सामान्यीकृत सममित समूह: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
* जहाँ <math>m=1,</math> सामान्यीकृत सममित समूह साधारण सममित समूह है जैसे<math>S(1,n) = S_n.</math> | * जहाँ <math>m=1,</math> सामान्यीकृत सममित समूह साधारण सममित समूह है जैसे<math>S(1,n) = S_n.</math> | ||
* <math>m=2,</math> का क्रम 2 के चक्रीय समूह को सकारात्मक और नकारात्मक माना जा सकता है क्योंकि (<math>Z_2 \cong \{\pm 1\}</math>) तथा सामान्यीकृत सममित समूह की पहचान <math>S(2,n)</math> [[हस्ताक्षरित सममित समूह|हस्तांक्षरित सममित समूह]] के साथ होती है। | * <math>m=2,</math> का क्रम 2 के चक्रीय समूह को सकारात्मक और नकारात्मक माना जा सकता है क्योंकि (<math>Z_2 \cong \{\pm 1\}</math>) तथा सामान्यीकृत सममित समूह की पहचान <math>S(2,n)</math> [[हस्ताक्षरित सममित समूह|हस्तांक्षरित सममित समूह]] के साथ होती है। | ||
एम,एन सामान्यीकृत क्रमचय आव्यूह के रूप में जहां शून्येतर प्रविष्टियां एकता के एम-वें मूल हैं जहाँ | एम,एन सामान्यीकृत क्रमचय आव्यूह के रूप में जहां शून्येतर प्रविष्टियां एकता के एम-वें मूल में हैं जहाँ | ||
Z_{m}\cong \mu _{m}. | Z_{m}\cong \mu _{m}. | ||
इसमें प्रतिनिधित्व सिद्धांत का अध्ययन ओशिमा | इसमें प्रतिनिधित्व सिद्धांत का अध्ययन ओशिमा में 1966-1996 में किया गया है जैसा कि सममित समूह के साथ होता है वक्ता द्वारा प्रमापीय के संदर्भ में प्रतिनिधित्व का निर्माण किया जा सकता है। | ||
== प्रतिनिधित्व सिद्धांत == | == प्रतिनिधित्व सिद्धांत == | ||
सिद्धांत के तत्वों का स्वाभाविक प्रतिनिधित्व <math>S(m,n)</math> है सामान्यीकृत जहां गैर-शून्य प्रविष्टियां एकता की जडे़ं हैं प्रतिनिधित्व सिद्धांत के बाद अध्ययन किया गया है । | सिद्धांत के तत्वों का स्वाभाविक प्रतिनिधित्व <math>S(m,n)</math> है सामान्यीकृत जहां गैर-शून्य प्रविष्टियां एकता की जडे़ं हैं तथा इसमें प्रतिनिधित्व सिद्धांत के बाद भी अध्ययन किया गया है । | ||
संपादन करना | संपादन करना | ||
S के तत्वों का स्वाभाविक प्रतिनिधित्व एम,एन है। | |||
( | यह एस(एम,एन)सामान्यीकृत क्रमचय आव्यूह के रूप में जहां शून्येतर प्रविष्टियां एकता के एम-वें मूल हैं में हैं। | ||
जब Z_{m}\cong \mu _{m}. | |||
== होमोलॉजी == | == होमोलॉजी == |
Revision as of 06:59, 3 May 2023
गणित में सामान्यीकृत सममित समूह पुष्पांजलि उत्पाद है जिसमें यह आदेशित एम के चक्रीय समूह और आदेशित एन के सममित समूह का क्रम है।
उदाहरण
- जहाँ सामान्यीकृत सममित समूह साधारण सममित समूह है जैसे
- का क्रम 2 के चक्रीय समूह को सकारात्मक और नकारात्मक माना जा सकता है क्योंकि () तथा सामान्यीकृत सममित समूह की पहचान हस्तांक्षरित सममित समूह के साथ होती है।
एम,एन सामान्यीकृत क्रमचय आव्यूह के रूप में जहां शून्येतर प्रविष्टियां एकता के एम-वें मूल में हैं जहाँ
Z_{m}\cong \mu _{m}. इसमें प्रतिनिधित्व सिद्धांत का अध्ययन ओशिमा में 1966-1996 में किया गया है जैसा कि सममित समूह के साथ होता है वक्ता द्वारा प्रमापीय के संदर्भ में प्रतिनिधित्व का निर्माण किया जा सकता है।
प्रतिनिधित्व सिद्धांत
सिद्धांत के तत्वों का स्वाभाविक प्रतिनिधित्व है सामान्यीकृत जहां गैर-शून्य प्रविष्टियां एकता की जडे़ं हैं तथा इसमें प्रतिनिधित्व सिद्धांत के बाद भी अध्ययन किया गया है ।
संपादन करना
S के तत्वों का स्वाभाविक प्रतिनिधित्व एम,एन है। यह एस(एम,एन)सामान्यीकृत क्रमचय आव्यूह के रूप में जहां शून्येतर प्रविष्टियां एकता के एम-वें मूल हैं में हैं। जब Z_{m}\cong \mu _{m}.
होमोलॉजी
पहला समूह समरूपता समूह संयुग्मी हैं इसलिए एक एबेलियन समूह में समान रूप से चिन्हित करना चाहिए क्योंकि एक एबेलियन समूह में संयुग्मन तुच्छ है को चिन्हित किया जा सकता है जबकि सममित समूह पर हस्तान्तरित नक्शा उपज देता है तथा ये स्वतंत्र होता है और समूह उत्पन्न करता है इसलिए यह अपभ्रंश हैं।
दूसरा समरूपता समूह शास्त्रीय शब्दों में शून्य गुणक द्वारा दिया गया है जो इस प्रकार है-([[#CITEREF|]]) :
जबकि यह n और m की समता पर निर्भर करता है और जो सममित समूह और हस्ताक्षरित सममित समूह के शून्य गुणक हैं।
संदर्भ
- Davies, J. W.; Morris, A. O. (1974), "The Schur Multiplier of the Generalized Symmetric Group", J. London Math. Soc., 2, 8 (4): 615–620, doi:10.1112/jlms/s2-8.4.615
- Can, Himmet (1996), "Representations of the Generalized Symmetric Groups", Contributions to Algebra and Geometry, 37 (2): 289–307, CiteSeerX 10.1.1.11.9053
- Osima, M. (1954), "On the representations of the generalized symmetric group", Math. J. Okayama Univ., 4: 39–54