अनुरूप किलिंग सदिश क्षेत्र: Difference between revisions
No edit summary |
No edit summary |
||
Line 39: | Line 39: | ||
=== सपाट स्थान === | === सपाट स्थान === | ||
<math>n</math>-डायमेंशनल | <math>n</math>-डायमेंशनल समतल समष्टि में जो कि [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्पेस]] या छद्म-यूक्लिडियन स्पेस है, वहां विश्व स्तर पर फ्लैट निर्देशांक उपस्थित हैं जिसमें हमारे निकट स्थिर मीट्रिक <math>g_{\mu\nu} = \eta_{\mu\nu}</math> है जहां हस्ताक्षर <math>(p,q)</math> के साथ समष्टि में, हमारे निकट घटक <math>(\eta_{\mu\nu}) = \text{diag}(+1,\cdots,+1,-1,\cdots,-1)</math> हैं। इन निर्देशांकों में, कनेक्शन घटक विलुप्त हो जाते हैं, इसलिए सहपरिवर्ती व्युत्पन्न समन्वय व्युत्पन्न होते है। समतल समष्टि में अनुरूप किलिंग समीकरण है- | ||
:<math>\partial_\mu X_\nu + \partial_\nu X_\mu = \frac{2}{n}\eta_{\mu\nu} \partial_\rho X^\rho.</math> | :<math>\partial_\mu X_\nu + \partial_\nu X_\mu = \frac{2}{n}\eta_{\mu\nu} \partial_\rho X^\rho.</math> | ||
समतल समष्टि अनुरूप किलिंग समीकरण के समाधान में समतल समष्टि किलिंग समीकरण के समाधान सम्मिलित हैं, जिसका वर्णन किलिंग वेक्टर क्षेत्र के लेख में किया गया है। ये समतल समष्टि के आइसोमेट्रीज़ के पोंकारे समूह को उत्पन्न करते हैं। दृष्टिकोण <math>X^\mu = M^{\mu\nu}x_\nu,</math> को ध्यान में रखते हुए हम <math>M^{\mu\nu}</math> के विषम भाग को विस्थापित कर देते हैं क्योंकि यह ज्ञात समाधानों से युग्मित होता है और हम नए समाधानों का अनुसंधान कर रहे हैं। तब <math>M^{\mu\nu}</math> सममित है। इस प्रकार यह वास्तविक <math>\lambda</math> के लिए <math>M^\mu_\nu = \lambda\delta^\mu_\nu</math> के साथ समानता है और संबंधित किलिंग वेक्टर <math>X^\mu = \lambda x^\mu</math>है। | |||
सामान्य समाधान से हैं <math>n</math> अधिक उत्पादक, जिसे [[विशेष अनुरूप परिवर्तन]] के रूप में जाना जाता है, द्वारा दिया गया | सामान्य समाधान से हैं <math>n</math> अधिक उत्पादक, जिसे [[विशेष अनुरूप परिवर्तन]] के रूप में जाना जाता है, द्वारा दिया गया |
Revision as of 10:41, 21 May 2023
अनुरूप ज्यामिति में, रीमैनियन मीट्रिक के साथ आयाम n के मैनीफोल्ड पर अनुरूप किलिंग वेक्टर क्षेत्र होता है (जिसे सीकेवी या अनुरूप कॉलिनेशन भी कहा जाता है), जिसका (स्थानीय रूप से परिभाषित) प्रवाह (गणित) अनुरूप परिवर्तनों को परिभाषित करता है, अर्थात अनुरूप संरचना को स्केल करने और संरक्षित करने के लिए g को संरक्षित करता है। कई समतुल्य सूत्रीकरण, जिन्हें कंफर्मल किलिंग समीकरण कहा जाता है, प्रवाह के लाइ व्युत्पन्न के संदर्भ में उपस्थित हैं, उदाहरण के लिए कुछ फ़ंक्शन के लिए मैनीफोल्ड पर उपस्थित हैं। के लिए समाधानों की सीमित संख्या होती है, जो उस स्थान की अनुरूप समरूपता को निर्दिष्ट करती है, किन्तु दो आयामों में समाधानों की अनंतता होती है। किलिंग नाम विल्हेम किलिंग को संदर्भित करता है, जिसने सबसे पूर्व किलिंग वेक्टर क्षेत्रों का अन्वेषण किया है।
डेंसिटाइज़्ड मेट्रिक टेन्सर और अनुरूप किलिंग वेक्टर
वेक्टर क्षेत्र किलिंग वेक्टर क्षेत्र है यदि इसका प्रवाह मीट्रिक टेन्सर को संरक्षित करता है (मैनीफोल्ड प्रवाह के प्रत्येक कॉम्पैक्ट सबसेट के लिए केवल सीमित समय के लिए परिभाषित किया जाना चाहिए)। गणितीय रूप से प्रस्तुत किलिंग है यदि यह निम्नलिखित संतुष्ट करता है-
जहाँ लाइ व्युत्पन्न है।
सामान्यतः, w-किलिंग वेक्टर क्षेत्र को सदिश क्षेत्र के रूप में परिभाषित करें, जिसका (स्थानीय) प्रवाह घनत्वित मीट्रिक को संरक्षित करता है, जहाँ , द्वारा परिभाषित आयतन घनत्व है (अर्थात स्थानीय रूप से) और इसका भार है। ध्यान दें कि किलिंग वेक्टर क्षेत्र को संरक्षित करता है और इसीलिए स्वचालित रूप से यह सामान्य समीकरण को भी संतुष्ट करता है। यह भी ध्यान दें कि अद्वितीय भार है जो मीट्रिक के स्केलिंग के अंतर्गत संयोजन को अपरिवर्तनीय बनाता है। इसलिए यह स्थिति मात्र अनुरूप संरचना पर निर्भर करती है।
अब , w-किलिंग वेक्टर क्षेत्र है यदि,
चूँकि , के तुल्य है।
- दोनों पक्षों के अंशों को लेते हुए हम निष्कर्ष प्राप्त करते हैं। इसलिए के लिए, अनिवार्य रूप से और w-किलिंग वेक्टर क्षेत्र, सामान्य किलिंग वेक्टर क्षेत्र है जिसका प्रवाह मीट्रिक को संरक्षित करता है। चूँकि, के लिए, का प्रवाह अनुरूप संरचना को संरक्षित करता है और परिभाषा के अनुसार, अनुरूप किलिंग वेक्टर क्षेत्र है।
समतुल्य सूत्रीकरण
निम्नलिखित समकक्ष हैं-
- अनुरूप किलिंग सदिश क्षेत्र है,
- (स्थानीय रूप से परिभाषित) का प्रवाह अनुरूप संरचना को संरक्षित करता है,
- किसी फंक्शन के लिए है।
उपर्युक्त विचार से यह प्रतीत होता है कि सामान्य अंतिम रूप के अतिरिक्त सभी की समानता प्रमाणित होती है।
चूँकि, अंतिम दो रूप भी समतुल्य हैं, संकेत से ज्ञात होता है कि आवश्यक रूप से होता है।
अंतिम रूप यह स्पष्ट करता है कि कोई भी किलिंग वेक्टर के साथ अनुरूप किलिंग वेक्टर भी है।
अनुरूप किलिंग समीकरण
का उपयोग करके जहां , लेवी सिविटा का व्युत्पन्न (सहपरिवर्ती व्युत्पन्न) है, और , का युग्म 1 रूप है (संबद्ध सहपरिवर्ती व्युत्पन्न निम्न सूचकांकों के साथ), और सममित भाग पर प्रक्षेपण है, अनुरूप किलिंग समीकरण लिखने के लिए निम्नलिखित सूचकांक संकेतन है-
अनुरूप किलिंग समीकरण लिखने के लिए अन्य सूचकांक संकेतन है-
उदाहरण
सपाट स्थान
-डायमेंशनल समतल समष्टि में जो कि यूक्लिडियन स्पेस या छद्म-यूक्लिडियन स्पेस है, वहां विश्व स्तर पर फ्लैट निर्देशांक उपस्थित हैं जिसमें हमारे निकट स्थिर मीट्रिक है जहां हस्ताक्षर के साथ समष्टि में, हमारे निकट घटक हैं। इन निर्देशांकों में, कनेक्शन घटक विलुप्त हो जाते हैं, इसलिए सहपरिवर्ती व्युत्पन्न समन्वय व्युत्पन्न होते है। समतल समष्टि में अनुरूप किलिंग समीकरण है-
समतल समष्टि अनुरूप किलिंग समीकरण के समाधान में समतल समष्टि किलिंग समीकरण के समाधान सम्मिलित हैं, जिसका वर्णन किलिंग वेक्टर क्षेत्र के लेख में किया गया है। ये समतल समष्टि के आइसोमेट्रीज़ के पोंकारे समूह को उत्पन्न करते हैं। दृष्टिकोण को ध्यान में रखते हुए हम के विषम भाग को विस्थापित कर देते हैं क्योंकि यह ज्ञात समाधानों से युग्मित होता है और हम नए समाधानों का अनुसंधान कर रहे हैं। तब सममित है। इस प्रकार यह वास्तविक के लिए के साथ समानता है और संबंधित किलिंग वेक्टर है।
सामान्य समाधान से हैं अधिक उत्पादक, जिसे विशेष अनुरूप परिवर्तन के रूप में जाना जाता है, द्वारा दिया गया
जहां का ट्रेसलेस भाग ऊपर विलुप्त हो जाता है, इसलिए इसके द्वारा पैरामीट्रिज किया जा सकता है .
हम टेलर का विस्तार करते हैं में प्रपत्र की शर्तों का एक (अनंत) रैखिक संयोजन प्राप्त करने के लिए
जहां टेंसर के आदान-प्रदान के तहत सममित है लेकिन जरूरी नहीं साथ .
सादगी के लिए, हम तक सीमित हैं , जो बाद में उच्च आदेश शर्तों के लिए सूचनात्मक होगा। अनुरूप हत्या समीकरण देता है
अब हम प्रोजेक्ट करते हैं दो स्वतंत्र टेंसरों में: इसके पूर्व दो सूचकांकों पर ट्रेसलेस और शुद्ध ट्रेस भाग। शुद्ध अंश स्वचालित रूप से समीकरण को संतुष्ट करता है और वह है उत्तर में। ट्रेसलेस पार्ट दिखाते हुए नियमित किलिंग समीकरण को संतुष्ट करता है पूर्व दो सूचकांकों पर विषम है। यह दूसरे दो सूचकांकों पर सममित है। इससे पता चलता है कि सूचकांकों के चक्रीय क्रमचय केअंतर्गत, एक ऋण चिह्न उठाता है। तीन चक्रीय क्रमपरिवर्तन के बाद, हम सीखते हैं .
उच्च आदेश शर्तें गायब हो जाती हैं (पूर्ण होने के लिए)
साथ में, अनुवाद, लोरेंत्ज़ परिवर्तन, विस्तार और विशेष अनुरूप परिवर्तनों में अनुरूप बीजगणित सम्मिलित होता है, जो छद्म-यूक्लिडियन अंतरिक्ष के अनुरूप समूह उत्पन्न करता है।
यह भी देखें
- अफिन वेक्टर क्षेत्र
- वक्रता संरेखन
- आइंस्टीन कई गुना
- होमोथेटिक वेक्टर क्षेत्र
- अपरिवर्तनीय अंतर ऑपरेटर
- किलिंग वेक्टर क्षेत्र
- पदार्थ संरेखन
- स्पेसटाइम समरूपता
संदर्भ
- Wald, R. M. (1984). General Relativity. The University of Chicago Press.