संघ योजना: Difference between revisions
(Created page with "{{Inadequate lead|date=March 2013}} {{Use dmy dates|date=December 2020}} विचरण के विश्लेषण के लिए प्रयोगों के ड...") |
No edit summary |
||
(14 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
विचरण के विश्लेषण के लिए प्रयोगों के डिजाइन के सिद्धांत में, संघ योजनाओं का सिद्धांत सांख्यिकी में उत्पन्न हुआ।<ref>{{harvnb|Bailey|2004|loc=pg. 387}}</ref><ref>{{harvnb|Bose|Mesner|1959}}</ref><ref>{{harvnb|Bose|Nair|1939}}</ref> गणित में, [[साहचर्य]] योजनाएँ [[बीजगणित]] और संयोजन विज्ञान दोनों से संबंधित हैं। [[बीजगणितीय कॉम्बिनेटरिक्स|बीजगणितीय साहचर्य]] में, संघ योजना कई विषयों के लिए एकीकृत दृष्टिकोण प्रदान करती है, उदाहरण के लिए [[संयोजन डिजाइन]] और [[कोडिंग सिद्धांत]] त्रुटि-सुधार कोड का सिद्धांत।<ref>{{harvnb|Bannai|Ito|1984}}</ref><ref>{{harvnb|Godsil|1993}}</ref> बीजगणित में, साहचर्य योजनाएँ [[समूह (गणित)]] का सामान्यीकरण करती हैं और साहचर्य योजनाओं का सिद्धांत [[समूह प्रतिनिधित्व]] के [[समूह चरित्र]] का सामान्यीकरण करता है।<ref>{{harvnb|Bailey|2004|loc=pg. 387}}</ref><ref>{{harvnb|Zieschang|2005b}}</ref><ref>{{harvnb|Zieschang|2005a}}</ref> | |||
विचरण के विश्लेषण के लिए प्रयोगों के डिजाइन के सिद्धांत में, संघ योजनाओं का सिद्धांत सांख्यिकी में उत्पन्न हुआ।<ref>{{harvnb|Bailey|2004|loc=pg. 387}}</ref><ref>{{harvnb|Bose|Mesner|1959}}</ref><ref>{{harvnb|Bose|Nair|1939}}</ref> गणित में, [[साहचर्य]] योजनाएँ [[बीजगणित]] और संयोजन विज्ञान दोनों से संबंधित हैं। [[बीजगणितीय कॉम्बिनेटरिक्स]] में, | |||
== परिभाषा == | == परिभाषा == | ||
n-श्रेणी संघ योजना में [[सेट (गणित)]] X होता है जिसमें X × X के सेट S का विभाजन n + 1 [[द्विआधारी संबंध]], R में होता है, ''R''<sub>0</sub>, ''R''<sub>1</sub>, ..., ''R<sub>n</sub>'' जो संतुष्ट करता है। | |||
*<math>R_{0} = \{(x,x) : x \in X\}</math>; इसे [[पहचान संबंध]] कहा जाता है। | *<math>R_{0} = \{(x,x) : x \in X\}</math>; इसे [[पहचान संबंध]] कहा जाता है। | ||
* परिभाषित करना <math> R^* := \{(x,y) : (y,x) \in R\}</math>, यदि S में R है, तो S में R* है। | * परिभाषित करना <math> R^* := \{(x,y) : (y,x) \in R\}</math>, यदि S में R है, तो S में R* है। | ||
* | *यदि <math>(x,y) \in R_{k}</math>, की संख्या <math>z \in X</math> ऐसा है कि <math>(x,z) \in R_{i}</math> और <math>(z,y) \in R_{j}</math> स्थिरांक <math>p^k_{ij}</math> है इस पर निर्भर करते हुए <math>i</math>, <math>j</math>, <math>k</math> किन्तु <math>x</math> और <math>y</math> की विशेष पसंद पर नहीं। | ||
संघ योजना क्रमविनिमेय है यदि <math>p_{ij}^k = p_{ji}^k</math> सभी के लिए <math>i</math>, <math>j</math> और <math>k</math>. अधिकांश लेखक इस संपत्ति को मानते हैं। | |||
सममित संघ योजना वह है जिसमें प्रत्येक <math>R_i</math> [[सममित संबंध]] है। वह है: | |||
* | * यदि (x, y) ∈ R<sub>''i''</sub>, तब (y, x) ∈ R<sub>''i''</sub>. (या समकक्ष, R* = R)। | ||
प्रत्येक सममित साहचर्य योजना क्रमविनिमेय होती है। | प्रत्येक सममित साहचर्य योजना क्रमविनिमेय होती है। | ||
ध्यान दें, | ध्यान दें, चूँकि, जबकि संघ योजना की धारणा समूह की धारणा को सामान्य करती है, क्रमविनिमेय संघ योजना की धारणा केवल [[क्रमविनिमेय समूह]] की धारणा को सामान्य बनाती है। | ||
यदि <math>(x,y) \in R_i</math> दो बिंदुओं x और y को i वां सहयोगी कहा जाता है। परिभाषा बताती है कि यदि x और y i वां सहयोगी हैं तो y और x भी हैं। अंकों की प्रत्येक जोड़ी ठीक के लिए iवें सहयोगी <math>i</math> है। प्रत्येक बिंदु का अपना स्वयं का ज़ीरोथ सहयोगी होता है जबकि विशिष्ट बिंदु कभी भी ज़ीरोथ सहयोगी नहीं होते हैं। यदि x और y k वां सहयोगी हैं तो अंकों की संख्या <math>z</math> जो दोनों के सहयोगी हैं <math>x</math> और j-वें के सहयोगी <math>y</math> स्थिरांक <math>p^k_{ij}</math> है । | |||
=== ग्राफ व्याख्या और आसन्न | === ग्राफ व्याख्या और आसन्न आव्यूह === | ||
सममित संघ योजना को वर्गीकरण वाले किनारों के साथ पूर्ण ग्राफ़ के रूप में देखा जा सकता है। ग्राफ है <math>v</math> शीर्ष, प्रत्येक बिंदु के लिए <math>X</math> और किनारों को जोड़ने वाला किनारा <math>x</math> और <math>y</math> अंकित है <math>i</math> यदि <math>x</math> और <math>y</math> हैं <math>i</math>वें सहयोगी। प्रत्येक किनारे पर अद्वितीय वर्गीकरण होता है और निश्चित आधार वर्गीकरण वाले त्रिकोणों की संख्या <math>k</math> अन्य किनारों को वर्गीकरण करना <math>i</math> और <math>j</math> स्थिरांक <math>p^k_{ij}</math> है , इस पर निर्भर करते हुए <math>i,j,k</math> किन्तु आधार के चुनाव पर नहीं। विशेष रूप से, प्रत्येक शीर्ष ठीक से आपतित होता है <math>p^0_{ii}=v_{i}</math> किनारों को वर्गीकरण किया गया <math>i</math>; <math>v_{i}</math> [[संबंध (गणित)]] का आसन्न संबंध <math>R_{i}</math> है । वर्गीकरण वाले लूप भी हैं <math>0</math> प्रत्येक शीर्ष पर <math>x</math>, <math>R_{0}</math> के अनुरूप हैं। | |||
संबंध (गणित) उनके आसन्न | संबंध (गणित) उनके आसन्न आव्यूह द्वारा वर्णित हैं। <math>A_i</math> का आसन्न आव्यूह है <math>R_{i}</math> के लिए <math>i=0,\ldots,n</math> और v × v [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] है जिसमें पंक्तियों और स्तंभों को <math>X</math> बिंदुओं द्वारा वर्गीकरण किया जाता है । | ||
:<math>\left( A_i \right)_{x,y} = \begin{cases} | :<math>\left( A_i \right)_{x,y} = \begin{cases} | ||
1, & \mbox{if } (x,y) \in R_{i},\\ | 1, & \mbox{if } (x,y) \in R_{i},\\ | ||
0, & \mbox{otherwise.} \end{cases}\qquad (1)</math> | 0, & \mbox{otherwise.} \end{cases}\qquad (1)</math> | ||
सममित संघ योजना की परिभाषा यह कहने के बराबर है कि <math>A_i</math> v × v (0,1)-आव्यूह|(0,1)-आव्यूहों हैं जो संतुष्ट करते हैं | |||
: | :I. <math>A_i</math> सममित है, | ||
: | :II. <math>\sum_{i=0}^n A_i = J</math> (सभी एक आव्यूह), | ||
: | : III. <math>A_0 = I</math>, | ||
: | : IV. <math>A_i A_j = \sum_{k=0}^n p^k_{ij}A_k = A_j A_i, i,j=0,\ldots,n</math>. | ||
(X, y) - (IV) के बाईं ओर की प्रविष्टि ग्राफ़ में | (X, y) - (IV) के बाईं ओर की प्रविष्टि ग्राफ़ में वर्गीकरण i और j के साथ x और y के बीच लंबाई दो के पथों की संख्या है। ध्यान दें कि की पंक्तियाँ और स्तंभ <math>A_{i}</math> रोकना <math>v_{i}</math> <math>1</math>'S: | ||
:<math>A_{i} J=J A_{i}=v_{i} J. \qquad(2)</math> | :<math>A_{i} J=J A_{i}=v_{i} J. \qquad(2)</math> | ||
=== शब्दावली === | === शब्दावली === | ||
*संख्या <math>p_{ij}^k</math> योजना के पैरामीटर कहलाते हैं। उन्हें संरचनात्मक स्थिरांक भी कहा जाता है। | *संख्या <math>p_{ij}^k</math> योजना के पैरामीटर कहलाते हैं। उन्हें संरचनात्मक स्थिरांक भी कहा जाता है। | ||
== इतिहास == | == इतिहास == | ||
टर्म | टर्म संघ योजना के कारण है {{harv|बोस शिमामोटो 1952| | }} किन्तु अवधारणा पहले से ही अंतर्निहित {{harv|बोस नायर 1939| | }} है ।<ref>{{harvnb|Dembowski|1968|loc=pg. 281, footnote 1}}</ref> ये लेखक अध्ययन कर रहे थे कि सांख्यिकीविदों ने आंशिक रूप से संतुलित अपूर्ण ब्लॉक डिज़ाइन (PBIBDs) को क्या कहा है। विषय प्रकाशन के साथ बीजगणितीय रुचि का उद्देश्य बन गया {{harv|बोस मेसनर 1959| | }} और बोस-मेस्नर बीजगणित का परिचय। सिद्धांत के लिए सबसे महत्वपूर्ण योगदान P डेल्सर्ट की स्थापना थी {{harv|डेल्सर्ट |1973}} जिन्होंने कोडिंग सिद्धांत और डिज़ाइन सिद्धांत के साथ कनेक्शन को पहचाना और पूरी तरह से उपयोग किया।<ref>{{harvnb|Bannai|Ito|1984|loc=pg. vii}}</ref> सामान्यीकरणों का अध्ययन डी.जी. हिगमैन (सुसंगत विन्यास) और बोरिस वेसफीलर बी द्वारा किया गया है। वीज़फ़ीलर (दूरी नियमित रेखांकन)। | ||
== बुनियादी तथ्य == | == बुनियादी तथ्य == | ||
*<math>p_{00}^0 = 1</math>, | *<math>p_{00}^0 = 1</math>, अर्थात, यदि <math>(x,y) \in R_0</math> तब <math>x = y</math> और केवल <math>z</math> ऐसा है कि <math>(x,z) \in R_0</math> , <math>z=x</math> है । | ||
*<math>\sum_{i=0}^{k} p_{ii}^0 = |X|</math>; | *<math>\sum_{i=0}^{k} p_{ii}^0 = |X|</math>; ऐसा इसलिए है क्योंकि <math>R_i</math> विभाजन <math>X</math>. | ||
== बोस-मेस्नर बीजगणित == | == बोस-मेस्नर बीजगणित == | ||
निकटतम आव्यूह <math>A_i</math> ग्राफ का (असतत गणित) <math>\left(X,R_{i}\right)</math> [[क्रमविनिमेय बीजगणित (संरचना)]] और [[साहचर्य बीजगणित]] उत्पन्न करें <math>\mathcal{A}</math> ([[वास्तविक संख्या]] या [[जटिल संख्या]] पर) [[मैट्रिक्स उत्पाद|आव्यूह उत्पाद]] और [[हैडमार्ड उत्पाद (मैट्रिसेस)]] दोनों के लिए। इस साहचर्य, क्रमविनिमेय बीजगणित को संघ योजना का बोस-मेस्नर बीजगणित कहा जाता है। | |||
चूंकि | चूंकि आव्यूहों में <math>\mathcal{A}</math> [[सममित मैट्रिक्स|सममित]] आव्यूह हैं और दूसरे के साथ आने वाले आव्यूह हैं, वे साथ [[विकर्ण मैट्रिक्स|विकर्ण]] आव्यूह हो सकते हैं। इसलिए, <math>\mathcal{A}</math> [[सेमीसिंपल ऑपरेटर|अर्धसरल ऑपरेटर]] है | अर्द्ध सरल और मौलिक [[idempotent|उदासीन]] का अनूठा आधार है <math>J_{0},\ldots,J_{n}</math>. | ||
<math>(n+1)\times(n+1)</math> आव्यूहों का एक और बीजगणित है जो [[ समरूप |समरूप]] है <math>\mathcal{A}</math> और अधिकांशतः इसके साथ काम करना सरल होता है। | |||
== उदाहरण == | == उदाहरण == | ||
*J(v, k) द्वारा निरूपित [[जॉनसन योजना]] को निम्नानुसार परिभाषित किया गया है। मान लीजिए कि S, v अवयवों वाला | *J(v, k) द्वारा निरूपित [[जॉनसन योजना]] को निम्नानुसार परिभाषित किया गया है। मान लीजिए कि S, v अवयवों वाला समुच्चय है। योजना J(v, k) के बिंदु हैं <math>{v \choose k}</math> k तत्वों के साथ S का [[सबसेट]]। S के दो k-तत्व उपसमुच्चय A, B i वां सहयोगी होते हैं जब उनके प्रतिच्छेदन का आकार k − i होता है। | ||
*H(n, q) द्वारा निरूपित [[हैमिंग योजना]] को निम्नानुसार परिभाषित किया गया है। H(n, q) के बिंदु q | *H(n, q) द्वारा निरूपित [[हैमिंग योजना]] को निम्नानुसार परिभाषित किया गया है। H(n, q) के बिंदु q<sup>n</sup> हैं ने आकार q के सेट पर n-[[tuple|टपल]] का आदेश दिया। दो n-टपल x, y को iवें सहयोगी कहा जाता है यदि वे बिल्कुल i निर्देशांक में असहमत हैं। उदाहरण के लिए, यदि x = (1,0,1,1), y = (1,1,1,1), z = (0,0,1,1), तो x और y पहले सहयोगी हैं, x और z पहले सहयोगी हैं और H (4,2) में y और Z दूसरे सहयोगी हैं। | ||
* | *[[दूरी-नियमित ग्राफ]], G, दो शीर्षों को i वां सहयोगियों के रूप में परिभाषित करके संघ योजना बनाता है यदि उनकी दूरी i है। | ||
* | * [[परिमित समूह]] G संघ योजना का उत्पादन करता है <math>X=G</math>, कक्षा R<sub>''g''</sub> के साथ प्रत्येक समूह तत्व के लिए, इस प्रकार है: प्रत्येक के लिए <math>g \in G</math> होने देना <math>R_g = \{(x,y) \mid x=g*y\}</math> कहाँ <math>*</math> समूह [[संक्रिया (गणित)]] है। [[पहचान तत्व]] का वर्ग R<sub>0</sub> है। यह संघ योजना क्रमविनिमेय है यदि और केवल यदि G [[एबेलियन समूह]] है। | ||
* | *विशिष्ट 3-श्रेणी संघ योजना:<ref>{{harvnb|Street|Street|1987|loc=pg. 238}}</ref> | ||
: चलो | : चलो A (3) सेट x = {1,2,3,4,5,6} पर तीन सहयोगी वर्गों के साथ निम्नलिखित संघ योजना बनें। (i, j ) प्रविष्टि s है यदि तत्व i और j संबंध R<sub>''s''</sub> में हैं। | ||
{| class="wikitable" style="margin:1em auto;" | {| class="wikitable" style="margin:1em auto;" | ||
! !! 1!! 2!! 3!! 4!! 5!! 6 | ! !! 1!! 2!! 3!! 4!! 5!! 6 | ||
|- | |- | ||
| '''1''' || <span style="color:white; background:blue"> 0 </span> || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:red"> | | '''1''' || <span style="color:white; background:blue"> 0 </span> || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:lime"> 2 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:fuchsia"> 3 </span> | ||
|- | |- | ||
|'''2'''|| <span style="color:white; background:red"> | |'''2'''|| <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:blue"> 0 </span> || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:lime"> 2 </span> || <span style="color:white; background:fuchsia"> 3 </span> | ||
|- | |- | ||
| '''3''' || <span style="color:white; background:red"> | | '''3''' || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:blue"> 0 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:lime"> 2 </span> | ||
|- | |- | ||
| '''4''' || <span style="color:white; background:lime"> 2 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:blue"> 0 </span> || <span style="color:white; background:red"> | | '''4''' || <span style="color:white; background:lime"> 2 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:blue"> 0 </span> || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:red"> 1 </span> | ||
|- | |- | ||
| '''5''' || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:lime"> 2 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:red"> | | '''5''' || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:lime"> 2 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:blue"> 0 </span> || <span style="color:white; background:red"> 1 </span> | ||
|- | |- | ||
| '''6''' || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:lime"> 2 </span> || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:blue"> 0 </span> | | '''6''' || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:fuchsia"> 3 </span> || <span style="color:white; background:lime"> 2 </span> || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:red"> 1 </span> || <span style="color:white; background:blue"> 0 </span> | ||
|} | |} | ||
== कोडिंग सिद्धांत == | |||
मौलिक कोडिंग सिद्धांत में हैमिंग योजना और जॉनसन योजना का बड़ा महत्व है। | |||
कोडिंग सिद्धांत में, संघ योजना सिद्धांत मुख्य रूप से कोड की [[हैमिंग दूरी]] से संबंधित है। [[ रैखिक प्रोग्रामिंग |रैखिक प्रोग्रामिंग]] पद्धति दी गई न्यूनतम हैमिंग दूरी के साथ कोड के आकार के लिए ऊपरी सीमा और दी गई शक्ति के साथ [[टी डिजाइन|T डिजाइन]] के आकार के लिए निचली सीमा बनाती है। सबसे विशिष्ट परिणाम उस स्थितियों में प्राप्त होते हैं जहां अंतर्निहित संघ योजना कुछ [[बहुपद]] गुणों को संतुष्ट करती है, यह व्यक्ति को ओर्थोगोनल बहुपदों के विस्तार में ले जाता है। विशेष रूप से, बहुपद-प्रकार की संघ योजनाओं में कोड और टी-डिज़ाइन के लिए कुछ सार्वभौमिक सीमाएँ प्राप्त की जाती हैं। | |||
मौलिक कोडिंग सिद्धांत में, हैमिंग योजना में कोड से निपटने के लिए, मैकविलियम्स रूपांतरण में [[ऑर्थोगोनल बहुपद]] का परिवार सम्मलित होता है जिसे क्रॉचौक बहुपद के रूप में जाना जाता है। ये बहुपद हैमिंग योजना के दूरी संबंध आव्यूहों के [[eigenvalue|आइजन मूल्य]] देते हैं। | |||
== यह भी देखें == | == यह भी देखें == | ||
* [[ब्लॉक डिजाइन]] | * [[ब्लॉक डिजाइन]] | ||
* बोस-मेस्नर बीजगणित | * बोस-मेस्नर बीजगणित | ||
Line 103: | Line 95: | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
{{Reflist}} | {{Reflist}} | ||
== संदर्भ == | == संदर्भ == | ||
Line 133: | Line 123: | ||
{{Experimental design|state=collapsed}} | {{Experimental design|state=collapsed}} | ||
{{Statistics|collection|state=collapsed}} | {{Statistics|collection|state=collapsed}} | ||
[[Category: | [[Category:Collapse templates]] | ||
[[Category:Created On 08/05/2023]] | [[Category:Created On 08/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:प्रतिनिधित्व सिद्धांत]] | |||
[[Category:प्रयोगों की रूप रेखा]] | |||
[[Category:बीजगणितीय कॉम्बिनेटरिक्स]] | |||
[[Category:भिन्नता का विश्लेषण]] |
Latest revision as of 10:07, 22 May 2023
विचरण के विश्लेषण के लिए प्रयोगों के डिजाइन के सिद्धांत में, संघ योजनाओं का सिद्धांत सांख्यिकी में उत्पन्न हुआ।[1][2][3] गणित में, साहचर्य योजनाएँ बीजगणित और संयोजन विज्ञान दोनों से संबंधित हैं। बीजगणितीय साहचर्य में, संघ योजना कई विषयों के लिए एकीकृत दृष्टिकोण प्रदान करती है, उदाहरण के लिए संयोजन डिजाइन और कोडिंग सिद्धांत त्रुटि-सुधार कोड का सिद्धांत।[4][5] बीजगणित में, साहचर्य योजनाएँ समूह (गणित) का सामान्यीकरण करती हैं और साहचर्य योजनाओं का सिद्धांत समूह प्रतिनिधित्व के समूह चरित्र का सामान्यीकरण करता है।[6][7][8]
परिभाषा
n-श्रेणी संघ योजना में सेट (गणित) X होता है जिसमें X × X के सेट S का विभाजन n + 1 द्विआधारी संबंध, R में होता है, R0, R1, ..., Rn जो संतुष्ट करता है।
- ; इसे पहचान संबंध कहा जाता है।
- परिभाषित करना , यदि S में R है, तो S में R* है।
- यदि , की संख्या ऐसा है कि और स्थिरांक है इस पर निर्भर करते हुए , , किन्तु और की विशेष पसंद पर नहीं।
संघ योजना क्रमविनिमेय है यदि सभी के लिए , और . अधिकांश लेखक इस संपत्ति को मानते हैं।
सममित संघ योजना वह है जिसमें प्रत्येक सममित संबंध है। वह है:
- यदि (x, y) ∈ Ri, तब (y, x) ∈ Ri. (या समकक्ष, R* = R)।
प्रत्येक सममित साहचर्य योजना क्रमविनिमेय होती है।
ध्यान दें, चूँकि, जबकि संघ योजना की धारणा समूह की धारणा को सामान्य करती है, क्रमविनिमेय संघ योजना की धारणा केवल क्रमविनिमेय समूह की धारणा को सामान्य बनाती है।
यदि दो बिंदुओं x और y को i वां सहयोगी कहा जाता है। परिभाषा बताती है कि यदि x और y i वां सहयोगी हैं तो y और x भी हैं। अंकों की प्रत्येक जोड़ी ठीक के लिए iवें सहयोगी है। प्रत्येक बिंदु का अपना स्वयं का ज़ीरोथ सहयोगी होता है जबकि विशिष्ट बिंदु कभी भी ज़ीरोथ सहयोगी नहीं होते हैं। यदि x और y k वां सहयोगी हैं तो अंकों की संख्या जो दोनों के सहयोगी हैं और j-वें के सहयोगी स्थिरांक है ।
ग्राफ व्याख्या और आसन्न आव्यूह
सममित संघ योजना को वर्गीकरण वाले किनारों के साथ पूर्ण ग्राफ़ के रूप में देखा जा सकता है। ग्राफ है शीर्ष, प्रत्येक बिंदु के लिए और किनारों को जोड़ने वाला किनारा और अंकित है यदि और हैं वें सहयोगी। प्रत्येक किनारे पर अद्वितीय वर्गीकरण होता है और निश्चित आधार वर्गीकरण वाले त्रिकोणों की संख्या अन्य किनारों को वर्गीकरण करना और स्थिरांक है , इस पर निर्भर करते हुए किन्तु आधार के चुनाव पर नहीं। विशेष रूप से, प्रत्येक शीर्ष ठीक से आपतित होता है किनारों को वर्गीकरण किया गया ; संबंध (गणित) का आसन्न संबंध है । वर्गीकरण वाले लूप भी हैं प्रत्येक शीर्ष पर , के अनुरूप हैं।
संबंध (गणित) उनके आसन्न आव्यूह द्वारा वर्णित हैं। का आसन्न आव्यूह है के लिए और v × v आव्यूह (गणित) है जिसमें पंक्तियों और स्तंभों को बिंदुओं द्वारा वर्गीकरण किया जाता है ।
सममित संघ योजना की परिभाषा यह कहने के बराबर है कि v × v (0,1)-आव्यूह|(0,1)-आव्यूहों हैं जो संतुष्ट करते हैं
- I. सममित है,
- II. (सभी एक आव्यूह),
- III. ,
- IV. .
(X, y) - (IV) के बाईं ओर की प्रविष्टि ग्राफ़ में वर्गीकरण i और j के साथ x और y के बीच लंबाई दो के पथों की संख्या है। ध्यान दें कि की पंक्तियाँ और स्तंभ रोकना 'S:
शब्दावली
- संख्या योजना के पैरामीटर कहलाते हैं। उन्हें संरचनात्मक स्थिरांक भी कहा जाता है।
इतिहास
टर्म संघ योजना के कारण है (बोस शिमामोटो 1952) किन्तु अवधारणा पहले से ही अंतर्निहित (बोस नायर 1939) है ।[9] ये लेखक अध्ययन कर रहे थे कि सांख्यिकीविदों ने आंशिक रूप से संतुलित अपूर्ण ब्लॉक डिज़ाइन (PBIBDs) को क्या कहा है। विषय प्रकाशन के साथ बीजगणितीय रुचि का उद्देश्य बन गया (बोस मेसनर 1959) और बोस-मेस्नर बीजगणित का परिचय। सिद्धांत के लिए सबसे महत्वपूर्ण योगदान P डेल्सर्ट की स्थापना थी (डेल्सर्ट 1973) जिन्होंने कोडिंग सिद्धांत और डिज़ाइन सिद्धांत के साथ कनेक्शन को पहचाना और पूरी तरह से उपयोग किया।[10] सामान्यीकरणों का अध्ययन डी.जी. हिगमैन (सुसंगत विन्यास) और बोरिस वेसफीलर बी द्वारा किया गया है। वीज़फ़ीलर (दूरी नियमित रेखांकन)।
बुनियादी तथ्य
- , अर्थात, यदि तब और केवल ऐसा है कि , है ।
- ; ऐसा इसलिए है क्योंकि विभाजन .
बोस-मेस्नर बीजगणित
निकटतम आव्यूह ग्राफ का (असतत गणित) क्रमविनिमेय बीजगणित (संरचना) और साहचर्य बीजगणित उत्पन्न करें (वास्तविक संख्या या जटिल संख्या पर) आव्यूह उत्पाद और हैडमार्ड उत्पाद (मैट्रिसेस) दोनों के लिए। इस साहचर्य, क्रमविनिमेय बीजगणित को संघ योजना का बोस-मेस्नर बीजगणित कहा जाता है।
चूंकि आव्यूहों में सममित आव्यूह हैं और दूसरे के साथ आने वाले आव्यूह हैं, वे साथ विकर्ण आव्यूह हो सकते हैं। इसलिए, अर्धसरल ऑपरेटर है | अर्द्ध सरल और मौलिक उदासीन का अनूठा आधार है .
आव्यूहों का एक और बीजगणित है जो समरूप है और अधिकांशतः इसके साथ काम करना सरल होता है।
उदाहरण
- J(v, k) द्वारा निरूपित जॉनसन योजना को निम्नानुसार परिभाषित किया गया है। मान लीजिए कि S, v अवयवों वाला समुच्चय है। योजना J(v, k) के बिंदु हैं k तत्वों के साथ S का सबसेट। S के दो k-तत्व उपसमुच्चय A, B i वां सहयोगी होते हैं जब उनके प्रतिच्छेदन का आकार k − i होता है।
- H(n, q) द्वारा निरूपित हैमिंग योजना को निम्नानुसार परिभाषित किया गया है। H(n, q) के बिंदु qn हैं ने आकार q के सेट पर n-टपल का आदेश दिया। दो n-टपल x, y को iवें सहयोगी कहा जाता है यदि वे बिल्कुल i निर्देशांक में असहमत हैं। उदाहरण के लिए, यदि x = (1,0,1,1), y = (1,1,1,1), z = (0,0,1,1), तो x और y पहले सहयोगी हैं, x और z पहले सहयोगी हैं और H (4,2) में y और Z दूसरे सहयोगी हैं।
- दूरी-नियमित ग्राफ, G, दो शीर्षों को i वां सहयोगियों के रूप में परिभाषित करके संघ योजना बनाता है यदि उनकी दूरी i है।
- परिमित समूह G संघ योजना का उत्पादन करता है , कक्षा Rg के साथ प्रत्येक समूह तत्व के लिए, इस प्रकार है: प्रत्येक के लिए होने देना कहाँ समूह संक्रिया (गणित) है। पहचान तत्व का वर्ग R0 है। यह संघ योजना क्रमविनिमेय है यदि और केवल यदि G एबेलियन समूह है।
- विशिष्ट 3-श्रेणी संघ योजना:[11]
- चलो A (3) सेट x = {1,2,3,4,5,6} पर तीन सहयोगी वर्गों के साथ निम्नलिखित संघ योजना बनें। (i, j ) प्रविष्टि s है यदि तत्व i और j संबंध Rs में हैं।
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 0 | 1 | 1 | 2 | 3 | 3 |
2 | 1 | 0 | 1 | 3 | 2 | 3 |
3 | 1 | 1 | 0 | 3 | 3 | 2 |
4 | 2 | 3 | 3 | 0 | 1 | 1 |
5 | 3 | 2 | 3 | 1 | 0 | 1 |
6 | 3 | 3 | 2 | 1 | 1 | 0 |
कोडिंग सिद्धांत
मौलिक कोडिंग सिद्धांत में हैमिंग योजना और जॉनसन योजना का बड़ा महत्व है।
कोडिंग सिद्धांत में, संघ योजना सिद्धांत मुख्य रूप से कोड की हैमिंग दूरी से संबंधित है। रैखिक प्रोग्रामिंग पद्धति दी गई न्यूनतम हैमिंग दूरी के साथ कोड के आकार के लिए ऊपरी सीमा और दी गई शक्ति के साथ T डिजाइन के आकार के लिए निचली सीमा बनाती है। सबसे विशिष्ट परिणाम उस स्थितियों में प्राप्त होते हैं जहां अंतर्निहित संघ योजना कुछ बहुपद गुणों को संतुष्ट करती है, यह व्यक्ति को ओर्थोगोनल बहुपदों के विस्तार में ले जाता है। विशेष रूप से, बहुपद-प्रकार की संघ योजनाओं में कोड और टी-डिज़ाइन के लिए कुछ सार्वभौमिक सीमाएँ प्राप्त की जाती हैं।
मौलिक कोडिंग सिद्धांत में, हैमिंग योजना में कोड से निपटने के लिए, मैकविलियम्स रूपांतरण में ऑर्थोगोनल बहुपद का परिवार सम्मलित होता है जिसे क्रॉचौक बहुपद के रूप में जाना जाता है। ये बहुपद हैमिंग योजना के दूरी संबंध आव्यूहों के आइजन मूल्य देते हैं।
यह भी देखें
- ब्लॉक डिजाइन
- बोस-मेस्नर बीजगणित
- संयुक्त डिजाइन
टिप्पणियाँ
- ↑ Bailey 2004, pg. 387
- ↑ Bose & Mesner 1959
- ↑ Bose & Nair 1939
- ↑ Bannai & Ito 1984
- ↑ Godsil 1993
- ↑ Bailey 2004, pg. 387
- ↑ Zieschang 2005b
- ↑ Zieschang 2005a
- ↑ Dembowski 1968, pg. 281, footnote 1
- ↑ Bannai & Ito 1984, pg. vii
- ↑ Street & Street 1987, pg. 238
संदर्भ
- Bailey, Rosemary A. (2004), Association Schemes: Designed Experiments, Algebra and Combinatorics, Cambridge University Press, ISBN 978-0-521-82446-0, MR 2047311. (Chapters from preliminary draft are available on-line.)
- Bannai, Eiichi; Ito, Tatsuro (1984), Algebraic combinatorics I: Association schemes, Menlo Park, CA: Benjamin/Cummings, ISBN 0-8053-0490-8, MR 0882540
- Bose, R. C.; Mesner, D. M. (1959), "On linear associative algebras corresponding to association schemes of partially balanced designs", Annals of Mathematical Statistics, 30 (1): 21–38, doi:10.1214/aoms/1177706356, JSTOR 2237117, MR 0102157
- Bose, R. C.; Nair, K. R. (1939), "Partially balanced incomplete block designs", Sankhyā, 4 (3): 337–372, JSTOR 40383923
- Bose, R. C.; Shimamoto, T. (1952), "Classification and analysis of partially balanced incomplete block designs with two associate classes", Journal of the American Statistical Association, 47 (258): 151–184, doi:10.1080/01621459.1952.10501161
- Camion, P. (1998), "18. Codes and Association Schemes: Basic Properties of Association Schemes Relevant to Coding", in Pless, V.S.; Huffman, W.C.; Brualdi, R.A. (eds.), Handbook of Coding Theory, vol. 1, Elsevier, pp. 1441–, ISBN 978-0-444-50088-5
- Delsarte, P. (1973), "An Algebraic Approach to the Association Schemes of Coding Theory", Philips Research Reports (Supplement No. 10), OCLC 641852316
- Delsarte, P.; Levenshtein, V. I. (1998). "Association schemes and coding theory". IEEE Transactions on Information Theory. 44 (6): 2477–2504. doi:10.1109/18.720545.
- Dembowski, P. (1968), Finite Geometries, Springer, ISBN 978-3-540-61786-0
- Godsil, C. D. (1993), Algebraic Combinatorics, New York: Chapman and Hall, ISBN 0-412-04131-6, MR 1220704
- MacWilliams, F.J.; Sloane, N.J.A. (1977), The Theory of Error Correcting Codes, North-Holland Mathematical Library, vol. 16, Elsevier, ISBN 978-0-444-85010-2
- Street, Anne Penfold; Street, Deborah J. (1987), Combinatorics of Experimental Design, Oxford U. P. [Clarendon], ISBN 0-19-853256-3
- van Lint, J.H.; Wilson, R.M. (1992), A Course in Combinatorics, Cambridge University Press, ISBN 0-521-00601-5
- Zieschang, Paul-Hermann (2005a), "Association Schemes: Designed Experiments, Algebra and Combinatorics by Rosemary A. Bailey, Review" (PDF), Bulletin of the American Mathematical Society, 43 (2): 249–253, doi:10.1090/S0273-0979-05-01077-3
- Zieschang, Paul-Hermann (2005b), Theory of association schemes, Springer, ISBN 3-540-26136-2
- Zieschang, Paul-Hermann (2006), "The exchange condition for association schemes", Israel Journal of Mathematics, 151 (3): 357–380, doi:10.1007/BF02777367, MR 2214129, S2CID 120009352