बेनलोह क्रिप्टोसिस्टम: Difference between revisions
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
#समुच्चय <math>n=pq, \phi=(p-1)(q-1)</math> | #समुच्चय <math>n=pq, \phi=(p-1)(q-1)</math> | ||
#चुनना <math>y \in \mathbb{Z}^*_n</math> ऐसा है कि <math>y^{\phi/r} \not \equiv 1 \mod n</math>. | #चुनना <math>y \in \mathbb{Z}^*_n</math> ऐसा है कि <math>y^{\phi/r} \not \equiv 1 \mod n</math>. | ||
:: नोट: यदि r सम्मिश्र संख्या है, तो यह फूसे एट अल द्वारा इंगित किया गया था। 2011 में<ref name="ACRYPT">{{cite arXiv |eprint=1008.2991<!--|conference=AFRICACRYPT--> |year=2011 |title=बेनालोह के घने संभाव्य एन्क्रिप्शन पर दोबारा गौर किया गया|first1=Laurent |last1= Fousse |first2=Pascal |last2= Lafourcade |first3=Mohamed |last3= Alnuaimi|class=cs.CR }}</ref> कि उपरोक्त शर्तें (अर्थात, जो मूल पेपर में बताई गई हैं) सही डिक्रिप्शन की गारंटी देने के लिए अपर्याप्त हैं, यानी यह गारंटी देने के लिए कि <math>D(E(m)) = m</math> सभी | :: नोट: यदि r सम्मिश्र संख्या है, तो यह फूसे एट अल द्वारा इंगित किया गया था। 2011 में<ref name="ACRYPT">{{cite arXiv |eprint=1008.2991<!--|conference=AFRICACRYPT--> |year=2011 |title=बेनालोह के घने संभाव्य एन्क्रिप्शन पर दोबारा गौर किया गया|first1=Laurent |last1= Fousse |first2=Pascal |last2= Lafourcade |first3=Mohamed |last3= Alnuaimi|class=cs.CR }}</ref> कि उपरोक्त शर्तें (अर्थात, जो मूल पेपर में बताई गई हैं) सही डिक्रिप्शन की गारंटी देने के लिए अपर्याप्त हैं, यानी यह गारंटी देने के लिए कि <math>D(E(m)) = m</math> सभी प्रारूपो में एक जैसा होना चाहिए। इसे सिद्थ करने के लिए, लेखक निम्नलिखित जांच का प्रस्ताव करते हैं: चलो <math>r=p_1p_2\dots p_k</math>, r का प्रमुख अभाज्य गुणनखंड हो। चुनना <math>y \in \mathbb{Z}^*_n</math> ऐसा कि प्रत्येक कारक के लिए <math>p_i</math>, शर्तें यह है कि <math>y^{\phi/p_i}\ne 1\mod n</math> हो | | ||
# समुच्चय <math>x=y^{\phi/r}\mod n</math> | # समुच्चय <math>x=y^{\phi/r}\mod n</math> | ||
सार्वजनिक कुंजी | सार्वजनिक कुंजी <math>y,n</math>, और निजी कुंजी है <math>\phi,x</math>. | ||
=== संदेश एन्क्रिप्शन === | === संदेश एन्क्रिप्शन === | ||
Line 31: | Line 31: | ||
:<math>a = (c)^{\phi/r} \equiv (y^m u^r)^{\phi/r} \equiv (y^{m})^{\phi/r}(u^r)^{\phi/r} \equiv (y^{\phi/r})^m(u)^{\phi} \equiv (x)^m (u)^0 \equiv x^m \mod n</math> | :<math>a = (c)^{\phi/r} \equiv (y^m u^r)^{\phi/r} \equiv (y^{m})^{\phi/r}(u^r)^{\phi/r} \equiv (y^{\phi/r})^m(u)^{\phi} \equiv (x)^m (u)^0 \equiv x^m \mod n</math> | ||
m को a से पुनर्प्राप्त करने के लिए, हम आधार x का [[असतत लॉग]] लेते हैं। यदि r छोटा है, तो हम एक विस्तृत खोज द्वारा m को पुनः प्राप्त कर सकते हैं, अर्थात यदि जाँच कर रहे हैं <math>x^i\equiv a \mod n</math> सभी के लिए <math>0\dots (r-1)</math>. r के बड़े मात्राओं के लिए, [[ बेबी-स्टेप जाइंट-स्टेप ]] एल्गोरिदम का उपयोग m में <math>O(\sqrt{r})</math> समय और स्थान को पुनर्प्राप्त करने के लिए किया जा सकता है। | m को a से पुनर्प्राप्त करने के लिए, हम आधार x का [[असतत लॉग]] लेते हैं। यदि r छोटा है, तो हम एक विस्तृत खोज द्वारा m को पुनः प्राप्त कर सकते हैं, अर्थात यदि जाँच कर रहे हैं <math>x^i\equiv a \mod n</math> सभी के लिए <math>0\dots (r-1)</math>. r के बड़े मात्राओं के लिए, [[ बेबी-स्टेप जाइंट-स्टेप |बेबी-स्टेप जाइंट-स्टेप]] एल्गोरिदम का उपयोग m में <math>O(\sqrt{r})</math> समय और स्थान को पुनर्प्राप्त करने के लिए किया जा सकता है। | ||
=== सुरक्षा === | === सुरक्षा === |
Revision as of 14:11, 17 May 2023
बेनालोह क्रिप्टोसिस्टम जोश (कोहेन) बेनालोह द्वारा 1985 में बनाए गए गोल्डवेसर-माइकली क्रिप्टोसिस्टम (जीएम) का विस्तार है। जीएम पर बेनालोह क्रिप्टोसिस्टम का मुख्य सुधार यह है कि डेटा के लंबे ब्लॉक को एक बार में एन्क्रिप्ट किया जा सकता है, जबकि जीएम में प्रत्येक बिट को व्यक्तिगत रूप से एन्क्रिप्ट किया जाता है।[1][2][3]
योजना परिभाषा
कई सार्वजनिक कुंजी क्रिप्टोसिस्टम्स की तरह योजना समूह में काम करती है जहाँ n दो बड़ी अभाज्य संख्याओं का गुणनफल है, और यह योजना के समरूप है।
मुख्य जनरेशन
दिए गए ब्लॉक आकार r, a सार्वजनिक/निजी कुंजी जोड़ी निम्नानुसार उत्पन्न होती है:
- बड़े अभाज्य p और q ऐसे चुनें कि और
- समुच्चय
- चुनना ऐसा है कि .
- नोट: यदि r सम्मिश्र संख्या है, तो यह फूसे एट अल द्वारा इंगित किया गया था। 2011 में[4] कि उपरोक्त शर्तें (अर्थात, जो मूल पेपर में बताई गई हैं) सही डिक्रिप्शन की गारंटी देने के लिए अपर्याप्त हैं, यानी यह गारंटी देने के लिए कि सभी प्रारूपो में एक जैसा होना चाहिए। इसे सिद्थ करने के लिए, लेखक निम्नलिखित जांच का प्रस्ताव करते हैं: चलो , r का प्रमुख अभाज्य गुणनखंड हो। चुनना ऐसा कि प्रत्येक कारक के लिए , शर्तें यह है कि हो |
- समुच्चय
सार्वजनिक कुंजी , और निजी कुंजी है .
संदेश एन्क्रिप्शन
संदेश एन्क्रिप्ट करने के लिए :
- एक रैंडम चुनें
- समुच्चय
संदेश डिक्रिप्शन
एक सिफरटेक्स्ट को डिक्रिप्ट करने के लिए :
- गणना करें
- आउटपुट , अर्थात्, m को ऐसे ज्ञात कीजिए कि
डिक्रिप्शन को समझने के लिए, पहले ध्यान दें कि किसी के लिए और अपने पास:
m को a से पुनर्प्राप्त करने के लिए, हम आधार x का असतत लॉग लेते हैं। यदि r छोटा है, तो हम एक विस्तृत खोज द्वारा m को पुनः प्राप्त कर सकते हैं, अर्थात यदि जाँच कर रहे हैं सभी के लिए . r के बड़े मात्राओं के लिए, बेबी-स्टेप जाइंट-स्टेप एल्गोरिदम का उपयोग m में समय और स्थान को पुनर्प्राप्त करने के लिए किया जा सकता है।
सुरक्षा
इस योजना की सुरक्षा उच्च अवशिष्टता समस्या पर टिकी हुई है, विशेष रूप से, z,r और n जहां n का गुणन अज्ञात है, यह कम्प्यूटेशनल रूप से यह निर्धारित करने के लिए संभव है कि क्या z एक rth अवशेष मॉड n है, अर्थात यदि कोई x ऐसा है वह .
संदर्भ
- ↑ Cohen, Josh; Ficsher, Michael (1985). एक मजबूत और सत्यापन योग्य क्रिप्टोग्राफ़िक रूप से सुरक्षित चुनाव योजना (PDF). Proceedings of 26th IEEE Symposium on Foundations of Computer Science. pp. 372–382.
- ↑ Benaloh, Josh (1987). सत्यापन योग्य गुप्त-मतदान चुनाव (पीएचडी थीसिस)। (PDF).
- ↑ Benaloh, Josh (1994). घने संभाव्य एन्क्रिप्शन। (PDF). Workshop on Selected Areas of Cryptography. pp. 120–128.
- ↑ Fousse, Laurent; Lafourcade, Pascal; Alnuaimi, Mohamed (2011). "बेनालोह के घने संभाव्य एन्क्रिप्शन पर दोबारा गौर किया गया". arXiv:1008.2991 [cs.CR].