मोनोमियल ऑर्डर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 40: Line 40:
क्रमिक शब्दकोशीय प्रणाली पहले कुल डिग्री (सभी प्रतिनिधि योग) की तुलना करता है, और एक ग्रंथि की स्थिति में शब्दकोशीय प्रणाली उपयुक्त होती है। यह क्रम न केवल एक अच्छा क्रम है, इसमें यह गुण भी है कि कोई भी एकपदी केवल अन्य एकपदी की परिमित संख्या से पहले होता है; यह शब्दकोशीय प्रणाली के लिए स्थिति नहीं है, जहां x की सभी शक्तियां y से कम हैं। चूंकि बहुत स्वाभाविक है, इस क्रम का उपयोग शायद ही कभी किया जाता है: श्रेणीबद्ध शब्दकोशीय प्रणाली के लिए ग्रोबनेर आधार, जो निम्नानुसार है, जिसकी गणना करना आसान है और बहुपदों के इनपुट सेट पर समान जानकारी प्रदान करता है।
क्रमिक शब्दकोशीय प्रणाली पहले कुल डिग्री (सभी प्रतिनिधि योग) की तुलना करता है, और एक ग्रंथि की स्थिति में शब्दकोशीय प्रणाली उपयुक्त होती है। यह क्रम न केवल एक अच्छा क्रम है, इसमें यह गुण भी है कि कोई भी एकपदी केवल अन्य एकपदी की परिमित संख्या से पहले होता है; यह शब्दकोशीय प्रणाली के लिए स्थिति नहीं है, जहां x की सभी शक्तियां y से कम हैं। चूंकि बहुत स्वाभाविक है, इस क्रम का उपयोग शायद ही कभी किया जाता है: श्रेणीबद्ध शब्दकोशीय प्रणाली के लिए ग्रोबनेर आधार, जो निम्नानुसार है, जिसकी गणना करना आसान है और बहुपदों के इनपुट सेट पर समान जानकारी प्रदान करता है।


=== ग्रेडेड रिवर्स लेक्सिकोग्राफिक ऑर्डर ===
=== श्रेणीबद्ध विपरीत शब्दकोशीय प्रणाली ===
श्रेणीबद्ध विपरीत शब्दकोशीय प्रणाली पहले कुल मात्रा की तुलना करता है, पुनः निर्णायक काल के रूप में विपरीत शब्दकोशीय प्रणाली का उपयोग करता है, परंतु यह शब्दकोशीय तुलना के परिणाम को परिवर्तन कर देता है जिसके वजह से शब्दकोशीय रूप से एक ही मात्रा के बड़े एकपदी डेग्रेव्लेक्स को छोटा माना जाता है। पारंपरिक क्रम x1 > x2 > … > xn के अनिश्चित को प्रदर्शित करने के लिए अंतिम आदेश के लिए, यह आवश्यक है कि विपरीत दिशा से पहले निर्णायक काल शब्दकोशीय क्रम अंतिम अनिश्चित xn को सबसे बड़ा मानते है, जिसका अर्थ है कि इसे उस अनिश्चित से प्रारंभ होना चाहिए। श्रेणीबद्ध विपरीत शब्दकोशीय प्रणाली के लिए पहले कुल मात्रा से तुलना करना है, पुनः अंतिम अनिश्चित xn के प्रतिपादक की तुलना करें परंतु परिणाम को परिवर्तन कर दें, इसके अतिरिक्त xn−1 की समान तुलना द्वारा, और x1 के साथ समाप्त होता है। <!-- Unlike for graded lexicographic order, the ungraded version of this ordering does not give a monomial ordering, since the (increasing) powers of any single indeterminate would form an infinite decreasing chain. Indeed, thanks to the comparison of total degree first, the reversal of subsequent comparisons can be interpreted informally as follows: the monomial with a smaller power of ''x''<sub>''n''</sub> necessarily has a higher power of some (unspecified) ''x''<sub>''i''</sub> with ''i''&lt;''n'' (indeed it has greater total degree with respect to all indeterminates other than ''x''<sub>''n''</sub>). -->
श्रेणीबद्ध विपरीत शब्दकोशीय प्रणाली पहले कुल मात्रा की तुलना करता है, पुनः निर्णायक काल के रूप में विपरीत शब्दकोशीय प्रणाली का उपयोग करता है, परंतु यह शब्दकोशीय तुलना के परिणाम को परिवर्तन कर देता है जिसके वजह से शब्दकोशीय रूप से एक ही मात्रा के बड़े एकपदी डेग्रेव्लेक्स को छोटा माना जाता है। पारंपरिक क्रम x1 > x2 > … > xn के अनिश्चित को प्रदर्शित करने के लिए अंतिम आदेश के लिए, यह आवश्यक है कि विपरीत दिशा से पहले निर्णायक काल शब्दकोशीय क्रम अंतिम अनिश्चित xn को सबसे बड़ा मानते है, जिसका अर्थ है कि इसे उस अनिश्चित से प्रारंभ होना चाहिए। श्रेणीबद्ध विपरीत शब्दकोशीय प्रणाली के लिए पहले कुल मात्रा से तुलना करना है, पुनः अंतिम अनिश्चित xn के प्रतिपादक की तुलना करें परंतु परिणाम को परिवर्तन कर दें, इसके अतिरिक्त xn−1 की समान तुलना द्वारा, और x1 के साथ समाप्त होता है। <!-- Unlike for graded lexicographic order, the ungraded version of this ordering does not give a monomial ordering, since the (increasing) powers of any single indeterminate would form an infinite decreasing chain. Indeed, thanks to the comparison of total degree first, the reversal of subsequent comparisons can be interpreted informally as follows: the monomial with a smaller power of ''x''<sub>''n''</sub> necessarily has a higher power of some (unspecified) ''x''<sub>''i''</sub> with ''i''&lt;''n'' (indeed it has greater total degree with respect to all indeterminates other than ''x''<sub>''n''</sub>). -->
क्रमिक शब्दकोशीय और श्रेणीबद्ध विपरीत शब्दकोशीय प्रणाली के बीच अंतर सूक्ष्म हैं, चूंकि वे वास्तव में 1 और 2 अनिश्चित के लिए मेल खाते हैं। पहला अंतर डिग्री 2 एकपदी के लिए 3 अनिश्चित में आता है, जो वर्गीकृत शब्दकोशीय के रूप में क्रमबद्ध हैं <math> x_1^2 > x_1 x_2 > x_1 x_3 > x_2^2 > x_2 x_3 > x_3^2 </math> परंतु श्रेणीबद्ध विपरीत शब्दकोशीय के रूप में मूलांक दिया गया  <math> x_1^2 > x_1 x_2 > x_2^2 > x_1 x_3 > x_2 x_3 > x_3^2 </math> है। सामान्य प्रवृत्ति यह है कि प्रतिलोम प्रणाली किसी भी मात्रा के छोटे एकपदी के बीच सभी चर प्रदर्शित करता है, जबकि गैर-प्रतिलोम प्रणाली के साथ किसी भी मात्रा के सबसे छोटे एकपदी के अंतराल केवल सबसे छोटे चर से बनते हैं।
क्रमिक शब्दकोशीय और श्रेणीबद्ध विपरीत शब्दकोशीय प्रणाली के बीच अंतर सूक्ष्म हैं, चूंकि वे वास्तव में 1 और 2 अनिश्चित के लिए मेल खाते हैं। पहला अंतर डिग्री 2 एकपदी के लिए 3 अनिश्चित में आता है, जो वर्गीकृत शब्दकोशीय के रूप में क्रमबद्ध हैं <math> x_1^2 > x_1 x_2 > x_1 x_3 > x_2^2 > x_2 x_3 > x_3^2 </math> परंतु श्रेणीबद्ध विपरीत शब्दकोशीय के रूप में मूलांक दिया गया  <math> x_1^2 > x_1 x_2 > x_2^2 > x_1 x_3 > x_2 x_3 > x_3^2 </math> है। सामान्य प्रवृत्ति यह है कि प्रतिलोम प्रणाली किसी भी मात्रा के छोटे एकपदी के बीच सभी चर प्रदर्शित करता है, जबकि गैर-प्रतिलोम प्रणाली के साथ किसी भी मात्रा के सबसे छोटे एकपदी के अंतराल केवल सबसे छोटे चर से बनते हैं।


=== निष्कासन आदेश ===
=== निष्कासन प्रणाली ===
ब्लॉक ऑर्डर या एलिमिनेशन ऑर्डर (लेक्सडेग) को किसी भी संख्या में ब्लॉक के लिए परिभाषित किया जा सकता है, लेकिन सादगी के लिए, हम केवल दो ब्लॉकों के मामले पर विचार करते हैं (हालांकि, अगर ब्लॉक की संख्या चर की संख्या के बराबर होती है, तो यह ऑर्डर केवल लेक्सिकोग्राफिक ऑर्डर)। इस आदेश के लिए, वेरिएबल्स को दो ब्लॉक ''x'' में विभाजित किया गया है<sub>1</sub>,..., एक्स<sub>''h''</sub> और वाई<sub>1</sub>,...,और<sub>''k''</sub> और प्रत्येक ब्लॉक के लिए एक मोनोमियल ऑर्डरिंग चुना जाता है, आमतौर पर ग्रेडेड रिवर्स लेक्सिकोोग्राफिकल ऑर्डर। दो एकपदी की तुलना उनके x भाग की तुलना करके की जाती है, और टाई के मामले में उनके y भाग की तुलना करके की जाती है। यह क्रम महत्वपूर्ण है क्योंकि यह उन्मूलन की अनुमति देता है, एक ऑपरेशन जो बीजगणितीय ज्यामिति में प्रक्षेपण से मेल खाता है।
विभाग प्रणाली या निष्कासन प्रणाली को किसी भी संख्या में विभाग के लिए परिभाषित किया जा सकता है, परंतु सादगी के लिए, हम केवल दो विभागों की स्थिति पर विचार करते हैं। इस क्रम के लिए, चरों को दो विभागों x1,..., xh , y1,...,yk में विभाजित किया जाता है और प्रत्येक विभाग के लिए एक एकपदी क्रम चुना जाता है, सामान्यतः क्रमिक विपरीत कोषगत प्रणाली है। जो दो एकपदी की तुलना उनके x भाग की तुलना करके की जाती है, और ग्रंथि की स्थिति में y भाग की तुलना करके की जाती है। यह क्रम महत्वपूर्ण है चूंकि यह उन्मूलन की अनुमति देता है, एक शल्य कक्ष जो बीजगणितीय ज्यामिति के प्रक्षेपण से मेल खाता है।


=== वजन क्रम ===
=== वजन क्रम ===

Revision as of 13:54, 5 May 2023

गणित में, एकपदी प्रणाली (जिसे सत्र प्रणाली या स्वीकार्य प्रणाली कहा जाता है) एक दिए गए बहुपद वृत्त में सभी (असफल) एकपदी के सेट पर कुल अनुक्रम होता है, जो गुणन के गुण को संतुष्ट करता है, अर्थात,

  • अगर और तब कोई अन्य एकपदी है .

एकपदी क्रम का सबसे अधिक उपयोग ग्रोबनर बेस और बहुचर विभाजन के साथ किया जाता है। विशेष रूप से, ग्रोबनर बेस होने की संपत्ति हमेशा एक विशिष्ट एकपदी प्रणाली के सापेक्ष होती है।

परिभाषा, विवरण और विविधताएं

गुणन का सम्मान करने के अतिरिक्त, एकपदी प्रणाली को अधिकांशतः सुव्यवस्था होने की आवश्यकता होती है, चूंकि यह सुनिश्चित करता है कि बहुभिन्नरूपी विभाजन प्रक्रिया समाप्त हो जाएगी। चूंकि एकपदी स्थिति पर गुणा-सम्मानित क्रम संबंधों के लिए व्यावहारिक अनुप्रयोग भी हैं जो अच्छी स्थिति नहीं हैं।

परिमित रूप से कई चर के विषय में, एक एकपदी प्रणाली का सुव्यवस्थित क्रम निम्नलिखित दो स्थितियों के संयोजन के बराबर है:

  1. अनुक्रम कुल प्रणाली है।
  2. यदि u कोई एकपदी हैं तो है।

चूंकि इन शर्तों को एक स्पष्ट नियम के माध्यम से परिभाषित एक एकपदी प्रणाली के लिए सत्यापित करना आसान हो सकता है, सीधे यह प्रमाणित करने के लिए कि यह एक अच्छा क्रम है, उन्हें कभी-कभी एकपदी क्रम की परिभाषाओं में पसंद किया जाता है।


प्रमुख एकपदी, शर्तें और गुणांक

एकपदी कुल क्रम का चुनाव बहुपद की शर्तों को क्रमबद्ध करने की अनुमति देता है। एक बहुपद का अग्रणी शब्द इस प्रकार सबसे बड़ा एकपदी का पद है।

ठोस रूप से, R बहुपदों का कोई वलय हो। फिर सेट M (मोनिक) एकपदी में R का एक आधार है जिसे गुणांक के क्षेत्र में एक वेक्टर स्थान के रूप में माना जाता है। इस प्रकार, R में किसी भी शून्येतर बहुपद p का एक अद्वितीय व्यंजक होता है

 एकपदी के एक रैखिक संयोजन के रूप में, जहां S, M का परिमित उपसमुच्चय है और cu सभी शून्येतर हैं। जब एक एकपदी क्रम चुना जाता है, तो अग्रणी एकपदी S में सबसे बड़ा u होता है अग्रणी गुणांक संबंधित cu है,  और अग्रणी शब्द संबंधित cuu है। शीर्ष एकपदी/गुणांक/शब्द को कभी-कभी "अग्रणी" के पर्याय के रूप में प्रयोग किया जाता है। कुछ लेखक एकपदी के अतिरिक्त समय और पावर प्रोडक्ट के अतिरिक्त एकपदी का उपयोग करते हैं। इस लेख में, एकपदी को गुणांक सम्मलित नहीं माना जाता है।

एकपदी प्रणाली की परिभाषित संपत्ति का तात्पर्य है कि एक बहुपद को एक एकपदी से गुणा करते समय शब्दों का क्रम रखा जाता है। साथ ही, बहुपदों के गुणनफल का अग्रणी पद गुणनखंडों के प्रमुख पदों का गुणनफल होता है।

उदाहरण

मंच पर किसी भी एक चर x की घात का, केवल एकपदी आदेश प्राकृतिक क्रम 1 < x < x हैं2 < x3 < ... और इसका विलोम, जिसका उत्तरार्द्ध एक सुव्यवस्थित नहीं है। चूंलिए, एकपद क्रम की धारणा केवल बहु चरों के महत्व में रोचक हो जाती है।

एकपदी प्रणाली का तात्पर्य व्यक्तिगत अनिश्चित पर एक प्रणाली से है। एकपदी प्रणाली के वर्गीकरण को सरल बनाया जा सकता है कि अनिर्धारकों को माना गया एकपदी प्रणाली के लिए घटते क्रम में x1, x2, x3, ... नाम दिया गया है, ताकि हमेशा x1 > x2 > x3 > …. (यदि अपरिमित रूप से अनेक अनिश्चित हों, तो यह परिपाटी अच्छे क्रम वाली होने की शर्त के साथ असंगत है, और किसी को विपरीत क्रम का उपयोग करने के लिए बाध्य किया जाएगा; चूंकि अपरिमित रूप से कई चरों में बहुपदों के विषय पर शायद ही कभी विचार किया जाता है।) उदाहरण में नीचे हम x1, x2 और x3 के अतिरिक्त x, y और z का उपयोग करते हैं। इस सम्मेलन के साथ अभी भी विभिन्न एकपदी प्रणाली के कई उदाहरण हैं।

शब्दकोशीय क्रम

शब्दकोषीय क्रम पहले एकपदी में x1 के घातांकों की तुलना करता है, और समानता की स्थिति में x2 के घातांकों की तुलना करता है, यह नाम शब्दकोशों के लिए कोशरचना में उपयोग किए जाने वाले सामान्य वर्णानुक्रमिक क्रम की समानता से लिया गया है, यदि एकपदी को अनिश्चित के प्रतिपादकों के अनुक्रम द्वारा दर्शाया जाता है। यदि अनिश्चित की संख्या निश्चित है (जैसा कि सामान्यतः होता है), कोशरचना प्रणाली एक अच्छा-अनुक्रम है, चूंकि यह विभिन्न लंबाई के अनुक्रमों पर लागू कोशक्रमानुसार प्रणाली के स्थिति में नहीं है (कोशरचना प्रणाली § विभिन्न लंबाई के अनुक्रमों का क्रम)। ग्रोबनर आधार संगणनाओं के लिए यह क्रम सबसे महंगा होता है; इस प्रकार जहां तक ​​संभव हो, अत्यंत सरल संगणनाओं को छोड़कर इससे बचना चाहिए।

क्रमिक शब्दकोशीय प्रणाली

क्रमिक शब्दकोशीय प्रणाली पहले कुल डिग्री (सभी प्रतिनिधि योग) की तुलना करता है, और एक ग्रंथि की स्थिति में शब्दकोशीय प्रणाली उपयुक्त होती है। यह क्रम न केवल एक अच्छा क्रम है, इसमें यह गुण भी है कि कोई भी एकपदी केवल अन्य एकपदी की परिमित संख्या से पहले होता है; यह शब्दकोशीय प्रणाली के लिए स्थिति नहीं है, जहां x की सभी शक्तियां y से कम हैं। चूंकि बहुत स्वाभाविक है, इस क्रम का उपयोग शायद ही कभी किया जाता है: श्रेणीबद्ध शब्दकोशीय प्रणाली के लिए ग्रोबनेर आधार, जो निम्नानुसार है, जिसकी गणना करना आसान है और बहुपदों के इनपुट सेट पर समान जानकारी प्रदान करता है।

श्रेणीबद्ध विपरीत शब्दकोशीय प्रणाली

श्रेणीबद्ध विपरीत शब्दकोशीय प्रणाली पहले कुल मात्रा की तुलना करता है, पुनः निर्णायक काल के रूप में विपरीत शब्दकोशीय प्रणाली का उपयोग करता है, परंतु यह शब्दकोशीय तुलना के परिणाम को परिवर्तन कर देता है जिसके वजह से शब्दकोशीय रूप से एक ही मात्रा के बड़े एकपदी डेग्रेव्लेक्स को छोटा माना जाता है। पारंपरिक क्रम x1 > x2 > … > xn के अनिश्चित को प्रदर्शित करने के लिए अंतिम आदेश के लिए, यह आवश्यक है कि विपरीत दिशा से पहले निर्णायक काल शब्दकोशीय क्रम अंतिम अनिश्चित xn को सबसे बड़ा मानते है, जिसका अर्थ है कि इसे उस अनिश्चित से प्रारंभ होना चाहिए। श्रेणीबद्ध विपरीत शब्दकोशीय प्रणाली के लिए पहले कुल मात्रा से तुलना करना है, पुनः अंतिम अनिश्चित xn के प्रतिपादक की तुलना करें परंतु परिणाम को परिवर्तन कर दें, इसके अतिरिक्त xn−1 की समान तुलना द्वारा, और x1 के साथ समाप्त होता है। क्रमिक शब्दकोशीय और श्रेणीबद्ध विपरीत शब्दकोशीय प्रणाली के बीच अंतर सूक्ष्म हैं, चूंकि वे वास्तव में 1 और 2 अनिश्चित के लिए मेल खाते हैं। पहला अंतर डिग्री 2 एकपदी के लिए 3 अनिश्चित में आता है, जो वर्गीकृत शब्दकोशीय के रूप में क्रमबद्ध हैं परंतु श्रेणीबद्ध विपरीत शब्दकोशीय के रूप में मूलांक दिया गया है। सामान्य प्रवृत्ति यह है कि प्रतिलोम प्रणाली किसी भी मात्रा के छोटे एकपदी के बीच सभी चर प्रदर्शित करता है, जबकि गैर-प्रतिलोम प्रणाली के साथ किसी भी मात्रा के सबसे छोटे एकपदी के अंतराल केवल सबसे छोटे चर से बनते हैं।

निष्कासन प्रणाली

विभाग प्रणाली या निष्कासन प्रणाली को किसी भी संख्या में विभाग के लिए परिभाषित किया जा सकता है, परंतु सादगी के लिए, हम केवल दो विभागों की स्थिति पर विचार करते हैं। इस क्रम के लिए, चरों को दो विभागों x1,..., xh , y1,...,yk में विभाजित किया जाता है और प्रत्येक विभाग के लिए एक एकपदी क्रम चुना जाता है, सामान्यतः क्रमिक विपरीत कोषगत प्रणाली है। जो दो एकपदी की तुलना उनके x भाग की तुलना करके की जाती है, और ग्रंथि की स्थिति में y भाग की तुलना करके की जाती है। यह क्रम महत्वपूर्ण है चूंकि यह उन्मूलन की अनुमति देता है, एक शल्य कक्ष जो बीजगणितीय ज्यामिति के प्रक्षेपण से मेल खाता है।

वजन क्रम

वजन क्रम एक वेक्टर पर निर्भर करता है वजन वेक्टर कहा जाता है। यह पहले इस वज़न वेक्टर के साथ मोनोमियल के एक्सपोनेंट अनुक्रमों के डॉट उत्पाद की तुलना करता है, और एक टाई के मामले में कुछ अन्य निश्चित मोनोमियल ऑर्डर का उपयोग करता है। उदाहरण के लिए, ऊपर दिए गए ग्रेडेड ऑर्डर कुल डिग्री वेट वेक्टर (1,1,...,1) के लिए वेट ऑर्डर हैं। अगर एi तर्कसंगत निर्भरता संख्याएं हैं (इसलिए विशेष रूप से उनमें से कोई भी शून्य नहीं है और सभी भिन्न हैं अपरिमेय हैं) तो एक टाई कभी नहीं हो सकता है, और वज़न वेक्टर स्वयं एक मोनोमियल ऑर्डरिंग निर्दिष्ट करता है। इसके विपरीत मामले में, संबंधों को तोड़ने के लिए एक और वजन वेक्टर का उपयोग किया जा सकता है, और इसी तरह; n रैखिक रूप से स्वतंत्र भार सदिशों का उपयोग करने के बाद, कोई शेष बंधन नहीं हो सकता। कोई वास्तव में वजन वैक्टर (#cox et al. पीपी। 72-73) के अनुक्रम द्वारा किसी मोनोमियल ऑर्डर को परिभाषित कर सकता है, उदाहरण के लिए (1,0,0,...,0), (0,1,0, ...,0), ... (0,0,...,1) लेक्स के लिए, या (1,1,1,...,1), (1,1,..., 1, 0), ... (1,0,...,0) ग्रेव्लेक्स के लिए।

उदाहरण के लिए, मोनोमियल्स पर विचार करें , , , और ; ऊपर दिए गए मोनोमियल ऑर्डर इन चार मोनोमियल्स को निम्नानुसार ऑर्डर करेंगे:

  • लेक्स: (किसकी सत्ता हावी है)।
  • ग्रेलेक्स: (कुल डिग्री हावी है; की उच्च शक्ति पहले दो के बीच टाई तोड़ दी)।
  • ग्रेवलेक्स: (कुल डिग्री हावी है; की कम शक्ति पहले दो के बीच टाई तोड़ दी)।
  • वेट वेक्टर के साथ एक वेट ऑर्डर (1,2,4): (डॉट उत्पाद 10>9>8>3 यहां टूटने के लिए कोई बंधन नहीं छोड़ते)।

संबंधित धारणाएँ

  • एक विलोपन आदेश यह गारंटी देता है कि एक एकपदी जिसमें अनिश्चित का कोई भी समूह शामिल है, हमेशा उस एकपदी से बड़ा होगा जो उनमें से किसी को शामिल नहीं करता है।
  • एक उत्पाद आदेश एक विलोपन आदेश का आसान उदाहरण है। यह उनके संघ पर एक मोनोमियल ऑर्डर में अनिश्चितताओं के असंबद्ध सेटों पर मोनोमियल ऑर्डर के संयोजन में शामिल है। यह पहले मोनोमियल ऑर्डर का उपयोग करके पहले सेट में अनिश्चित के घातांक की तुलना करता है, फिर दूसरे सेट के अनिश्चित पर अन्य मोनोमियल ऑर्डर का उपयोग करके संबंधों को तोड़ता है। यह विधि स्पष्ट रूप से अनिश्चित के समुच्चय के किसी भी असम्बद्ध मिलन का सामान्यीकरण करती है; लेक्सिकोग्राफिक ऑर्डर सिंगलटन सेट {x से प्राप्त किया जा सकता है1}, {एक्स2}, {एक्स3}, ... (प्रत्येक सिंगलटन के लिए अद्वितीय मोनोमियल ऑर्डरिंग के साथ)।

ग्रोबनेर आधारों की गणना करने के लिए मोनोमियल ऑर्डरिंग का उपयोग करते समय, अलग-अलग ऑर्डर अलग-अलग परिणाम दे सकते हैं, और गणना की कठिनाई नाटकीय रूप से भिन्न हो सकती है। उदाहरण के लिए, ग्रेडेड रिवर्स लेक्सिकोग्राफिक ऑर्डर के पास उत्पादन के लिए एक प्रतिष्ठा है, लगभग हमेशा, ग्रोबनर बेस जो गणना करने में सबसे आसान हैं (यह इस तथ्य से लागू होता है कि, आदर्श पर सामान्य परिस्थितियों के तहत, ग्रोबनर आधार में बहुपदों में एक है डिग्री जो चर की संख्या में सबसे अधिक घातीय है; ऐसा कोई जटिलता परिणाम किसी अन्य आदेश के लिए मौजूद नहीं है)। दूसरी ओर, उन्मूलन सिद्धांत और सापेक्ष समस्याओं के लिए उन्मूलन आदेश आवश्यक हैं।

संदर्भ

  • David Cox; John Little; Donal O'Shea (2007). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer. ISBN 978-0-387-35650-1.