कोणीय संवेग व प्रचक्रण: Difference between revisions
(→उदाहरण) |
(→उदाहरण) |
||
Line 36: | Line 36: | ||
जहाँ <math>M</math> गोले का द्रव्यमान है, <math>f</math> घूर्णन की आवृत्ति है और <math>r</math> गोले की त्रिज्या है। | जहाँ <math>M</math> गोले का द्रव्यमान है, <math>f</math> घूर्णन की आवृत्ति है और <math>r</math> गोले की त्रिज्या है। | ||
इस प्रकार, उदाहरण के लिए, सूर्य के संबंध में पृथ्वी का कक्षीय कोणीय संवेग लगभग 2.66 × 1040 kg⋅m2⋅s-1 है, जबकि इसका घूर्णी कोणीय संवेग लगभग 7.05 × 1033 kg⋅m2⋅s-1 है। | इस प्रकार, उदाहरण के लिए, सूर्य के संबंध में पृथ्वी का कक्षीय कोणीय संवेग लगभग 2.66 × 10<sup>40</sup> kg⋅m<sup>2</sup>⋅s<sup>−1</sup> 2.66 × 1040 kg⋅m2⋅s-1 है, जबकि इसका घूर्णी कोणीय संवेग लगभग 7.05 × 1033 kg⋅m2⋅s-1 है। | ||
अपनी धुरी के चारों ओर घूमने वाले एकसमान कठोर गोले के मामले में, यदि इसके द्रव्यमान के बजाय, इसका घनत्व ज्ञात हो, तो कोणीय संवेग L L द्वारा दिया जाता है | अपनी धुरी के चारों ओर घूमने वाले एकसमान कठोर गोले के मामले में, यदि इसके द्रव्यमान के बजाय, इसका घनत्व ज्ञात हो, तो कोणीय संवेग L L द्वारा दिया जाता है |
Revision as of 10:43, 1 May 2023
कोणीय संवेग एक भौतिक मात्रा है जो एक अक्ष के चारों ओर किसी वस्तु की घूर्णी गति का वर्णन करती है। इसे किसी वस्तु के जड़त्व आघूर्ण और उसके कोणीय वेग के उत्पाद के रूप में परिभाषित किया जाता है। जड़ता का क्षण किसी वस्तु के घूर्णी गति के प्रतिरोध का एक उपाय है, और कोणीय वेग वह दर है जिस पर वस्तु अक्ष के चारों ओर घूमती है।
गणितीय रूप से, कोणीय संवेग को के रूप में व्यक्त किया जाता है, जहाँ जड़ता का क्षण है और कोणीय वेग है। कोणीय संवेग की इकाई किलोग्राम मीटर वर्ग प्रति सेकंड है।
एक बंद प्रणाली में कोणीय संवेग,संरक्षित रहता है ,जहां उस प्रणाली पर कोई बाहरी बलाघूर्ण कार्य नहीं कर रहा हो। भौतिकी में,इस संरक्षण नियम के महत्वपूर्ण अनुप्रयोग हैं, जैसे आकाशीय यांत्रिकी, परमाणु भौतिकी और क्वांटम यांत्रिकी के अध्ययन में। विशेष रूप से, कोणीय संवेग का संरक्षण कई अवलोकित परिघटनाओं की व्याख्या करने में मदद करता है, जैसे की एक प्रचक्रित लट्टू के पुरस्सरण में, सौर मंडल में ग्रहों की गति, और उपपरमाण्विक कणों का व्यवहार।
मुख्य प्रकार
कोणीय संवेग के दो मुख्य प्रकार हैं:
- कक्षीय कोणीय संवेग: इस प्रकार का कोणीय संवेग किसी केंद्रीय बिंदु या अक्ष के चारों ओर कक्षा में किसी वस्तु की गति से जुड़ा होता है। यह वस्तु के द्रव्यमान, गति और केंद्रीय बिंदु से दूरी पर निर्भर करता है। किसी वस्तु का कक्षीय कोणीय संवेग उसके कक्षीय तल के लंबवत होता है।
- प्रचक्रित कोणीय संवेग: इस प्रकार की कोणीय गति एक कण के आंतरिक प्रचक्रण से जुड़ी होती है, जैसे कि इलेक्ट्रॉन, प्रोटॉन या न्यूट्रॉन। यह इन कणों का मूलभूत गुण है और अंतरिक्ष में उनकी गति से संबंधित नहीं है। किसी कण का प्रचक्रण कोणीय संवेग भी उसके प्रचक्रण अक्ष के लम्बवत् होता है।
दोनों प्रकार के कोणीय गति के भौतिकी में महत्वपूर्ण अनुप्रयोग हैं, जैसे कि क्वांटम यांत्रिकी, परमाणु और आणविक भौतिकी और खगोल विज्ञान के अध्ययन में। कोणीय गति का संरक्षण कई भौतिक प्रणालियों में एक महत्वपूर्ण भूमिका निभाता है, और यह शास्त्रीय यांत्रिकी और क्वांटम यांत्रिकी में एक महत्वपूर्ण सिद्धांत है।
कोणीय संवेग और प्रचक्रण में संबंध
स्पिन कोणीय गति, एक कण के आंतरिक कोणीय गति से जुड़ी होती है, जैसे कि एक इलेक्ट्रॉन, प्रोटॉन या न्यूट्रॉन, और यह अंतरिक्ष के माध्यम से कण की गति से संबंधित नहीं है।
किसी कण का स्पिन कोणीय संवेग परिमाणित होता है, जिसका अर्थ है कि इसमें केवल कुछ असतत मान हो सकते हैं, जो कण के गुणों पर निर्भर करते हैं। उदाहरण के लिए, एक इलेक्ट्रॉन का स्पिन 1/2 होता है, जिसका अर्थ है कि इसके स्पिन कोणीय गति के केवल दो संभावित मान हो सकते हैं: प्लैंक स्थिरांक की इकाइयों में 1/2 या -1/2 को 2π से विभाजित किया जाता है।
चक्रण के अतिरिक्त, कणों में कक्षीय कोणीय संवेग भी हो सकता है, जो एक केंद्रीय बिंदु या अक्ष के चारों ओर उनकी गति से जुड़ा होता है। किसी कण का कुल कोणीय संवेग उसके प्रचक्रण और कक्षीय कोणीय संवेग का योग होता है।
स्पिन और कक्षीय कोणीय गति सहित कोणीय गति की अवधारणा क्वांटम यांत्रिकी, परमाणु और आणविक भौतिकी और खगोल विज्ञान सहित भौतिकी के कई क्षेत्रों के लिए मौलिक है। इन क्षेत्रों में कोणीय संवेग का संरक्षण एक महत्वपूर्ण सिद्धांत है, और इसका उपयोग कई देखी गई घटनाओं की व्याख्या करने के लिए किया जाता है।
उदाहरण
एक कक्षा में किसी पिंड के कोणीय संवेग L L का तुच्छ मामला किसके द्वारा दिया जाता है
जहाँ परिक्रमा करने वाली वस्तु का द्रव्यमान है, कक्षा की आवृत्ति है और की त्रिज्या है।
इसके बजाय अपनी धुरी के चारों ओर घूमने वाले एक समान कठोर गोले का कोणीय संवेग द्वारा दिया जाता है
जहाँ गोले का द्रव्यमान है, घूर्णन की आवृत्ति है और गोले की त्रिज्या है।
इस प्रकार, उदाहरण के लिए, सूर्य के संबंध में पृथ्वी का कक्षीय कोणीय संवेग लगभग 2.66 × 1040 kg⋅m2⋅s−1 2.66 × 1040 kg⋅m2⋅s-1 है, जबकि इसका घूर्णी कोणीय संवेग लगभग 7.05 × 1033 kg⋅m2⋅s-1 है।
अपनी धुरी के चारों ओर घूमने वाले एकसमान कठोर गोले के मामले में, यदि इसके द्रव्यमान के बजाय, इसका घनत्व ज्ञात हो, तो कोणीय संवेग L L द्वारा दिया जाता है
एल = 16 15 π 2 ρ f r 5
{\displaystyle L={\frac {16}{15}}\pi ^{2}\rho fr^{5}}
जहाँ ρ \rho गोले का घनत्व है, f f घूर्णन की आवृत्ति है और r r गोले की त्रिज्या है।
स्पिनिंग डिस्क के सरलतम मामले में, कोणीय संवेग L L द्वारा दिया जाता है [4]
एल = π एम एफ आर 2
{\displaystyle L=\pi Mfr^{2}}
जहाँ M M डिस्क का द्रव्यमान है, f f घूर्णन की आवृत्ति है और r r डिस्क की त्रिज्या है।
यदि इसके बजाय डिस्क अपने व्यास के बारे में घूमती है (जैसे सिक्का टॉस), तो इसका कोणीय संवेग L L [4] द्वारा दिया जाता है
एल = 1 2 π एम एफ आर 2
{\displaystyle L={\frac {1}{2}}\pi Mfr^{2}}