साधारण सम्मिश्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
एक साधारण सम्मिश्र <math>\mathcal{K}</math> सरलताओं का एक समुच्चय है जो निम्नलिखित शर्तों को पूरा करता है:
एक साधारण सम्मिश्र <math>\mathcal{K}</math> सरलताओं का एक समुच्चय है जो निम्नलिखित शर्तों को पूरा करता है:
:1. <math>\mathcal{K}</math> से एक [[सिंप्लेक्स|एकधा]] का हर फलक <math>\mathcal{K}</math> में भी है।
:1. <math>\mathcal{K}</math> से एक [[सिंप्लेक्स|एकधा]] का हर फलक <math>\mathcal{K}</math> में भी है।
:2. किन्हीं दो सरलियों <math>\sigma_1, \sigma_2 \in \mathcal{K}</math> का गैर-रिक्त प्रतिच्छेदन <math>\sigma_1</math> और <math>\sigma_2</math> दोनों का एक फलक है।
:2. किन्हीं दो सरलियों <math>\sigma_1, \sigma_2 \in \mathcal{K}</math> का अरिक्‍त प्रतिच्छेदन <math>\sigma_1</math> और <math>\sigma_2</math> दोनों का एक फलक है।


एक सार साधारण सम्मिश्र की परिभाषा भी देखें, जो ढीले ढंग से बोलना एक संबद्ध ज्यामिति के बिना एक साधारण सम्मिश्र है।
एक सार साधारण सम्मिश्र की परिभाषा भी देखें, जो ढीले ढंग से बोलना एक संबद्ध ज्यामिति के बिना एक साधारण सम्मिश्र है।

Revision as of 23:24, 14 May 2023

एक सरल 3-सम्मिश्र।

गणित में, एक साधारण सम्मिश्र बिंदु (ज्यामिति), रेखा खंड, त्रिकोण और उनके n-आयामी समकक्षों (चित्रण देखें) से बना एक समुच्चय है। सरलीकृत सम्मिश्रों को आधुनिक साधारण होमोटोपी सिद्धांत में प्रकट होने वाले सरल समुच्चय की अधिक सारगर्भित धारणा के साथ भ्रमित नहीं होना चाहिए, एक साधारण सम्मिश्र के लिए विशुद्ध रूप से संयोजी समकक्ष एक सार साधारण सम्मिश्र है। सरल सरलीकृत सम्मिश्र को अमूर्त सरलीकृत सम्मिश्र से भिन्न करने के लिए, पूर्व को अधिकांशतः ज्यामितीय सरलीकृत सम्मिश्र कहा जाता है।[1]: 7 

परिभाषाएँ

एक साधारण सम्मिश्र सरलताओं का एक समुच्चय है जो निम्नलिखित शर्तों को पूरा करता है:

1. से एक एकधा का हर फलक में भी है।
2. किन्हीं दो सरलियों का अरिक्‍त प्रतिच्छेदन और दोनों का एक फलक है।

एक सार साधारण सम्मिश्र की परिभाषा भी देखें, जो ढीले ढंग से बोलना एक संबद्ध ज्यामिति के बिना एक साधारण सम्मिश्र है।

एक साधारण -सम्मिश्र एक साधारण सम्मिश्र है जहां में किसी भी एकधा का सबसे बड़ा आयाम k के समतुल्य है। उदाहरण के लिए, एक साधारण 2-सम्मिश्र में कम से कम एक त्रिकोण होना चाहिए, और इसमें कोई चतुष्फलकीय या उच्च-आयामी सरलता नहीं होनी चाहिए।

एक शुद्ध या सजातीय साधारण -सम्मिश्र एक साधारण सम्मिश्र है जहाँ k से कम आयाम का प्रत्येक सरल आयाम बिल्कुल के आयाम के कुछ एकधा का एक फलक है। अनौपचारिक रूप से, एक शुद्ध 1-सम्मिश्र "दिखता है" जैसे कि यह रेखाओं के समूह से बना है, एक 2-सम्मिश्र "दिखता है" जैसे यह त्रिकोणों के समूह से बना है, आदि। एक गैर-सजातीय सम्मिश्र का एक उदाहरण एक त्रिभुज है जिसके एक कोने से एक रेखा खंड जुड़ा हुआ है। शुद्ध साधारण सम्मिश्रों को त्रिकोणासन (टोपोलॉजी) के रूप में माना जा सकता है और बहुतलीय की परिभाषा प्रदान करता है।

एक पहलू एक अधिकतम एकधा है, अर्थात, किसी सम्मिश्र में कोई भी एकधा जो किसी भी बड़े एकधा का फलक नहीं है।[2] (एक एकधा के "फलक" से अंतर पर ध्यान दें)। एक शुद्ध साधारण सम्मिश्र को एक सम्मिश्र के रूप में माना जा सकता है जहां सभी पहलुओं का एक ही आयाम होता है। साधारण बहुतलीय के (सीमा सम्मिश्रों) के लिए यह पॉलीहेड्रल कॉम्बिनेटरिक्स के अर्थ के साथ मेल खाता है।

कभी-कभी शब्द का फलक एक सम्मिश्र के एक एकधा को संदर्भित करने के लिए उपयोग किया जाता है, न कि एक एकधा के फलक से भ्रमित करने के लिए किया जाता है।

-विमीय समष्टि में सन्निहित साधारण सम्मिश्र एम्बेडिंग के लिए, के-फलक को कभी-कभी इसकी कोशिकाओं के रूप में संदर्भित किया जाता है। कोशिका शब्द का प्रयोग कभी-कभी एक व्यापक अर्थ में एक समुच्चय होमोमोर्फिज्म को एक एकधा में निरूपित करने के लिए किया जाता है, जिससे कोशिका सम्मिश्र की परिभाषा हो जाती है।

अंतर्निहित समष्टि, जिसे कभी-कभी एक साधारण सम्मिश्र का वाहक कहा जाता है, इसकी सरलताओं का संघ (समुच्चय सिद्धांत) है। इसे सामान्यतः या द्वारा दर्शाया जाता है।

समर्थन

में सभी सरलताओं के सापेक्ष समष्टि इसके अंतर्निहित समष्टि का एक विभाजन बनाते हैं : प्रत्येक बिंदु के लिए , में बिल्कुल एक एकधा है जिसमें इसके सापेक्ष आंतरिक में है। इस एकधा को का समर्थन कहा जाता है और इसे समर्थन के रूप में दर्शाया जाता है।[3]: 9 

संवरक, स्टार और लिंक

मान लीजिये K एक साधारण सम्मिश्र है, और यह भी माना जा सकता है की S भी K का सरलताओं का संग्रह है।

S का संवरक होना (निरूपित ) K का सबसे छोटा साधारण उपसमुच्चय है जिसमें S में प्रत्येक एकधा सम्मलित है। को बार-बार S में प्रत्येक एकधा के प्रत्येक फलक को S में जोड़कर प्राप्त किया जाता है।

S का तारा (निरूपित ) S में प्रत्येक एकधा के सितारों का मिलन है। एक एकधा s के लिए, s का तारा फलक के रूप में s वाले सरलताओं का समूह है। एस का सितारा सामान्यतः एक साधारण सम्मिश्र नहीं है, इसलिए कुछ लेखक (निरूपित }) S के तारे का संवरक होना एस के संवरक सितारे को परिभाषित करते हैं।

S का लिंक (ज्यामिति) (निरूपित ) समतुल्य है। यह S माइनस S का संवरक तारा है जो S के सभी फलक का तारा है।

बीजगणितीय टोपोलॉजी

बीजगणितीय टोपोलॉजी में, साधारण सम्मिश्र अधिकांशतः ठोस गणनाओं के लिए उपयोगी होते हैं। एक साधारण सम्मिश्र के होमोलॉजी समूहों की परिभाषा के लिए, कोई भी संबंधित श्रृंखला सम्मिश्र को सीधे पढ़ सकता है, बशर्ते कि सभी सरलताओं से सुसंगत अभिविन्यास बने हों, होमोटॉपी सिद्धांत की आवश्यकताएं अधिक सामान्य रिक्त समष्टि, सीडब्ल्यू सम्मिश्रों के उपयोग की ओर ले जाती हैं। बीजगणितीय टोपोलॉजी में अनंत सम्मिश्र एक तकनीकी उपकरण बुनियादी हैं। उपसमुच्चयों से बने यूक्लिडियन समष्टि के उप-समष्टिों के रूप में साधारण सम्मिश्रों के बहुतलीय पर चर्चा भी देखें, जिनमें से प्रत्येक एक सरल है। पावेल सर्गेइविच अलेक्जेंड्रोव कुछ और अधिक ठोस अवधारणा का श्रेय अलेक्जेंड्रोव को दिया जाता है। यहाँ जिस अर्थ में बात की गई है, उसमें किसी भी परिमित साधारण सम्मिश्र को कुछ बड़ी संख्या में आयामों में, उस अर्थ में एक बहुतलीय के रूप में एम्बेड किया जा सकता है। बीजगणितीय टोपोलॉजी में, एक कॉम्पैक्ट टोपोलॉजिकल समष्टि जो एक परिमित साधारण सम्मिश्र के ज्यामितीय अहसास के लिए समरूप है, सामान्यतः एक बहुफलक कहा (देखें Spanier 1966, Maunder 1996, Hilton & Wylie 1967) जाता है।

कॉम्बिनेटरिक्स

कॉम्बिनेटरियलिस्ट अधिकांशतः एक साधारण डी-सम्मिश्र Δ के एफ-सदिश का अध्ययन करते हैं, जो पूर्णांक अनुक्रम है, जहां fi Δ के (i−1)-विमीय फलक की (सम्मेलन के अनुसार, f0 = 1 जब तक कि Δ रिक्त सम्मिश्र न हो) संख्या है। उदाहरण के लिए, यदि Δ अष्टफलक की सीमा है, तो इसका f-सदिश (1, 6, 12, 8) है, और यदि Δ ऊपर चित्रित पहला साधारण सम्मिश्र है, तो इसका f-सदिश (1, 18, 23, 8, 1) है। क्रुस्कल-काटोना प्रमेय द्वारा सरलीकृत सम्मिश्रों के संभावित एफ-सदिश का एक पूर्ण लक्षण वर्णन दिया गया है।

एक साधारण डी-सम्मिश्र Δ के f-सदिश को एक बहुपद के गुणांक के रूप में उपयोग करके (चरघातांक के घटते क्रम में लिखा गया है), हम Δ का एफ-बहुपद प्राप्त करते हैं। ऊपर दिए गए हमारे दो उदाहरणों में, f-बहुपद और , क्रमशः है।

कॉम्बिनेटरिस्ट अधिकांशतः एक साधारण सम्मिश्र Δ के h-सदिश में पर्याप्त रुचि रखते हैं, जो कि बहुपद के गुणांक का अनुक्रम है जो x - 1 को Δ के f-बहुपद में प्लग करने के परिणामस्वरूप होता है। औपचारिक रूप से, यदि हम Δ के f-बहुपद का मतलब FΔ(x) लिखते हैं, तो Δ का h-बहुपद है

और Δ का h-सदिश है,

हम ऑक्टाहेड्रोन सीमा (हमारा पहला उदाहरण) के एच-सदिश की गणना निम्नानुसार करते हैं:

तो ऑक्टाहेड्रॉन की सीमा का एच-सदिश (1, 3, 3, 1) है। यह कोई संयोग नहीं है कि यह एच-सदिश सममित है। वास्तव में, ऐसा तब होता है जब Δ सरल बहुतलीय की सीमा होती है (ये देह्न-सोमरविले समीकरण हैं)। सामान्यतः चूंकि, साधारण सम्मिश्र का एच-सदिश भी आवश्यक रूप से सकारात्मक नहीं होता है। उदाहरण के लिए, यदि हम Δ को मात्र उभयनिष्ठ शीर्ष पर प्रतिच्छेद करने वाले दो त्रिभुजों द्वारा दिए गए 2-सम्मिश्र के रूप में लेते हैं, तो परिणामी h-सदिश (1, 3, -2) है।

रिचर्ड पी. स्टैनली, बिलेरा और ली के प्रसिद्ध जी-प्रमेय द्वारा सभी सरल बहुतलीय एच-सदिश का पूर्ण लक्षण वर्णन दिया गया है।

साधारण सम्मिश्रों को एक समान ज्यामितीय संरचना के रूप में देखा जा सकता है जैसे कि एक गोले की पैकिंग का संपर्क आलेख एक आलेख जहां गोले के केंद्र होते हैं और इस प्रकार का निर्धारण करने के लिए उपयोग किया जा सकता है, गोलाकार पैकिंग के कॉम्बिनेटरिक्स, जैसे कि गोलाकार पैकिंग में टचिंग जोड़े (1-सिंपलिस), टचिंग ट्रिपल (2-सिंपलिस), और टचिंग चौगुनी (3-सिंपलिस) की संख्या और किनारों का अस्तित्व होता है यदि संबंधित पैकिंग तत्व एक दूसरे को स्पर्श करते हैं।

अभिकलनात्मक समस्याएं

साधारण सम्मिश्र मान्यता समस्या है: एक परिमित सरलीकृत सम्मिश्र दिया गया है, यह तय करें कि यह किसी दिए गए ज्यामितीय वस्तु के लिए समरूप है या नहीं, यह समस्या डी ≥ 5 के लिए किसी भी डी-आयामी मैनिफोल्ड के लिए अनिर्णीत समस्या है।

यह भी देखें

संदर्भ

  1. Matoušek, Jiří (2007). Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry (2nd ed.). Berlin-Heidelberg: Springer-Verlag. ISBN 978-3-540-00362-5. Written in cooperation with Anders Björner and Günter M. Ziegler , Section 4.3
  2. De Loera, Jesús A.; Rambau, Jörg; Santos, Francisco (2010), Triangulations: Structures for Algorithms and Applications, Algorithms and Computation in Mathematics, vol. 25, Springer, p. 493, ISBN 9783642129711.
  3. Matoušek, Jiří (2007). Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry (2nd ed.). Berlin-Heidelberg: Springer-Verlag. ISBN 978-3-540-00362-5. Written in cooperation with Anders Björner and Günter M. Ziegler , Section 4.3


बाहरी संबंध