भूकंपीय कंपन नियंत्रण: Difference between revisions

From Vigyanwiki
(Created page with "{{redirect|Vibration control|the broader concept|Vibration isolation}} {{Cleanup bare URLs|date=September 2022}} भूकंप इंजीनियरिंग में,...")
 
No edit summary
Line 1: Line 1:
{{redirect|Vibration control|the broader concept|Vibration isolation}}
{{Cleanup bare URLs|date=September 2022}}
भूकंप इंजीनियरिंग में, कंपन नियंत्रण तकनीकी साधनों का एक सेट है जिसका उद्देश्य [[भूकंप विज्ञान]] भूकंप # प्रभाव को कम करना है। भवन और गैर-भवन संरचनाओं में भूकंप के प्रभाव।
भूकंप इंजीनियरिंग में, कंपन नियंत्रण तकनीकी साधनों का एक सेट है जिसका उद्देश्य [[भूकंप विज्ञान]] भूकंप # प्रभाव को कम करना है। भवन और गैर-भवन संरचनाओं में भूकंप के प्रभाव।
सभी भूकंपीय कंपन नियंत्रण उपकरणों को ''निष्क्रिय'', ''सक्रिय'' या ''हाइब्रिड'' के रूप में वर्गीकृत किया जा सकता है<ref>{{cite web|url=http://physics-animations.com/Physics/English/spri_txt.htm|title=Physics-animations.com बिक्री के लिए है|website=physics-animations.com}}</ref> where:[[File:LRBtest.jpg|thumb|right|[[आधार अलगाव]] का परीक्षण [[यूसीएसडी]] कैलट्रांस-एसआरएमडी फैसिलिटी में किया जा रहा है]]* निष्क्रिय नियंत्रण उपकरणों में उनके, संरचनात्मक तत्वों और जमीन के बीच कोई [[प्रतिक्रिया]] क्षमता नहीं होती है;
सभी भूकंपीय कंपन नियंत्रण उपकरणों को ''निष्क्रिय'', ''सक्रिय'' या ''हाइब्रिड'' के रूप में वर्गीकृत किया जा सकता है<ref>{{cite web|url=http://physics-animations.com/Physics/English/spri_txt.htm|title=Physics-animations.com बिक्री के लिए है|website=physics-animations.com}}</ref> where:[[File:LRBtest.jpg|thumb|right|[[आधार अलगाव]] का परीक्षण [[यूसीएसडी]] कैलट्रांस-एसआरएमडी फैसिलिटी में किया जा रहा है]]* निष्क्रिय नियंत्रण उपकरणों में उनके, संरचनात्मक तत्वों और जमीन के बीच कोई [[प्रतिक्रिया]] क्षमता नहीं होती है;

Revision as of 01:32, 17 May 2023

भूकंप इंजीनियरिंग में, कंपन नियंत्रण तकनीकी साधनों का एक सेट है जिसका उद्देश्य भूकंप विज्ञान भूकंप # प्रभाव को कम करना है। भवन और गैर-भवन संरचनाओं में भूकंप के प्रभाव।

सभी भूकंपीय कंपन नियंत्रण उपकरणों को निष्क्रिय, सक्रिय या हाइब्रिड के रूप में वर्गीकृत किया जा सकता है[1] where:

आधार अलगाव का परीक्षण यूसीएसडी कैलट्रांस-एसआरएमडी फैसिलिटी में किया जा रहा है

* निष्क्रिय नियंत्रण उपकरणों में उनके, संरचनात्मक तत्वों और जमीन के बीच कोई प्रतिक्रिया क्षमता नहीं होती है;

  • सक्रिय नियंत्रण उपकरणों में संरचना के भीतर भूकंप इनपुट प्रसंस्करण उपकरण और एक्ट्यूएटर्स के साथ एकीकृत जमीन पर रीयल-टाइम रिकॉर्डिंग इंस्ट्रूमेंटेशन शामिल है;
  • हाइब्रिड नियंत्रण उपकरणों में सक्रिय और निष्क्रिय नियंत्रण प्रणालियों की संयुक्त विशेषताएं होती हैं।[2]

जब जमीनी भूकंपीय तरंगें ऊपर पहुंचती हैं और किसी इमारत के आधार में घुसना शुरू करती हैं, तो प्रतिबिंबों के कारण उनकी ऊर्जा प्रवाह घनत्व नाटकीय रूप से कम हो जाती है: आमतौर पर, 90% तक। हालांकि, एक बड़े भूकंप के दौरान घटना तरंगों के शेष हिस्से में अभी भी एक बड़ी विनाशकारी क्षमता है।

भूकंपीय तरंगों के एक अधिरचना में प्रवेश करने के बाद, उनके हानिकारक प्रभाव को शांत करने और इमारत के भूकंपीय प्रदर्शन में सुधार करने के लिए उन्हें नियंत्रित करने के कई तरीके हैं, उदाहरण के लिए:

  • अच्छी तरह से इंजीनियर [[ट्यून्ड बड़े पैमाने पर स्पंज ]]्स के साथ एक अधिरचना के अंदर तरंग ऊर्जा को नष्ट करने के लिए;
  • तरंग ऊर्जा को आवृत्तियों की एक विस्तृत श्रृंखला के बीच फैलाने के लिए;
  • अवशोषण (ध्वनिकी) के लिए तथाकथित द्रव्यमान डैम्पर्स की मदद से संपूर्ण तरंग आवृत्तियों बैंड के गुंजयमान भाग।[3]

ट्यून्ड (निष्क्रिय) के लिए टीएमडी के रूप में संक्षिप्त रूप से अंतिम प्रकार के उपकरण, सक्रिय के लिए एएमडी के रूप में, और हाइब्रिड मास डैम्पर्स के लिए एचएमडी के रूप में, एक चौथाई के लिए मुख्य रूप से जापान में ऊंची इमारतों में अध्ययन और स्थापित किया गया है। एक सदी का।[4]

हालांकि, एक और दृष्टिकोण है: भूकंपीय ऊर्जा प्रवाह का आंशिक दमन भूकंपीय या आधार अलगाव के रूप में जाना जाता है जो दुनिया भर में कई ऐतिहासिक इमारतों में लागू किया गया है और वर्षों से भूकंप इंजीनियरिंग अनुसंधान के केंद्र में बना हुआ है।

इसके लिए, कुछ पैड इमारत के आधार में सभी प्रमुख लोड-ले जाने वाले तत्वों में डाले जाते हैं जो हिलती हुई जमीन पर आराम करने वाले अपने आधार से एक अधिरचना को पर्याप्त रूप से युग्मित (भौतिकी) करते हैं। इसके लिए एक कठोरता डायाफ्राम (संरचनात्मक प्रणाली) और भवन के चारों ओर एक खाई बनाने के साथ-साथ पलटने और पी-डेल्टा प्रभाव|पी-डेल्टा प्रभाव के खिलाफ प्रावधान करने की भी आवश्यकता है।

रिफाइनरियों या संयंत्रों में कंपन नियंत्रण के लिए अक्सर स्नबर्स का उपयोग किया जाता है। स्नबर्स दो अलग-अलग रूपों में आते हैं: हाइड्रोलिक स्नबर और मैकेनिकल स्नबर

  • हाइड्रोलिक स्नबर्स का उपयोग पाइपिंग सिस्टम पर किया जाता है जब संयमित थर्मल मूवमेंट की अनुमति होती है।[5]
  • मैकेनिकल स्नबर्स किसी भी पाइप मूवमेंट के त्वरण को 0.2 ग्राम की सीमा तक सीमित करने के मानकों पर काम करते हैं, जो कि अधिकतम त्वरण है जो स्नबर पाइपिंग को देखने की अनुमति देगा।[6]


== मैकेनिकल, इलेक्ट्रिकल, नलसाजी, और एचवीएसी == का कंपन नियंत्रण संलग्नक विधियों को प्रदान करने के लिए यांत्रिक उपकरणों के परीक्षण, स्थापना और प्रदर्शन के लिए मानक और दिशानिर्देश बनाए गए हैं

शोर संवेदनशील क्षेत्रों में स्थित उपकरण। ऐसे विनिर्देश प्रदान करने वाला एक मैनुअल है:

  • 412 मैनुअल: मैकेनिकल उपकरण के लिए भूकंपीय अवरोध स्थापित करना (वीआईएससीएमए / कंपन अलगाव और भूकंपीय नियंत्रण निर्माता संघ)

यह भी देखें

संदर्भ

  1. "Physics-animations.com बिक्री के लिए है". physics-animations.com.
  2. Chu, S.Y.; Soong, T.T.; Reinhorn, A.M. (2005). सक्रिय, संकर और अर्ध-सक्रिय संरचनात्मक नियंत्रण. John Wiley & Sons. ISBN 0-470-01352-4.
  3. http://ffden-2.phys.uaf.edu/211_fall2002.web.dir/Eva_Burk/Eva's%201st%20page.htm
  4. "想いをかたちに 未来へつなぐ 竹中工務店". www.takenaka.co.jp.
  5. Hydraulic Snubbers Piping Technology and Products, (retrieved 2012)
  6. Mechanical Snubbers Piping Technology and Products, (retrieved March 2012)


बाहरी संबंध