेटा इंडेक्सिंग में किया जाता है, लेकिन इसका उपयोग गोलाकार [[k-मतलब क्लस्टरिंग|k-मध्यपद क्लस्टरिंग]] में तेजी लाने के लिए भी किया जाता है<ref>{{Cite journal|last1=Schubert|first1=Erich|last2=Lang|first2=Andreas|last3=Feher|first3=Gloria|date=2021|editor-last=Reyes|editor-first=Nora|editor2-last=Connor|editor2-first=Richard|editor3-last=Kriege|editor3-first=Nils|editor4-last=Kazempour|editor4-first=Daniyal|editor5-last=Bartolini|editor5-first=Ilaria|editor6-last=Schubert|editor6-first=Erich|editor7-last=Chen|editor7-first=Jian-Jia|title=गोलाकार के-मीन्स को तेज करना|url=https://link.springer.com/chapter/10.1007%2F978-3-030-89657-7_17|journal=Similarity Search and Applications|series=Lecture Notes in Computer Science|volume=13058 |language=en|location=Cham|publisher=Springer International Publishing|pages=217–231|doi=10.1007/978-3-030-89657-7_17 |arxiv=2107.04074 |isbn=978-3-030-89657-7|s2cid=235790358 }}</ref> उसी तरह यूक्लिडियन त्रिकोण असमानता का उपयोग नियमित के साधनों को तेज करने के लिए किया गया है। | ||
== शीतल कोसाइन उपाय == | == शीतल कोसाइन उपाय == | ||
दो सदिशों के बीच | सॉफ्ट कोसाइन या दो सदिशों के बीच "सॉफ्ट " समानता विशेषताओं के जोड़ों के बीच समानता पर विचार करता है।<ref>{{cite journal|last1=Sidorov|first1=Grigori|last2=Gelbukh|first2=Alexander|last3=Gómez-Adorno|first3=Helena|last4=Pinto|first4=David|title=Soft Similarity and Soft Cosine Measure: Similarity of Features in Vector Space Model|journal=Computación y Sistemas|volume=18|issue=3|pages=491–504|doi=10.13053/CyS-18-3-2043|url=http://cys.cic.ipn.mx/ojs/index.php/CyS/article/view/2043|access-date=7 October 2014|date=29 September 2014}}</ref> संकीर्ण कोसाइन समानता [[ वेक्टर अंतरिक्ष मॉडल |सदिश क्षेत्र मॉडल]] (वीएसएम) के लक्षणों को स्वतंत्र या पूरी तरह से भिन्न मानता है, जबकि सॉफ्ट कोसाइन माप वीएसएम में सुविधाओं की समानता पर विचार करने का प्रस्ताव करता है, जो कोसाइन और सॉफ्ट कोसाइन की अवधारणा के साथ-साथ विचार को सामान्य करने में मदद करता है। | ||
उदाहरण के लिए, [[प्राकृतिक भाषा प्रसंस्करण]] (एनएलपी) के क्षेत्र में सुविधाओं के बीच समानता बहुत | उदाहरण के लिए, [[प्राकृतिक भाषा प्रसंस्करण]] (एनएलपी) के क्षेत्र में सुविधाओं के बीच समानता बहुत सहज रूप में होती है और इस प्रकार शब्द एन-ग्राम या सिंटैक्टिक एन-ग्राम जैसी विशेषताएं काफी समान हो सकती हैं<ref>{{cite book|last1=Sidorov|first1=Grigori|title=कम्प्यूटेशनल इंटेलिजेंस में अग्रिम|volume=7630|last2=Velasquez |first2=Francisco|last3= Stamatatos|first3= Efstathios |last4=Gelbukh|first4=Alexander|last5=Chanona-Hernández|first5=Liliana|publisher=LNAI 7630|isbn=978-3-642-37798-3|pages=1–11|doi=10.1007/978-3-642-37798-3_1|series=Lecture Notes in Computer Science|year=2013}}</ref> चूंकि औपचारिक रूप से उन्हें वीएसएम में विभिन्न विशेषताओं के रूप में माना जाता है। उदाहरण के लिए प्ले और गेम भिन्न-भिन्न शब्द होते हैं और इस प्रकार वीएसएम में विभिन्न बिंदुओं पर मैप किए गए; फिर भी वे शब्दार्थ से संबंधित होते है और इस प्रकार एन-ग्राम या सिंटैक्टिक एन-ग्राम के स्थितियों में [[लेवेनशेटिन दूरी]] को लागू किया जा सकता है वास्तव में, लेवेनशेटिन दूरी को शब्दों पर भी लागू किया जा सकता है। | ||
सॉफ्ट कोसाइन की गणना के लिए | सॉफ्ट कोसाइन की गणना के लिए आव्यूह {{math|'''s'''}} सुविधाओं के बीच समानता को इंगित करने के लिए उपयोग किया जाता है। इसकी गणना लेवेनशेटिन दूरी[[ शब्दतंत्र | वर्डनेट]] समानता या अन्य समानता के उपायों के माध्यम से की जा सकती है। फिर हम इस आव्यूह से गुणा करते हैं। | ||
दो दिया {{math|''N''}}-आयाम सदिश | दो दिया {{math|''N''}}-आयाम सदिश <math>a</math> और <math>b</math>, सॉफ्ट कोसाइन समानता की गणना निम्नानुसार की जाती है | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 186: | Line 182: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहाँ {{math|''s<sub>ij</sub>'' {{=}} similarity(feature<sub>''i''</sub>, feature<sub>''j''</sub>)}}. | |||
यदि | यदि लक्षण ({{math|''s<sub>ii</sub>'' {{=}} 1}}, {{math|''s<sub>ij</sub>'' {{=}} 0}} के लिए {{math|''i'' ≠ ''j''}}), के बीच कोई समानता नहीं है, तो दिया गया समीकरण पारंपरिक कोसाइन समानता सूत्र के बराबर है। | ||
इस उपाय की [[समय जटिलता]] द्विघात है, जो इसे वास्तविक दुनिया के कार्यों पर लागू करती है। ध्यान दें कि जटिलता को | इस उपाय की [[समय जटिलता]] द्विघात के रूप में है, जो इसे वास्तविक दुनिया के कार्यों पर लागू करती है। ध्यान दें कि जटिलता को उपद्विघात तक कम किया जा सकता है।<ref>{{cite conference | last1 = Novotný | first1 = Vít | conference = The 27th ACM International Conference on Information and Knowledge Management | date = 2018 | location = Torun, Italy | title = सॉफ्ट कोसाइन उपाय के लिए कार्यान्वयन नोट्स| arxiv = 1808.09407 | pages = 1639–1642 | publisher = Association for Computing Machinery | doi = 10.1145/3269206.3269317 | isbn = 978-1-4503-6014-2 }}</ref> [[जेनसिम]] ओपन सोर्स लाइब्रेरी में इस तरह के सॉफ्ट कोसाइन समानता के एक कुशल कार्यान्वयन को सम्मलित किया गया है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 197: | Line 193: | ||
* [[सह - संबंध]] | * [[सह - संबंध]] | ||
* [[जैकार्ड इंडेक्स]] | * [[जैकार्ड इंडेक्स]] | ||
* [[सिमरणक]] | * [[सिमरणक|सिमरैंक]] | ||
* सूचना की पुनर्प्राप्ति | * सूचना की पुनर्प्राप्ति | ||
Line 210: | Line 206: | ||
{{Machine learning evaluation metrics}} | {{Machine learning evaluation metrics}} | ||
{{DEFAULTSORT:Cosine Similarity}} | {{DEFAULTSORT:Cosine Similarity}} | ||
[[Category: | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Created On 07/05/2023]] | [[Category:Collapse templates|Cosine Similarity]] | ||
[[Category:Created On 07/05/2023|Cosine Similarity]] | |||
[[Category:Lua-based templates|Cosine Similarity]] | |||
[[Category:Machine Translated Page|Cosine Similarity]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Cosine Similarity]] | |||
[[Category:Pages with script errors|Cosine Similarity]] | |||
[[Category:Sidebars with styles needing conversion|Cosine Similarity]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Cosine Similarity]] | |||
[[Category:Templates generating microformats|Cosine Similarity]] | |||
[[Category:Templates that add a tracking category|Cosine Similarity]] | |||
[[Category:Templates that are not mobile friendly|Cosine Similarity]] | |||
[[Category:Templates that generate short descriptions|Cosine Similarity]] | |||
[[Category:Templates using TemplateData|Cosine Similarity]] | |||
[[Category:Wikipedia metatemplates|Cosine Similarity]] | |||
[[Category:डेटा विश्लेषण|Cosine Similarity]] | |||
[[Category:समानता के उपाय|Cosine Similarity]] | |||
[[Category:सूचना पुनर्प्राप्ति तकनीक|Cosine Similarity]] |
Latest revision as of 16:55, 17 May 2023
डेटा विश्लेषण में, कोसाइन समानता आंतरिक गुणन क्षेत्र में परिभाषित दो गैर-शून्य सदिश के बीच समानता का माप है। कोसाइन समानता सदिशों के बीच के कोण की कोज्या होती है; अर्थात्, यह उनकी लंबाई के गुणनफल से विभाजित सदिशों का डॉट गुणनफल है। इससे यह पता चलता है कि कोज्या समानता सदिशों के परिमाण पर निर्भर नहीं करती है, लेकिन केवल उनके कोण पर निर्भर करती है। कोसाइन समानता अधिकांशतः अंतराल से संबंधित होती है। उदाहरण के लिए दो समानुपाती सदिशों में 1 की कोज्या समानता होती है और इस प्रकार दो लंबकोणीय सदिशों की कोसाइन समानता 0 होती है और दो विपरीत सदिश में -1 की समानता होती है। कुछ संदर्भों में, सदिशों के घटक मान ऋणात्मक नहीं हो सकते है और जिस स्थिति में कोसाइन समानता .के रूप में सीमित होती है
उदाहरण के लिए सूचना पुनर्प्राप्ति और पाठ माइनिंग में, प्रत्येक शब्द को भिन्न निर्देशांक दिया जाता है और दस्तावेज़ में प्रत्येक शब्द की घटनाओं की संख्या के सदिश द्वारा दस्तावेज़ का प्रतिनिधित्व किया जाता है। कोसाइन समानता तब इस बात का उपयोगी माप देता है कि उनकी विषय वस्तु के संदर्भ में और दस्तावेज़ों की लंबाई के अनुसार स्वतंत्र रूप से दो दस्तावेज़ों के समान होने की कितनी संभावना होती है।[1]
डेटा माइनिंग के क्षेत्र में क्लस्टर के भीतर सामंजस्य को मापने के लिए प्रोद्योगिकीय का उपयोग किया जाता है।[2]
कोसाइन समानता का एक लाभ यह है कि इसकी संगणनात्मक जटिलता जो विशेष रूप से असामान्य आव्यूह के रूप में होती है और इस प्रकार केवल गैर-शून्य निर्देशांक पर विचार करने की आवश्यकता है।
कोसाइन समानता के लिए अन्य नामों में ओतसुका ओरचिनी समानता के समरूपी कोसाइन गुणांक के रूप में सम्मलित होते है। कोसाइन समरूपी बाइनरी आंकड़ों पर लागू किया गया है जिसे नीचे दिखाया गया है
परिभाषा
दो गैर शून्य सदिश की कोसाइन यूक्लिडियन डॉट गुणन फॉर्मूला का उपयोग करके प्राप्त किया जा सकता है।
दो n आयामी सदिश (ज्यामितीय) के गुण को देखते हुए A और B कोसाइन समानता cos(θ), एक सदिश गुणन और परिमाण (गणित) का उपयोग करके दर्शाया जाता है।
जहाँ और क्रमशः यूक्लिडियन सदिशों और के वें घटकों के रूप में होते है।
परिणामी समानता -1 से लेकर होती है जिसका अर्थ बिल्कुल विपरीत होता है और 1 का अर्थ बिल्कुल समान होता है और इस प्रकार 0 के साथ लंबकोणीयता या सहसंबंध का संकेत मिलता है, जबकि बीच के मान मध्यवर्ती समानता या असमानता का संकेत देते हैं।
पाठ मिलान के लिए, सामान्यतया विशेषता सदिश A और B दस्तावेजों के आवृत्ति सदिश शब्द के रूप में होते हैं। कोसाइन समानता को तुलना के समय सामान्यीकरण (सांख्यिकी) दस्तावेज़ लंबाई की एक विधि के रूप में देखा जा सकता है। सूचना पुनर्प्राप्ति के स्थितियों में दो दस्तावेज़ों की कोसाइन समानता की सीमा के रूप में होती है, क्योंकि शब्द आवृत्ति ऋणात्मक नहीं हो सकती। यह टीएफ-आईडीएफ (शब्द आवृत्ति व्युत्क्रम दस्तावेज़ आवृत्ति) भार का उपयोग करते समय सही साबित होता है। दो शब्द आवृत्ति वैक्टर के बीच का कोण 90 डिग्री से अधिक नहीं हो सकता
यदि सदिश के घटाव द्वारा गुणनफल सदिश को सामान्यीकृत किया जाता है, अर्थात ), तो माप को केंद्रित कोसाइन समानता कहा जाता है और पियर्सन सहसंबंध गुणांक के बराबर होता है। केंद्रीकरण के उदाहरण के लिए इस रूप में होते है,
कोसाइन दूरी
शब्द कोसाइन दूरी[3] सामान्यतः सकारात्मक क्षेत्र में कोसाइन समानता के पूरक के लिए उपयोग किया जाता है।
- यह ध्यान रखना महत्वपूर्ण है कि कोसाइन दूरी वास्तविक क्षेत्र मीट्रिक नहीं होता है, क्योंकि इसमें त्रिकोण असमानता गुण को प्रदर्शित नहीं नहीं करती है या फिर औपचारिक रूप से श्वार्ज़ असमानता तथा यह संयोग एक्सिओम का उल्लंघन करती है। यह देखने की एक विधि है कि कोसाइन दूरी सदिश के सामान्यीकरण की यूक्लिडियन दूरी का आधा होता है और और यूक्लिडियन दूरी का वर्ग त्रिभुज असमानता को भी संतुष्ट नहीं करता है और इस प्रकार समान क्रम को बनाए रखते हुए त्रिभुज असमानता गुण की पूर्वावस्था के लिए कोणीय दूरी या यूक्लिडियन दूरी में परिवर्तित कर दिया जाता है और इस प्रकार वैकल्पिक रूप से कोसाइन के संदर्भ में त्रिकोणीय असमानता जो कोणीय दूरियां बनाने के लिए काम करती है वे सीधे कोसाइन के संदर्भ में व्यक्त की जा सकती है। जिसे नीचे दिखाया गया है।
कोणीय दूरी और समानता
किसी भी दो वैक्टर और के बीच में सामान्य कोण को कोणीय दूरी कहा जाता है और यह औपचारिक दूरी मीट्रिक होता है इसकी गणना कोसाइन समानता से की जा सकती है।[4] तब कोणीय दूरी मीट्रिक का पूरक का प्रयोग कोणीय समानता फलन को 0 और 1 के बीच परिबद्ध करने के लिए किया जा सकता है।
जब सदिश तत्व धनात्मक या ऋणात्मक हो सकते हैं,
यदि सदिश तत्व अधिकांशतः सकारात्मक रूप में होते हैं
दुर्भाग्यवश, व्युत्क्रम कोसाइन (अरक्कोस) फलन की गणना धीमी गति से की जाती है, जिससे अधिक सामान्य मीट्रिक कोसाइन दूरी का उपयोग करने की तुलना में कोणीय दूरी का उपयोग अधिक संगणनात्मक रूप से महंगा हो जाता है।
L2सामान्यीकृत यूक्लिडियन दूरी
कोसाइन दूरी के लिए एक और प्रभावी प्रतिनिधि यूक्लिडियन सदिश के सामान्यीकरण द्वारा प्राप्त किया जा सकता है और उसके बाद सामान्य यूक्लिडियन दूरी के अनुप्रयोग के बाद इस प्रोद्योगिकीय का उपयोग करते है और इस प्रकार प्रत्येक सदिश में प्रत्येक पद को पहले सदिश के परिमाण से विभाजित किया जाता है, जिससे इकाई लंबाई का सदिश प्राप्त होता है। फिर किन्हीं दो सदिशों के अंत-बिंदुओं पर यूक्लिडियन दूरी यथार्थ मीट्रिक के रूप में होता है, जो सदिशों की किसी भी तुलना के लिए कोसाइन दूरी के समान क्रम के रूप में देता है और इस प्रकार यूक्लिडियन दूरी का एकदिष्ट परिवर्तन को इस प्रकार दिखाया जाता है और इसके अतिरिक्त यह सदिशों की तुलना से बचता है और उचित मीट्रिक प्राप्त करने के लिए संभावित रूप से बहुमूल्य त्रिकोणमितीय संचालन की आवश्यकता होती है। एक बार सामान्यीकरण हो जाने के बाद सदिश क्षेत्र का उपयोग किसी भी यूक्लिडियन क्षेत्र के लिए उपलब्ध प्रोद्योगिकीय की पूरी श्रृंखला के साथ किया जाता है और विशेष रूप से मानक विमीयता में कमी प्रोद्योगिकीय के रूप में होती है। यह सामान्यीकृत फॉर्म दूरी अधिकांशतः कई गहन शिक्षण कलन विधि में उपयोग की जाती है।
ओत्सुका-ओचियाई गुणांक
जीव विज्ञान में, एक ऐसी ही अवधारणा है जिसे ओत्सुका ओचियाई गुणांक के रूप में जाना जाता है।[5] जिसका नाम यानोसुके ओत्सुका के नाम पर रखा गया है, जिसे ओत्सुका, ऊत्सुका या ओटुका जापानी और अकीरा ओचियाई जापानी: 落合 明 भी कहा जाता है,[6] ओचियाई-बार्कमैन या ओचियाई गुणांक के रूप में जाना जाता है[7] जिसे इस प्रकार दर्शाया जा सकता है,[8]
यहाँ, और समुच्चय (गणित) के रूप में हैं और तत्वों की संख्या है . यदि समुच्चय को बिट सदिश के रूप में दर्शाया जाता है, तो ओत्सुका-ओचियाई गुणांक कोसाइन समानता के समान देखा जा सकता है।
हाल की एक किताब में,[9] गुणांक को ओत्सुका परिवार के नाम वाले एक अन्य जापानी शोधकर्ता को गलत विधि से आरोपित किया गया है। इससे भ्रम उत्पन्न होता है क्योंकि 1957 में अकीरा ओचियाई गुणांक को केवल ओत्सुका के लिए जिम्मेदार ठहराते हैं। [6] इकुसो हमाई के एक लेख का हवाला देते हुए जापानी लेख में पहले इसका उल्लेख नहीं किया गया है,[10] जो बदले में यानोसुके ओत्सुका के मूल 1936 के लेख का हवाला देते हैं।[11]
गुण
कोसाइन समानता का सर्वाधिक उल्लेखनीय गुण यह है कि यह भिन्न -भिन्न सदिश आयामों की तुलना में निरपेक्ष के अतिरिक्त पूर्ण सम्बन्ध को दर्शाता है। किसी भी स्थिरांक और सदिश के लिए सदिश और अधिकतम रूप में समान होते हैं। इस प्रकार माप डेटा के लिए सबसे उपयुक्त होता है जहां आवृत्ति निरपेक्ष मूल्यों की तुलना में अधिक महत्वपूर्ण होती है और विशेष रूप से दस्तावेजों में शब्द आवृत्ति के रूप में होती है। चूंकि, जेन्सेन शैनन एसईडी और त्रिकोणीय विचलन जैसे सूचना सिद्धांत में ग्राउंडिंग के साथ हालिया मेट्रिक्स को कम से कम कुछ संदर्भों में अच्छे शब्दार्थ के रूप में दिखाया गया है।[12]
कोसाइन समानता यूक्लिडियन दूरी से निम्नानुसार संबंधित होती है। यूक्लिडियन दूरी को सामान्य रूप से के रूप में निरूपित और निरीक्षण करते है।
- (ध्रुवीकरण पहचान#Relation_to_the_law_of_cosines)
बहुपद विस्तार द्वारा जब A और B इकाई लंबाई के लिए सामान्यीकृत किया जाता है, तो यह अभिव्यक्ति
- के बराबर होती है।
संक्षेप में, कोसाइन दूरी को यूक्लिडियन दूरी के रूप में व्यक्त किया जा सकता है
- .
यूक्लिडियन दूरी को जीवा दूरी कहा जाता है, क्योंकि यह यूनिट वृत्त पर जीवा की लंबाई है और यह सदिशों के बीच यूक्लिडियन दूरी होती है, जो उनके भीतर वर्ग मानों के इकाई योग के लिए सामान्यीकृत रूप में होते है।
'शून्य वितरण:' डेटा, जो कोसाइन समानता के लिए ऋणात्मक तथा धनात्मक हो सकता है, दो स्वतंत्र यादृच्छिक इकाई सदिश के डॉट गुणन का वितरण है। इस बंटन का माध्य शून्य और विचरण के रूप में होता है, जहाँ आयामों की संख्या है और यद्यपि वितरण -1 और +1 के बीच सीमित रूप में है, जैसे बड़ा होता है वितरण सामान्य वितरण द्वारा तेजी से अच्छी तरह से अनुमानित होता है।[13][14] अन्य प्रकार के डेटा जैसे बिटस्ट्रीम जो केवल मान 0 या 1 के रूप में लेते हैं, शून्य वितरण एक भिन्न के रूप में लेता है और इसका एक गैर-शून्य माध्य होता है।[15]
कोज्या समानता के लिए त्रिभुज असमानता
कोणों के लिए साधारण त्रिभुज में असमानता होती है अर्थात इकाई अति क्षेत्र पर चाप की लंबाई के रूप में हमें देती है
क्योंकि कोज्या फलन एक कोण के रूप में घटता है [0, π] रेडियन बढ़ता है, तो इन असमानताओं की भावना उलट जाती है जब हम प्रत्येक मान का कोसाइन लेते हैं
कोसाइन जोड़ और घटाव सूत्रों का उपयोग करके, इन दो असमानताओं को मूल कोसाइन के रूप में लिखा जा सकता है,
त्रिभुज असमानता के इस रूप का उपयोग दो वस्तुओं A और B की न्यूनतम और अधिकतम समानता को सीमित करने के लिए किया जाता है यदि किसी संदर्भ में वस्तु सी की समानता पहले से ही ज्ञात हो तो इसका उपयोग उदाहरण के लिए मीट्रिक डेटा इंडेक्सिंग में किया जाता है, लेकिन इसका उपयोग गोलाकार k-मध्यपद क्लस्टरिंग में तेजी लाने के लिए भी किया जाता है[16] उसी तरह यूक्लिडियन त्रिकोण असमानता का उपयोग नियमित के साधनों को तेज करने के लिए किया गया है।
शीतल कोसाइन उपाय
सॉफ्ट कोसाइन या दो सदिशों के बीच "सॉफ्ट " समानता विशेषताओं के जोड़ों के बीच समानता पर विचार करता है।[17] संकीर्ण कोसाइन समानता सदिश क्षेत्र मॉडल (वीएसएम) के लक्षणों को स्वतंत्र या पूरी तरह से भिन्न मानता है, जबकि सॉफ्ट कोसाइन माप वीएसएम में सुविधाओं की समानता पर विचार करने का प्रस्ताव करता है, जो कोसाइन और सॉफ्ट कोसाइन की अवधारणा के साथ-साथ विचार को सामान्य करने में मदद करता है।
उदाहरण के लिए, प्राकृतिक भाषा प्रसंस्करण (एनएलपी) के क्षेत्र में सुविधाओं के बीच समानता बहुत सहज रूप में होती है और इस प्रकार शब्द एन-ग्राम या सिंटैक्टिक एन-ग्राम जैसी विशेषताएं काफी समान हो सकती हैं[18] चूंकि औपचारिक रूप से उन्हें वीएसएम में विभिन्न विशेषताओं के रूप में माना जाता है। उदाहरण के लिए प्ले और गेम भिन्न-भिन्न शब्द होते हैं और इस प्रकार वीएसएम में विभिन्न बिंदुओं पर मैप किए गए; फिर भी वे शब्दार्थ से संबंधित होते है और इस प्रकार एन-ग्राम या सिंटैक्टिक एन-ग्राम के स्थितियों में लेवेनशेटिन दूरी को लागू किया जा सकता है वास्तव में, लेवेनशेटिन दूरी को शब्दों पर भी लागू किया जा सकता है।
सॉफ्ट कोसाइन की गणना के लिए आव्यूह s सुविधाओं के बीच समानता को इंगित करने के लिए उपयोग किया जाता है। इसकी गणना लेवेनशेटिन दूरी वर्डनेट समानता या अन्य समानता के उपायों के माध्यम से की जा सकती है। फिर हम इस आव्यूह से गुणा करते हैं।
दो दिया N-आयाम सदिश और , सॉफ्ट कोसाइन समानता की गणना निम्नानुसार की जाती है
जहाँ sij = similarity(featurei, featurej).
यदि लक्षण (sii = 1, sij = 0 के लिए i ≠ j), के बीच कोई समानता नहीं है, तो दिया गया समीकरण पारंपरिक कोसाइन समानता सूत्र के बराबर है।
इस उपाय की समय जटिलता द्विघात के रूप में है, जो इसे वास्तविक दुनिया के कार्यों पर लागू करती है। ध्यान दें कि जटिलता को उपद्विघात तक कम किया जा सकता है।[19] जेनसिम ओपन सोर्स लाइब्रेरी में इस तरह के सॉफ्ट कोसाइन समानता के एक कुशल कार्यान्वयन को सम्मलित किया गया है।
यह भी देखें
- सोरेनसेन-डाइस गुणांक
- हैमिंग दूरी
- सह - संबंध
- जैकार्ड इंडेक्स
- सिमरैंक
- सूचना की पुनर्प्राप्ति
संदर्भ
- ↑ Singhal, Amit (2001). "Modern Information Retrieval: A Brief Overview". Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 24 (4): 35–43.
- ↑ P.-N. Tan, M. Steinbach & V. Kumar, Introduction to Data Mining, Addison-Wesley (2005), ISBN 0-321-32136-7, chapter 8; page 500.
- ↑ Wolfram Research (2007). "कोसाइनडिस्टैंक - वोल्फ्राम लैंग्वेज डॉक्यूमेंटेशन". wolfram.com.
- ↑ "कोसाइन दूरी, कोसाइन समानता, कोणीय कोसाइन दूरी, कोणीय कोसाइन समानता". www.itl.nist.gov. Retrieved 2020-07-11.
- ↑ Omori, Masae (2004). "Geological idea of Yanosuke Otuka, who built the foundation of neotectonics (geoscientist)". Earth Science. 58 (4): 256–259. doi:10.15080/agcjchikyukagaku.58.4_256.
- ↑ 6.0 6.1 Ochiai, Akira (1957). "Zoogeographical studies on the soleoid fishes found in Japan and its neighhouring regions-II". Bulletin of the Japanese Society of Scientific Fisheries. 22 (9): 526–530. doi:10.2331/suisan.22.526.
- ↑ Barkman, Jan J. (1958). Phytosociology and Ecology of Cryptogamic Epiphytes: Including a Taxonomic Survey and Description of Their Vegetation Units in Europe. Assen: Van Gorcum.
- ↑ H. Charles Romesburg (1984). Cluster Analysis for Researchers. Belmont, California: Lifetime Learning Publications. p. 149.
- ↑ Howarth, Richard J. (2017). Dictionary of Mathematical Geosciences: With Historical Notes. Cham: Springer. p. 421. doi:10.1007/978-3-319-57315-1. ISBN 978-3-319-57314-4. S2CID 67081034.
- ↑ Hamai, Ikuso (1955). "Stratification of community by means of "community coefficient" (continued)". Japanese Journal of Ecology. 5 (1): 41–45. doi:10.18960/seitai.5.1_41.
- ↑ Otsuka, Yanosuke (1936). "The faunal character of the Japanese Pleistocene marine Mollusca, as evidence of the climate having become colder during the Pleistocene in Japan". Bulletin of the Biogeographical Society of Japan. 6 (16): 165–170.
- ↑ Connor, Richard (2016). A Tale of Four Metrics. Similarity Search and Applications. Tokyo: Springer. doi:10.1007/978-3-319-46759-7_16.
- ↑ Spruill, Marcus C. (2007). "Asymptotic distribution of coordinates on high dimensional spheres". Electronic Communications in Probability. 12: 234–247. doi:10.1214/ECP.v12-1294.
- ↑ "Distribution of dot products between two random unit vectors in RD". CrossValidated.
- ↑ Graham L. Giller (2012). "रैंडम बिटस्ट्रीम के सांख्यिकीय गुण और कोसाइन समानता का नमूना वितरण". Giller Investments Research Notes (20121024/1). doi:10.2139/ssrn.2167044. S2CID 123332455.
- ↑ Schubert, Erich; Lang, Andreas; Feher, Gloria (2021). Reyes, Nora; Connor, Richard; Kriege, Nils; Kazempour, Daniyal; Bartolini, Ilaria; Schubert, Erich; Chen, Jian-Jia (eds.). "गोलाकार के-मीन्स को तेज करना". Similarity Search and Applications. Lecture Notes in Computer Science (in English). Cham: Springer International Publishing. 13058: 217–231. arXiv:2107.04074. doi:10.1007/978-3-030-89657-7_17. ISBN 978-3-030-89657-7. S2CID 235790358.
- ↑ Sidorov, Grigori; Gelbukh, Alexander; Gómez-Adorno, Helena; Pinto, David (29 September 2014). "Soft Similarity and Soft Cosine Measure: Similarity of Features in Vector Space Model". Computación y Sistemas. 18 (3): 491–504. doi:10.13053/CyS-18-3-2043. Retrieved 7 October 2014.
- ↑ Sidorov, Grigori; Velasquez, Francisco; Stamatatos, Efstathios; Gelbukh, Alexander; Chanona-Hernández, Liliana (2013). कम्प्यूटेशनल इंटेलिजेंस में अग्रिम. Lecture Notes in Computer Science. Vol. 7630. LNAI 7630. pp. 1–11. doi:10.1007/978-3-642-37798-3_1. ISBN 978-3-642-37798-3.
- ↑ Novotný, Vít (2018). सॉफ्ट कोसाइन उपाय के लिए कार्यान्वयन नोट्स. The 27th ACM International Conference on Information and Knowledge Management. Torun, Italy: Association for Computing Machinery. pp. 1639–1642. arXiv:1808.09407. doi:10.1145/3269206.3269317. ISBN 978-1-4503-6014-2.