नियमित श्रेणी: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Mathematical category with finite limits and coequalizers}} | {{Short description|Mathematical category with finite limits and coequalizers}} | ||
[[श्रेणी सिद्धांत]] में, '''नियमित श्रेणी''' [[सीमा (श्रेणी सिद्धांत)]] के साथ श्रेणी है जिसमें परिमित सीमाएँ होती हैं और आकारिकी की एक युग्म के [[समतुल्य]] होते हैं जिन्हें कर्नेल जोड़े कहा जाता है, जो कुछ | [[श्रेणी सिद्धांत]] में, '''नियमित श्रेणी''' [[सीमा (श्रेणी सिद्धांत)]] के साथ श्रेणी है जिसमें परिमित सीमाएँ होती हैं और आकारिकी की एक युग्म के [[समतुल्य]] होते हैं जिन्हें कर्नेल जोड़े कहा जाता है, जो कुछ शुद्धता की स्थिति को संतुष्ट करते हैं। इस तरह से नियमित श्रेणियां एबेलियन श्रेणियों के कई गुणों को पुनः प्राप्त करती हैं, जैसे कि बिना एडिटिविटी की आवश्यकता के छवियों का अस्तित्व। उसी समय, नियमित श्रेणियां प्रथम-क्रम तर्क के एक टुकड़े के अध्ययन के लिए आधार प्रदान करती हैं, जिसे नियमित तर्क के रूप में जाना जाता है। | ||
== परिभाषा == | == परिभाषा == | ||
Line 22: | Line 22: | ||
== उदाहरण == | == उदाहरण == | ||
नियमित श्रेणियों के उदाहरणों में शामिल हैं: | नियमित श्रेणियों के उदाहरणों में शामिल हैं: | ||
* [[सेट की श्रेणी]], | * [[सेट की श्रेणी|समुच्चय की श्रेणी]], समुच्चय के बीच [[सेट (गणित)|समुच्चय (गणित)]] और फलन (गणित) की श्रेणी | ||
* अधिक आम तौर पर, हर प्राथमिक टोपोज़ | * अधिक आम तौर पर, हर प्राथमिक टोपोज़ | ||
* [[समूहों की श्रेणी]], समूह की श्रेणी (गणित) और [[समूह समरूपता]] | * [[समूहों की श्रेणी]], समूह की श्रेणी (गणित) और [[समूह समरूपता]] | ||
* वलय (गणित) और वलय समरूपता की श्रेणी | * वलय (गणित) और वलय समरूपता की श्रेणी | ||
* अधिक आम तौर पर, किसी भी | * अधिक आम तौर पर, किसी भी प्रकार के मॉडल की श्रेणी (सार्वभौमिक बीजगणित) | ||
* हर [[अर्ध-जाली | * हर [[अर्ध-जाली|बाउंड मीट-सेमिलैटिस]], ऑर्डर रिलेशन द्वारा दिए गए आकारिकी के साथ | ||
* हर एबेलियन श्रेणियां | * हर एबेलियन श्रेणियां | ||
निम्नलिखित श्रेणियां ''नहीं'' नियमित हैं: | निम्नलिखित श्रेणियां ''नहीं'' नियमित हैं: | ||
* [[टोपोलॉजिकल स्पेस]] की श्रेणी, टोपोलॉजिकल स्पेस की श्रेणी और [[ निरंतर कार्य (टोपोलॉजी) ]]। | * [[टोपोलॉजिकल स्पेस]] की श्रेणी, टोपोलॉजिकल स्पेस की श्रेणी और [[ निरंतर कार्य (टोपोलॉजी) ]]। | ||
* [[छोटी श्रेणियों की श्रेणी]], [[छोटी श्रेणी]] और | *कैट, [[छोटी श्रेणियों की श्रेणी]], [[छोटी श्रेणी|छोटी श्रेणियों]] और फ़ैक्टर्स की श्रेणी | ||
== एपी-मोनो कारककरण == | == एपी-मोनो कारककरण == | ||
नियमित श्रेणी में, नियमित-एपिमॉर्फिज्म और [[एकरूपता]] गुणनखंड प्रणाली बनाते हैं। प्रत्येक आकारिकी f:X→Y को नियमित अधिरूपता e:X→E के बाद मोनोमोर्फिज्म m:E→Y में विभाजित किया जा सकता है, | नियमित श्रेणी में, नियमित-एपिमॉर्फिज्म और [[एकरूपता]] गुणनखंड प्रणाली बनाते हैं। प्रत्येक आकारिकी f:X→Y को नियमित अधिरूपता e:X→E के बाद मोनोमोर्फिज्म m:E→Y में विभाजित किया जा सकता है, जिससे f=me हो। गुणनखंड इस अर्थ में अद्वितीय है कि यदि e':X→E' और नियमित एपिमोर्फिज्म है और m':E'→Y अन्य मोनोमोर्फिज्म है जैसे कि f=m'e', तो एक आइसोमोर्फिज्म मौजूद है h:E→E ' जैसे कि he=e' और m'h=m. मोनोमोर्फिज्म m को एफ की छवि कहा जाता है। | ||
== | == त्रुटिहीन अनुक्रम और नियमित फ़ैक्टर == | ||
नियमित श्रेणी में, प्रपत्र का आरेख <math>R\rightrightarrows X\to Y</math> [[सटीक अनुक्रम]] कहा जाता है यदि यह समतुल्य और कर्नेल युग्म दोनों है। शब्दावली होमोलॉजिकल बीजगणित में | नियमित श्रेणी में, प्रपत्र का आरेख <math>R\rightrightarrows X\to Y</math> [[सटीक अनुक्रम|त्रुटिहीन अनुक्रम]] कहा जाता है यदि यह समतुल्य और कर्नेल युग्म दोनों है। शब्दावली होमोलॉजिकल बीजगणित में त्रुटिहीन अनुक्रमों का सामान्यीकरण है: [[एबेलियन श्रेणी]] में, आरेख | ||
:<math>R\;\overset r{\underset s\rightrightarrows}\; X\xrightarrow{f} Y</math> | :<math>R\;\overset r{\underset s\rightrightarrows}\; X\xrightarrow{f} Y</math> | ||
इस अर्थ में | इस अर्थ में त्रुटिहीन है यदि और केवल यदि <math>0\to R\xrightarrow{(r,s)}X\oplus X\xrightarrow{(f,-f)} Y\to 0</math> सामान्य अर्थों में संक्षिप्त त्रुटिहीन अनुक्रम है। | ||
नियमित श्रेणियों के बीच फ़ंक्टर को नियमित कहा जाता है, | नियमित श्रेणियों के बीच फ़ंक्टर को नियमित कहा जाता है, यदि यह परिमित सीमा और कर्नेल जोड़े के समतुल्य को संरक्षित करता है। फ़ैक्टर नियमित होता है यदि और केवल यदि यह सीमित सीमाओं और त्रुटिहीन अनुक्रमों को संरक्षित करता है। इस कारण से, नियमित फ़ैक्टरों को कभी-कभी त्रुटिहीन फ़ैक्टर्स कहा जाता है। फ़ैक्टर जो परिमित सीमा को संरक्षित करते हैं उन्हें अधिकांश त्रुटिहीन छोड़ दिया जाता है। | ||
== नियमित तर्क और नियमित श्रेणियां == | == नियमित तर्क और नियमित श्रेणियां == | ||
Line 52: | Line 52: | ||
</ref> यह प्रत्येक सिद्धांत (अनुक्रमों का | जहाँ <math>\phi</math> और <math>\psi</math> नियमित सूत्र हैं (गणितीय तर्क) यानी [[परमाणु सूत्र|परमाणु सूत्रों]] सत्य स्थिरांक, बाइनरी मीट्स (संयोजन) और अस्तित्वगत परिमाणीकरण से निर्मित सूत्र है। ऐसे सूत्रों की नियमित श्रेणी में व्याख्या की जा सकती है, और व्याख्या अनुक्रम <math>\forall x (\phi (x) \to \psi (x))</math> का मॉडल है, यदि की व्याख्या <math>\phi </math> की व्याख्या के माध्यम से कारक <math> \psi</math>.<ref name=butz>{{cite web |first=Carsten |last=Butz |date=1998 |url=http://www.brics.dk/LS/98/2/ |title=नियमित श्रेणियाँ और नियमित तर्क|id=BRICS Lectures Series LS-98-2}} | ||
</ref> यह प्रत्येक सिद्धांत (अनुक्रमों का समुच्चय) टी और प्रत्येक नियमित श्रेणी सी के लिए सी में टी के मॉडल के 'मॉड' (टी, सी) श्रेणी के लिए देता है। यह निर्माण फ़ैक्टर 'मॉड' (टी, -) देता है: 'RegCat '→'कैट' श्रेणी 'RegCat' से छोटी श्रेणी की नियमित श्रेणियां और छोटी श्रेणियों के लिए नियमित फ़ैक्टर। यह महत्वपूर्ण परिणाम है कि प्रत्येक सिद्धांत टी के लिए नियमित श्रेणी आर (टी) है, जैसे कि प्रत्येक नियमित श्रेणी सी के लिए श्रेणियों की समतुल्यता है | |||
Line 62: | Line 63: | ||
== | == त्रुटिहीन (प्रभावी) श्रेणियां == | ||
[[तुल्यता संबंध]]ों का सिद्धांत नियमित सिद्धांत है। किसी वस्तु पर तुल्यता संबंध <math>X</math> नियमित श्रेणी का मोनोमोर्फिज्म है <math>X \times X</math> जो रिफ्लेक्सिविटी, समरूपता और ट्रांज़िटिविटी के लिए शर्तों की व्याख्या को संतुष्ट करता है। | [[तुल्यता संबंध]]ों का सिद्धांत नियमित सिद्धांत है। किसी वस्तु पर तुल्यता संबंध <math>X</math> नियमित श्रेणी का मोनोमोर्फिज्म है <math>X \times X</math> जो रिफ्लेक्सिविटी, समरूपता और ट्रांज़िटिविटी के लिए शर्तों की व्याख्या को संतुष्ट करता है। | ||
Line 68: | Line 69: | ||
हर कर्नेल युग्म <math>p_0, p_1: R \rightarrow X</math> तुल्यता संबंध को परिभाषित करता है <math>R \rightarrow X \times X</math>. इसके विपरीत, तुल्यता संबंध को प्रभावी कहा जाता है यदि यह कर्नेल युग्म के रूप में उत्पन्न होता है।<ref>{{harvnb|Pedicchio|Tholen|2004|p=169}}</ref> तुल्यता संबंध प्रभावी होता है यदि और केवल तभी जब इसमें तुल्यकारक होता है और यह इसका कर्नेल युग्म होता है। | हर कर्नेल युग्म <math>p_0, p_1: R \rightarrow X</math> तुल्यता संबंध को परिभाषित करता है <math>R \rightarrow X \times X</math>. इसके विपरीत, तुल्यता संबंध को प्रभावी कहा जाता है यदि यह कर्नेल युग्म के रूप में उत्पन्न होता है।<ref>{{harvnb|Pedicchio|Tholen|2004|p=169}}</ref> तुल्यता संबंध प्रभावी होता है यदि और केवल तभी जब इसमें तुल्यकारक होता है और यह इसका कर्नेल युग्म होता है। | ||
[[माइकल बर्र (गणितज्ञ)]] के अर्थ में नियमित श्रेणी को | [[माइकल बर्र (गणितज्ञ)]] के अर्थ में नियमित श्रेणी को त्रुटिहीन, या त्रुटिहीन कहा जाता है, या प्रभावी नियमित, यदि प्रत्येक तुल्यता संबंध प्रभावी है।<ref>{{harvnb|Pedicchio|Tholen|2004|p=179}}</ref> (ध्यान दें कि [[सटीक श्रेणी|त्रुटिहीन श्रेणी]] के लिए शब्द त्रुटिहीन श्रेणी का भी अलग-अलग उपयोग किया जाता है।) | ||
=== | === त्रुटिहीन श्रेणियों के उदाहरण === | ||
* | * समुच्चय की श्रेणी इस अर्थ में त्रुटिहीन है, और इसलिए कोई भी (प्राथमिक) टोपोस है। प्रत्येक तुल्यता संबंध में तुल्यकारक होता है, जो तुल्यता वर्ग लेकर पाया जाता है। | ||
* हर एबेलियन श्रेणी | * हर एबेलियन श्रेणी त्रुटिहीन है। | ||
* | * समुच्चय की श्रेणी के ऊपर हर श्रेणी जो [[मोनाड (श्रेणी सिद्धांत)]] है, त्रुटिहीन है। | ||
* [[ पत्थर की जगह ]] की श्रेणी नियमित है, लेकिन | * [[ पत्थर की जगह ]] की श्रेणी नियमित है, लेकिन त्रुटिहीन नहीं है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[रूपक (श्रेणी सिद्धांत)]] | * [[रूपक (श्रेणी सिद्धांत)]] | ||
* टोपोस | * टोपोस | ||
* [[सटीक पूर्णता]] | * [[सटीक पूर्णता|त्रुटिहीन पूर्णता]] | ||
== संदर्भ == | == संदर्भ == |
Revision as of 21:59, 16 May 2023
श्रेणी सिद्धांत में, नियमित श्रेणी सीमा (श्रेणी सिद्धांत) के साथ श्रेणी है जिसमें परिमित सीमाएँ होती हैं और आकारिकी की एक युग्म के समतुल्य होते हैं जिन्हें कर्नेल जोड़े कहा जाता है, जो कुछ शुद्धता की स्थिति को संतुष्ट करते हैं। इस तरह से नियमित श्रेणियां एबेलियन श्रेणियों के कई गुणों को पुनः प्राप्त करती हैं, जैसे कि बिना एडिटिविटी की आवश्यकता के छवियों का अस्तित्व। उसी समय, नियमित श्रेणियां प्रथम-क्रम तर्क के एक टुकड़े के अध्ययन के लिए आधार प्रदान करती हैं, जिसे नियमित तर्क के रूप में जाना जाता है।
परिभाषा
श्रेणी C को 'नियमित' कहा जाता है यदि यह निम्नलिखित तीन गुणों को पूरा करती है:[1]
- C पूरी तरह से पूर्ण श्रेणी है।
- यदि f : X → Y, C में रूपवाद है, और
- एक पुलबैक (श्रेणी सिद्धांत) है, तो p0, p1 का समतुल्य मौजूद है। युग्म (p0, p1) को f की कर्नेल युग्म कहा जाता है पुलबैक होने पर, कर्नेल युग्म अद्वितीय समरूपता तक अद्वितीय है।
- यदि f : X → Y C में रूपवाद है, और
- पुलबैक है, और यदि f नियमित अधिरूपता है, तो g नियमित एपिमोर्फिज्म भी है। 'नियमित एपिमोर्फिज्म' एपिमोर्फिज्म है जो आकारिकी के कुछ जोड़े के समतुल्य के रूप में प्रकट होता है।
उदाहरण
नियमित श्रेणियों के उदाहरणों में शामिल हैं:
- समुच्चय की श्रेणी, समुच्चय के बीच समुच्चय (गणित) और फलन (गणित) की श्रेणी
- अधिक आम तौर पर, हर प्राथमिक टोपोज़
- समूहों की श्रेणी, समूह की श्रेणी (गणित) और समूह समरूपता
- वलय (गणित) और वलय समरूपता की श्रेणी
- अधिक आम तौर पर, किसी भी प्रकार के मॉडल की श्रेणी (सार्वभौमिक बीजगणित)
- हर बाउंड मीट-सेमिलैटिस, ऑर्डर रिलेशन द्वारा दिए गए आकारिकी के साथ
- हर एबेलियन श्रेणियां
निम्नलिखित श्रेणियां नहीं नियमित हैं:
- टोपोलॉजिकल स्पेस की श्रेणी, टोपोलॉजिकल स्पेस की श्रेणी और निरंतर कार्य (टोपोलॉजी) ।
- कैट, छोटी श्रेणियों की श्रेणी, छोटी श्रेणियों और फ़ैक्टर्स की श्रेणी
एपी-मोनो कारककरण
नियमित श्रेणी में, नियमित-एपिमॉर्फिज्म और एकरूपता गुणनखंड प्रणाली बनाते हैं। प्रत्येक आकारिकी f:X→Y को नियमित अधिरूपता e:X→E के बाद मोनोमोर्फिज्म m:E→Y में विभाजित किया जा सकता है, जिससे f=me हो। गुणनखंड इस अर्थ में अद्वितीय है कि यदि e':X→E' और नियमित एपिमोर्फिज्म है और m':E'→Y अन्य मोनोमोर्फिज्म है जैसे कि f=m'e', तो एक आइसोमोर्फिज्म मौजूद है h:E→E ' जैसे कि he=e' और m'h=m. मोनोमोर्फिज्म m को एफ की छवि कहा जाता है।
त्रुटिहीन अनुक्रम और नियमित फ़ैक्टर
नियमित श्रेणी में, प्रपत्र का आरेख त्रुटिहीन अनुक्रम कहा जाता है यदि यह समतुल्य और कर्नेल युग्म दोनों है। शब्दावली होमोलॉजिकल बीजगणित में त्रुटिहीन अनुक्रमों का सामान्यीकरण है: एबेलियन श्रेणी में, आरेख
इस अर्थ में त्रुटिहीन है यदि और केवल यदि सामान्य अर्थों में संक्षिप्त त्रुटिहीन अनुक्रम है।
नियमित श्रेणियों के बीच फ़ंक्टर को नियमित कहा जाता है, यदि यह परिमित सीमा और कर्नेल जोड़े के समतुल्य को संरक्षित करता है। फ़ैक्टर नियमित होता है यदि और केवल यदि यह सीमित सीमाओं और त्रुटिहीन अनुक्रमों को संरक्षित करता है। इस कारण से, नियमित फ़ैक्टरों को कभी-कभी त्रुटिहीन फ़ैक्टर्स कहा जाता है। फ़ैक्टर जो परिमित सीमा को संरक्षित करते हैं उन्हें अधिकांश त्रुटिहीन छोड़ दिया जाता है।
नियमित तर्क और नियमित श्रेणियां
नियमित तर्क पहले क्रम के तर्क का खंड है जो प्रपत्र के कथनों को व्यक्त कर सकता है
जहाँ और नियमित सूत्र हैं (गणितीय तर्क) यानी परमाणु सूत्रों सत्य स्थिरांक, बाइनरी मीट्स (संयोजन) और अस्तित्वगत परिमाणीकरण से निर्मित सूत्र है। ऐसे सूत्रों की नियमित श्रेणी में व्याख्या की जा सकती है, और व्याख्या अनुक्रम का मॉडल है, यदि की व्याख्या की व्याख्या के माध्यम से कारक .[2] यह प्रत्येक सिद्धांत (अनुक्रमों का समुच्चय) टी और प्रत्येक नियमित श्रेणी सी के लिए सी में टी के मॉडल के 'मॉड' (टी, सी) श्रेणी के लिए देता है। यह निर्माण फ़ैक्टर 'मॉड' (टी, -) देता है: 'RegCat '→'कैट' श्रेणी 'RegCat' से छोटी श्रेणी की नियमित श्रेणियां और छोटी श्रेणियों के लिए नियमित फ़ैक्टर। यह महत्वपूर्ण परिणाम है कि प्रत्येक सिद्धांत टी के लिए नियमित श्रेणी आर (टी) है, जैसे कि प्रत्येक नियमित श्रेणी सी के लिए श्रेणियों की समतुल्यता है
जो सी में स्वाभाविक है। यहां, आर (टी) को नियमित सिद्धांत टी की वर्गीकरण श्रेणी कहा जाता है। समानता तक कोई भी छोटी नियमित श्रेणी इस तरह से कुछ नियमित सिद्धांत की वर्गीकरण श्रेणी के रूप में उत्पन्न होती है।[2]
त्रुटिहीन (प्रभावी) श्रेणियां
तुल्यता संबंधों का सिद्धांत नियमित सिद्धांत है। किसी वस्तु पर तुल्यता संबंध नियमित श्रेणी का मोनोमोर्फिज्म है जो रिफ्लेक्सिविटी, समरूपता और ट्रांज़िटिविटी के लिए शर्तों की व्याख्या को संतुष्ट करता है।
हर कर्नेल युग्म तुल्यता संबंध को परिभाषित करता है . इसके विपरीत, तुल्यता संबंध को प्रभावी कहा जाता है यदि यह कर्नेल युग्म के रूप में उत्पन्न होता है।[3] तुल्यता संबंध प्रभावी होता है यदि और केवल तभी जब इसमें तुल्यकारक होता है और यह इसका कर्नेल युग्म होता है।
माइकल बर्र (गणितज्ञ) के अर्थ में नियमित श्रेणी को त्रुटिहीन, या त्रुटिहीन कहा जाता है, या प्रभावी नियमित, यदि प्रत्येक तुल्यता संबंध प्रभावी है।[4] (ध्यान दें कि त्रुटिहीन श्रेणी के लिए शब्द त्रुटिहीन श्रेणी का भी अलग-अलग उपयोग किया जाता है।)
त्रुटिहीन श्रेणियों के उदाहरण
- समुच्चय की श्रेणी इस अर्थ में त्रुटिहीन है, और इसलिए कोई भी (प्राथमिक) टोपोस है। प्रत्येक तुल्यता संबंध में तुल्यकारक होता है, जो तुल्यता वर्ग लेकर पाया जाता है।
- हर एबेलियन श्रेणी त्रुटिहीन है।
- समुच्चय की श्रेणी के ऊपर हर श्रेणी जो मोनाड (श्रेणी सिद्धांत) है, त्रुटिहीन है।
- पत्थर की जगह की श्रेणी नियमित है, लेकिन त्रुटिहीन नहीं है।
यह भी देखें
संदर्भ
- ↑ Pedicchio & Tholen 2004, p. 177
- ↑ 2.0 2.1 Butz, Carsten (1998). "नियमित श्रेणियाँ और नियमित तर्क". BRICS Lectures Series LS-98-2.
- ↑ Pedicchio & Tholen 2004, p. 169
- ↑ Pedicchio & Tholen 2004, p. 179
- Barr, Michael; Grillet, Pierre A.; van Osdol, Donovan H. (2006) [1971]. Exact Categories and Categories of Sheaves. Lecture Notes in Mathematics. Vol. 236. Springer. ISBN 978-3-540-36999-8.
- Borceux, Francis (1994). Handbook of Categorical Algebra. Vol. 2. Cambridge University Press. ISBN 0-521-44179-X.
- Lack, Stephen (1999). "A note on the exact completion of a regular category, and its infinitary generalizations". Theory and Applications of Categories. 5 (3): 70–80.
- van Oosten, Jaap (1995). "Basic Category Theory" (PDF). University of Aarhus. BRICS Lectures Series LS-95-1.
- Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004). Categorical foundations. Special topics in order, topology, algebra, and sheaf theory. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge: Cambridge University Press. ISBN 0-521-83414-7. Zbl 1034.18001.