क्वार्टिक इंटरेक्शन: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
[[ क्वांटम क्षेत्र सिद्धांत | क्वांटम क्षेत्र सिद्धांत]] में, क्वार्टिक (चतुर्थक) अन्तःक्रिया एक प्रकार की आत्म-ऊर्जा है और अदिष्ट क्षेत्र में आत्म-संवाद है। [[चार-फर्मियन इंटरैक्शन]] (चार उप-परमाणु कण अन्तःक्रिया) के विषय के अनुसार अन्य प्रकार के क्वार्टिक (चतुर्थक) मे अन्तःक्रिया मिल सकती हैं। मौलिक मुक्त [[अदिश क्षेत्र]] <math>\varphi</math> क्लेन-गॉर्डन समीकरण को संतुष्ट करता है। यदि अदिश क्षेत्र को निरूपित किया जाता है <math>\varphi</math>, तो संभावित ऊर्जा शब्द जोड़कर क्वार्टिक (चतुर्थक) अन्तःक्रिया का प्रतिनिधित्व किया जाता है <math>({\lambda}/{4!}) \varphi^4</math>[[लाग्रंगियन घनत्व]] के लिए [[युग्मन स्थिरांक]] <math>\lambda</math> 4-आयामी [[ अंतरिक्ष समय |आकाशीय समय]] में आयामहीन है। | [[ क्वांटम क्षेत्र सिद्धांत | क्वांटम क्षेत्र सिद्धांत]] में, क्वार्टिक (चतुर्थक) अन्तःक्रिया एक प्रकार की आत्म-ऊर्जा है और अदिष्ट क्षेत्र में आत्म-संवाद है। [[चार-फर्मियन इंटरैक्शन]] (चार उप-परमाणु कण अन्तःक्रिया) के विषय के अनुसार अन्य प्रकार के क्वार्टिक (चतुर्थक) मे अन्तःक्रिया मिल सकती हैं। मौलिक मुक्त [[अदिश क्षेत्र]] <math>\varphi</math> क्लेन-गॉर्डन समीकरण को संतुष्ट करता है। यदि अदिश क्षेत्र को निरूपित किया जाता है <math>\varphi</math>, तो संभावित ऊर्जा शब्द जोड़कर क्वार्टिक (चतुर्थक) अन्तःक्रिया का प्रतिनिधित्व किया जाता है <math>({\lambda}/{4!}) \varphi^4</math>[[लाग्रंगियन घनत्व]] के लिए [[युग्मन स्थिरांक]] <math>\lambda</math> 4-आयामी [[ अंतरिक्ष समय |आकाशीय समय]] में आयामहीन है। | ||
यह लेख उपयोग करता है, कि <math>(+, -, -, -)</math>यह मिंकोव्स्की आकाशीय के लिए [[मापीय हस्ताक्षर|मापीय अंकित अंक]] है। | यह लेख उपयोग करता है, कि <math>(+, -, -, -)</math>यह मिंकोव्स्की आकाशीय के लिए [[मापीय हस्ताक्षर|मापीय अंकित अंक]] है। | ||
== एक वास्तविक अदिश क्षेत्र के लिए लाग्रंगियन सिद्धांत == | == एक वास्तविक अदिश क्षेत्र के लिए लाग्रंगियन सिद्धांत == | ||
Line 139: | Line 139: | ||
{{Quantum field theories}} | {{Quantum field theories}} | ||
{{DEFAULTSORT:Quartic Interaction}} | {{DEFAULTSORT:Quartic Interaction}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Quartic Interaction]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category: | [[Category:Collapse templates|Quartic Interaction]] | ||
[[Category:Created On 29/03/2023]] | [[Category:Created On 29/03/2023|Quartic Interaction]] | ||
[[Category:Lua-based templates|Quartic Interaction]] | |||
[[Category:Machine Translated Page|Quartic Interaction]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Quartic Interaction]] | |||
[[Category:Pages with script errors|Quartic Interaction]] | |||
[[Category:Sidebars with styles needing conversion|Quartic Interaction]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi|Quartic Interaction]] | |||
[[Category:Templates Vigyan Ready|Quartic Interaction]] | |||
[[Category:Templates generating microformats|Quartic Interaction]] | |||
[[Category:Templates that add a tracking category|Quartic Interaction]] | |||
[[Category:Templates that are not mobile friendly|Quartic Interaction]] | |||
[[Category:Templates that generate short descriptions|Quartic Interaction]] | |||
[[Category:Templates using TemplateData|Quartic Interaction]] | |||
[[Category:Wikipedia metatemplates|Quartic Interaction]] | |||
[[Category:क्वांटम क्षेत्र सिद्धांत|Quartic Interaction]] | |||
[[Category:स्पिन 0 के साथ उपपरमाण्विक कण|Quartic Interaction]] |
Latest revision as of 17:33, 17 May 2023
क्वांटम क्षेत्र सिद्धांत में, क्वार्टिक (चतुर्थक) अन्तःक्रिया एक प्रकार की आत्म-ऊर्जा है और अदिष्ट क्षेत्र में आत्म-संवाद है। चार-फर्मियन इंटरैक्शन (चार उप-परमाणु कण अन्तःक्रिया) के विषय के अनुसार अन्य प्रकार के क्वार्टिक (चतुर्थक) मे अन्तःक्रिया मिल सकती हैं। मौलिक मुक्त अदिश क्षेत्र क्लेन-गॉर्डन समीकरण को संतुष्ट करता है। यदि अदिश क्षेत्र को निरूपित किया जाता है , तो संभावित ऊर्जा शब्द जोड़कर क्वार्टिक (चतुर्थक) अन्तःक्रिया का प्रतिनिधित्व किया जाता है लाग्रंगियन घनत्व के लिए युग्मन स्थिरांक 4-आयामी आकाशीय समय में आयामहीन है।
यह लेख उपयोग करता है, कि यह मिंकोव्स्की आकाशीय के लिए मापीय अंकित अंक है।
एक वास्तविक अदिश क्षेत्र के लिए लाग्रंगियन सिद्धांत
क्वार्टिक (चतुर्थक) अन्तःक्रिया वाले वास्तविक संख्या अदिश क्षेत्र के लिए लाग्रंगियन क्षेत्र सिद्धांत है।
इस लाग्रंगियन के पास वैश्विक Z2 है, समरूपता मानचित्रण है .
एक जटिल अदिश क्षेत्र के लिए लाग्रंगियन सिद्धांत
एक सम्मिश्र संख्या अदिश क्षेत्र के लिए लाग्रंगियन को निम्नानुसार प्रेरित किया जा सकता है। दो अदिश क्षेत्रों के लिए और लाग्रंगियन सिद्धांत का रूप है।
जिसे जटिल अदिश क्षेत्र का परिचय देते हुए अधिक संक्षिप्त रूप से लिखा जा सकता है, और यह के रूप में परिभाषित है।
इस जटिल अदिश क्षेत्र के संदर्भ में व्यक्त किया गया कि, उपरोक्त लैग्रैंगियन सिद्धांत बन जाता है।
वास्तविक अदिश क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है , जैसा कि वास्तविक और काल्पनिक भागों में जटिल क्षेत्र का विस्तार करके देखा जा सकता है।
साथ मे हमारे पास हो सकता है जो वास्तविक अदिश क्षेत्र है, और यह a वैश्विक समरूपता विशेष ऑर्थोगोनल समूह के साथ प्रतिरूप है | SO(N) समरूपता लाग्रंगियन सिद्धांत द्वारा दी गई है।
जटिल क्षेत्र को वास्तविक और काल्पनिक भागों में विस्तारित करने से पता चलता है, कि यह वास्तविक अदिष्ट क्षेत्रों के SO(2) प्रतिरूप के समतुल्य है।
उपरोक्त सभी प्रतिरूपों में, युग्मन स्थिरांक सकारात्मक होना चाहिए, क्योंकि अन्यथा क्षमता नीचे असीमित होगी, और कोई स्थिर निर्वात नहीं होगा। इसके अतिरिक्त, नीचे चर्चा की गई फेनमैन अभिन्न मार्ग रूप से परिभाषित नहीं होगी। 4 आयामों में, सिद्धांतों में लैंडौ स्तंभ है। इसका कारण है कि उच्च-ऊर्जा स्तर पर सीमा के बिना, पुनर्सामान्यीकरण सिद्धांत को क्वांटम क्षुद्रता प्रदान करेगा।
प्रतिरूप ग्रिफिथ्स-साइमन वर्ग से वर्णनित है,[1] जिसका अर्थ है कि इसे निश्चित प्रकार के बिंदुरेखा पर आइसिंग प्रतिरूप के अनियमित वर्तमान के अभिसरण के रूप में भी प्रदर्शित किया जा सकता है। दोनों की तुच्छता प्रतिरूप और आईसिंग प्रतिरूप एक बिंदुरेखा प्रतिनिधित्व के माध्यम से दिखाया जा सकता है, जिसे अनियमित वर्तमान विस्तार के रूप में जाना जाता है।[2]
फेनमैन अभिन्न परिमाणीकरण
फेनमैन आरेख विस्तार फेनमैन मार्ग अभिन्न सूत्रीकरण से भी प्राप्त किया जा सकता है।[3] φ में बहुपदों के समय क्रमित निर्वात प्रत्याशा मूल्य है जिसे n-कण ग्रीन के कार्यों के रूप में जाना जाता है, सभी संभावित क्षेत्रों को एकीकृत करके निर्मित किया जाता है, और बिना किसी बाहरी क्षेत्र के निर्वात अपेक्षा मान द्वारा सामान्य किया जाता है।
इन सभी ग्रीन के कार्यों को उत्पादक कार्य में J(x) φ(x) में घातांक का विस्तार करके प्राप्त किया जा सकता है-
समय को काल्पनिक बनाने के लिए पट्टी नियमित आवर्तन प्रयुक्त किया जा सकता है। अंकित अंक को (++++) में बदलने के बाद φ4 अंक प्रदान करता है 4-आयामी यूक्लिडियन आकाशीय पर सांख्यिकीय यांत्रिकी अभिन्न है-
सामान्यतः, यह नियत संवेग वाले कणों के प्रकीर्णन पर प्रयुक्त होता है, जिस स्थिति में फूरियर परिवर्तन उपयोगी होता है और वह इसको बदले देता है
डिराक डेल्टा कार्य है। इस कार्यात्मक अभिन्न का मूल्यांकन करने के लिए मानक चाल इसे घातीय कारकों के उत्पाद मे योजनाबद्ध रूप में लिखना है,
दूसरे दो घातीय कारकों को शक्ति श्रृंखला के रूप में विस्तारित किया जा सकता है, और इस विस्तार के संयोजन को रेखांकन के रूप में दर्शाया जा सकता है। λ = 0 के साथ अभिन्न को अनंत रूप से कई प्राथमिक सामान्य वितरण अंगभूत के उत्पाद के रूप में माना जा सकता है, और परिणाम को फेनमैन आरेखों के योग के रूप में व्यक्त किया जा सकता है। जिसकी गणना निम्नलिखित फेनमैन नियमों का उपयोग करके की जाती है:
- प्रत्येक क्षेत्र N-बिंदु यूक्लिडियन ग्रीन के कार्य को बिंदु रेखा में एक बाहरी रेखा (आधा किनारा) द्वारा दर्शाया गया है, और गति को P के साथ जुड़ा गया है।
- प्रत्येक शीर्ष को एक कारक -λ द्वारा दर्शाया जाता है।
- दिए गए क्रम में λk, n बाहरी रेखाओं और k शीर्षों वाले सभी आरेख इस प्रकार बनाए गए हैं, कि प्रत्येक शीर्ष में प्रवाहित होने वाला संवेग शून्य है। प्रत्येक आंतरिक रेखा को एक कारक 1/(q2 + m2), जहाँ q उस रेखा से बहने वाला संवेग है।
- कोई भी अप्रतिबंधित क्षण सभी मूल्यों पर एकीकृत होते हैं।
- परिणाम को समरूपता कारक द्वारा विभाजित किया जाता है, जो कि बिंदुरेखा की रेखाओं और शीर्षों को इसकी संयोजकता को बदले बिना पुनर्व्यवस्थित करने के विधियों की संख्या है।
- इस योग मे बिना किसी बाहरी रेखा वाले संबद्ध सूक्ष्म बिंदु रेखा और निर्वात असत्य वाले बिंदुरेखा सम्मिलित न करें।
अंतिम नियम द्वारा विभाजित करने के प्रभाव को ध्यान में रखता है। मिन्कोव्स्की-आकाशीय फेनमैन नियम समान हैं, सिवाय इसके कि यह प्रत्येक शीर्ष द्वारा दर्शाया गया है, जबकि प्रत्येक आंतरिक रेखा को कारक के रूप मे i/(q2-m2+i ε) दर्शाया गया है। जहां मिन्कोव्स्की-आकाशीय गॉसियन अभिन्न अभिसरण बनाने के लिए आवश्यक छोटे पट्टी नियमित आवर्तन का प्रतिनिधित्व करता है।
पुनर्सामान्यीकरण
जो अप्रतिबंधित गति पर अभिन्न होता है, जिसे परिपथ अंगभूत कहा जाता है। फेनमैन बिंदुरेखा में सामान्यतः विचलन होता है। यह सामान्यतः पुनर्सामान्यीकरण, द्वारा नियंत्रित किया जाता है, जो लैग्रेंजियन के लिए अलग-अलग प्रति-शर्तें को इस तरह से जोड़ने की प्रक्रिया है। मूल लैग्रेंजियन और प्रतिवाद से निर्मित आरेख परिमित होता हैं।[4] जब प्रक्रिया में पुनर्सामान्यीकरण स्तर प्रस्तुत किया जाता है, तबयुग्मन स्थिरांक और द्रव्यमान इस पर निर्भर हो जाते हैं। यह वह निर्भरता है जो पहले उल्लेख किए गए योग को लन्दौ ध्रुव की ओर ले जाती है, और इसके लिए आवश्यक है कि अंतिम योग को परिमित रखा जाए। वैकल्पिक रूप से, यदि अंतिम को अनंत तक जाने की अनुमति दी जाती है, तो लैंडौ पोल से बचा जा सकता है, यदि पुन: सामान्यीकृत युग्मन शून्य तक चलता है, तो सिद्धांत क्वांटम तुच्छता प्रदान करता है।[5]
स्फूर्त समरूपता का स्वतः विभंजन
एक रोचक विशेषता तब हो सकती है जब m2 ऋणात्मक हो जाता है, किन्तु λ के साथ अभी भी धनात्मक है। इस स्थितियों में, निर्वात में दो सबसे कम-ऊर्जा वाले क्षेत्र होते हैं, जिनमें से प्रत्येक अनायास Z2 को तोड़ देता है, जो मूल सिद्धांत की वैश्विक समरूपता है। इससे क्षेत्र रुकावट ( श्रृंखला सिद्धांत) जैसे रोचक सामूहिक अवस्था की उपस्थिति होती है। O(2) सिद्धांत में, रिक्तिका वृत्त पर स्थित होगी, और किसी एक योग का चुनाव अनायास ही O(2) समरूपता को तोड़ देगा। निरंतर टूटी हुई समरूपता गोल्डस्टोन बोसोन की ओर ले जाती है। इस प्रकार की सहज समरूपता विभंजन हिग्स तंत्र का आवश्यक घटक है।[6]
असतत समरूपता का स्वत: विभंजन
लाग्रंगियन के साथ वह एकल अदिष्ट क्षेत्र है, जिसे सबसे सरल सापेक्षतावादी प्रणाली मे हम सहज समरूपता को तोड़ते हुए देख सकते हैं,
और
के वर्णन में क्षमता को कम करना कि ओर जाता है
अब हम इस न्यूनतम लेखन के क्षेत्र का विस्तार करते हैं
और लाग्रंगियन में प्रतिस्थापित करने पर हमें मिलता है
जहां हम देखते हैं कि अदिष्ट क्षेत्र अब एक सकारात्मक द्रव्यमान शब्द है।
निर्वात अपेक्षा मूल्यों के संदर्भ में सोचने से हमें यह समझने में सहायता मिलती है, कि जब समरूपता अनायास टूट जाती है तो क्या होता है। मूल लाग्रंगियन के अनुसार यह अपरिवर्तनीय था और समरूपता था किन्तु वर्तमान मे है
के साथ दोनों अंक न्यूनतम हैं, और दो अलग-अलग शून्य के स्थान होने चाहिए
के बाद से समरूपता लेता है , और इसे समरूपता अवश्य लेना चाहिए और यह अनुचित न होगा। सिद्धांत के लिए दो संभावित रिक्तिकाएं समतुल्य हैं, किन्तु हमें एक को चुनना होगा। चूंकि ऐसा लगता है कि नए लाग्रंगियन में समरूपता गायब हो गई है किन्तु यह अब भी है और यह अब भी कार्य करता है। यह अनायास टूटी हुई समरूपता की सामान्य विशेषता है कि निर्वात उन्हें तोड़ देता है, किन्तु वे वास्तव में लैग्रैंगियन सिद्धांत में नहीं टूटे हैं, बस छिपे हुए होते हैं, और अधिकांशतः केवल गैर-रैखिक तरीके से अनुभूत किए जाते हैं।[7]
स्पष्ट समाधान
प्रपत्र में लिखे गए सिद्धांत की गति के समीकरण के स्पष्ट मौलिक समाधानों का एक समुच्चय उपस्थित है
जो द्रव्यमान रहित के लिए लिखा जा सकता है, निम्म स्थितियों के रूप में[8]
जैकोबी दीर्घवृत्तीय फलन और दो एकीकरण स्थिरांक है, परन्तु निम्नलिखित मे विक्षेपण वर्णन होना चाहिए।
रोचक बात यह है कि हमने एक द्रव्यमान रहित समीकरण के साथ शुरुआत की थी, किन्तु स्पष्ट समाधान विक्षेपण वर्णन के साथ तरंग का वर्णन करता है। जब तक द्रव्यमान शब्द शून्य नहीं होता है तो निम्म समीकरण प्राप्त होता है
अब विक्षेपण का वर्णन करने के लिए
अंत में, समरूपता को तोड़ने के स्थितियों में-
अस्तित्व मे है, और निम्नलिखित विक्षेपण का वर्णन धारण करता है
ये तरंग समाधान रोचक हैं, तथापि हमने सही विक्षेपण वर्णन के साथ गलत द्रव्यमान चिह्न के साथ समीकरण का आरंभ किया है। इसके अतिरिक्त, जैकोबी फलन कोई वास्तविक शून्य नहीं है और इसलिए क्षेत्र कभी भी शून्य नहीं होता है, किन्तु दिए गए स्थिर मान के चारों ओर घूमता है। जिसे प्रारंभ में समरूपता के सहज टूटने का वर्णन करने के लिए चुना जाता है।
अब अद्वितीयता का प्रमाण प्रदान किया जा सकता है, की यदि हम ध्यान दें कि शैली में और . समाधान खोजा जा सकता है। आंशिक अंतर समीकरण सामान्य अंतर समीकरण बन जाता है। जो जैकोबी दीर्घवृत्तीय फलन को परिभाषित करता है और की उचित विक्षेपण वर्णन को संतुष्ट करता है।
यह भी देखें
- अदिष्ट क्षेत्र सिद्धांत
- क्वांटम तुच्छता
- लैंडौ पोल
- पुनर्सामान्यीकरण
- हिग्स तंत्र
- गोल्डस्टोन बोसोन
- कोलमैन-वेनबर्ग क्षमता
संदर्भ
- ↑ Simon, Barry; Griffiths, Robert B. (1973-06-01). "The (φ4)2 field theory as a classical Ising model". Communications in Mathematical Physics (in English). 33 (2): 145–164. doi:10.1007/BF01645626. ISSN 1432-0916. S2CID 123201243.
- ↑ Aizenman, Michael; Duminil-Copin, Hugo (2021-07-01). "Marginal triviality of the scaling limits of critical 4D Ising and $\phi_4^4$ models". Annals of Mathematics. 194 (1). arXiv:1912.07973. doi:10.4007/annals.2021.194.1.3. ISSN 0003-486X. S2CID 209386716.
- ↑ A general reference for this section is Ramond, Pierre (2001-12-21). Field Theory: A Modern Primer (Second ed.). USA: Westview Press. ISBN 0-201-30450-3..
- ↑ See the previous reference, or for more detail, Itzykson, Zuber; Zuber, Jean-Bernard (2006-02-24). Quantum Field Theory. Dover..
- ↑ D. J. E. Callaway (1988). "Triviality Pursuit: Can Elementary Scalar Particles Exist?". Physics Reports. 167 (5): 241–320. Bibcode:1988PhR...167..241C. doi:10.1016/0370-1573(88)90008-7.
- ↑ A basic description of spontaneous symmetry breaking may be found in the previous two references, or most other Quantum Field Theory books.
- ↑ Schwartz, Quantum Field Theory and the Standard Model, Chapter 28.1
- ↑ Marco Frasca (2011). "शास्त्रीय स्केलर फील्ड समीकरणों का सटीक समाधान". Journal of Nonlinear Mathematical Physics. 18 (2): 291–297. arXiv:0907.4053. Bibcode:2011JNMP...18..291F. doi:10.1142/S1402925111001441. S2CID 17314344.
अग्रिम पठन
- 't Hooft, G., "The Conceptual Basis of Quantum Field Theory" (online version).