हाइब्रिड सिलिकॉन लेजर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
एक हाइब्रिड [[सिलिकॉन]] [[ लेज़र |लेज़र]] एक अर्धचालक लेजर है जो सिलिकॉन और समूह III-V अर्धचालक पदार्थ दोनों से बना है। कम लागत, बड़े मापदंड पर उत्पादित सिलिकॉन ऑप्टिकल उपकरणों के निर्माण को सक्षम करने के लिए एक सिलिकॉन लेजर की कमी को दूर करने के लिए हाइब्रिड सिलिकॉन लेजर विकसित किया गया था। हाइब्रिड दृष्टिकोण III-V अर्धचालक पदार्थ के प्रकाश उत्सर्जक गुणों का लाभ उठाता है जो सिलिकॉन [[वेफर (इलेक्ट्रॉनिक्स)]] पर विद्युत चालित लेसरों को बनाने के लिए सिलिकॉन की प्रक्रिया परिपक्वता के साथ संयुक्त होता है जिसे अन्य [[सिलिकॉन फोटोनिक]] उपकरणों के साथ एकीकृत किया जा सकता है।
एक हाइब्रिड [[सिलिकॉन]] [[ लेज़र |लेज़र]] एक अर्धचालक लेजर है जो सिलिकॉन और समूह III-V अर्धचालक पदार्थ दोनों से बना है। कम लागत बड़े मापदंड पर उत्पादित सिलिकॉन ऑप्टिकल उपकरणों के निर्माण को सक्षम करने के लिए एक सिलिकॉन लेजर की कमी को दूर करने के लिए हाइब्रिड सिलिकॉन लेजर विकसित किया गया था। हाइब्रिड दृष्टिकोण III-V अर्धचालक पदार्थ के प्रकाश उत्सर्जक गुणों का लाभ उठाता है जो सिलिकॉन [[वेफर (इलेक्ट्रॉनिक्स)]] पर विद्युत चालित लेसरों को बनाने के लिए सिलिकॉन की प्रक्रिया परिपक्वता के साथ संयुक्त होता है जिसे अन्य [[सिलिकॉन फोटोनिक]] उपकरणों के साथ एकीकृत किया जा सकता है।


== भौतिकी ==
== भौतिकी ==
एक हाइब्रिड सिलिकॉन लेजर एक ऑप्टिकल स्रोत है जो सिलिकॉन और समूह III-V अर्धचालक पदार्थ (जैसे इंडियम (III) फॉस्फाइड, [[गैलियम (III) आर्सेनाइड]]) दोनों से बना है। इसमें एक सिलिकॉन [[वेवगाइड (ऑप्टिक्स)]] सम्मिलित है जो एक सक्रिय, प्रकाश उत्सर्जक, III-V एपिटैक्सियल अर्धचालक वेफर से जुड़ा हुआ है। III-V एपिटैक्सियल वेफर को अलग-अलग परतों के साथ डिज़ाइन किया गया है जैसे कि सक्रिय परत प्रकाश का उत्सर्जन कर सकती है जब यह चमकदार प्रकाश से उत्साहित हो, उदा। उस पर एक लेजर; या इसके माध्यम से विद्युत पास करके सिलिकॉन वेवगाइड में सक्रिय परत जोड़ों से उत्सर्जित प्रकाश उनकी निकटता (<130 एनएम पृथक्करण) के कारण होता है जहां इसे लेजर [[ ऑप्टिकल गुहा |ऑप्टिकल गुहा]] बनाने के लिए सिलिकॉन वेवगाइड के अंत में दर्पणों को प्रतिबिंबित करने के लिए निर्देशित किया जा सकता है।<ref>"Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells" published in Optics Express, 2005.</ref><ref>"A continuous-wave Hybrid AlGaInAs-Silicon Evanescent Laser" published in Photonic Technology Letters, 2006.</ref>
एक हाइब्रिड सिलिकॉन लेजर एक ऑप्टिकल स्रोत है जो सिलिकॉन और समूह III-V अर्धचालक पदार्थ (जैसे इंडियम (III) फॉस्फाइड, [[गैलियम (III) आर्सेनाइड]]) दोनों से बना है। इसमें एक सिलिकॉन [[वेवगाइड (ऑप्टिक्स)]] सम्मिलित है जो एक सक्रिय प्रकाश उत्सर्जक III-V एपिटैक्सियल अर्धचालक वेफर से जुड़ा हुआ है। III-V एपिटैक्सियल वेफर को अलग-अलग परतों के साथ डिज़ाइन किया गया है जैसे कि सक्रिय परत प्रकाश का उत्सर्जन कर सकती है जब यह चमकदार प्रकाश से उत्साहित हो, उदा। उस पर एक लेजर; या इसके माध्यम से विद्युत पास करके सिलिकॉन वेवगाइड में सक्रिय परत जोड़ों से उत्सर्जित प्रकाश उनकी निकटता (<130 एनएम पृथक्करण) के कारण होता है जहां इसे लेजर [[ ऑप्टिकल गुहा |ऑप्टिकल गुहा]] बनाने के लिए सिलिकॉन वेवगाइड के अंत में दर्पणों को प्रतिबिंबित करने के लिए निर्देशित किया जा सकता है।<ref>"Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells" published in Optics Express, 2005.</ref><ref>"A continuous-wave Hybrid AlGaInAs-Silicon Evanescent Laser" published in Photonic Technology Letters, 2006.</ref>




== बनाना ==
== बनाना ==


सिलिकॉन लेजर को प्लाज्मा असिस्टेड वेफर बॉन्डिंग नामक विधि द्वारा निर्मित किया जाता है। सिलिकॉन वेवगाइड्स पहले एक [[इन्सुलेटर पर सिलिकॉन]] (एस ओ आई) वेफर पर निर्मित होते हैं। यह एस ओ आई वेफर और अन-पैटर्न वाले III-V वेफर को 12 घंटे के लिए 300C के कम (अर्धचालक निर्माण के लिए) तापमान पर एक साथ दबाए जाने से पहले एक ऑक्सीजन [[प्लाज्मा (भौतिकी)]] के संपर्क में लाया जाता है। यह प्रक्रिया दो वेफर्स को एक साथ जोड़ती है। III-V वेफर को [[epitaxy|एपीटैक्सी]] में विद्युत परतों को उजागर करने के लिए मेस में उकेरा जाता है। इन संपर्क परतों पर धातु के संपर्क गढ़े जाते हैं जिससे विद्युत प्रवाह सक्रिय क्षेत्र में प्रवाहित होता है।<ref>{{cite web |url=https://www.intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/silicon-photonics-overview.html |title = Intel® Silicon Photonics: How Does It Work? {{!}} Intel}}</ref><ref>{{cite web |url=https://optoelectronics.ece.ucsb.edu/ |title = Home {{!}} Bowers}}</ref> <ref>"Hybrid Integrated Platforms for Silicon Photonics," Materials, 3 (3), 1782-1802, March 12, 2010.</ref>
सिलिकॉन लेजर को प्लाज्मा असिस्टेड वेफर बॉन्डिंग नामक विधि द्वारा निर्मित किया जाता है। सिलिकॉन वेवगाइड्स पहले एक [[इन्सुलेटर पर सिलिकॉन]] (एस ओ आई) वेफर पर निर्मित होते हैं। यह एस ओ आई वेफर और अन-प्रतिरुप वाले III-V वेफर को 12 घंटे के लिए 300C के कम (अर्धचालक निर्माण के लिए) तापमान पर एक साथ दबाए जाने से पहले एक ऑक्सीजन [[प्लाज्मा (भौतिकी)]] के संपर्क में लाया जाता है। यह प्रक्रिया दो वेफर्स को एक साथ जोड़ती है। III-V वेफर को [[epitaxy|एपीटैक्सी]] में विद्युत परतों को उजागर करने के लिए मेस में उकेरा जाता है। इन संपर्क परतों पर धातु के संपर्क गढ़े जाते हैं जिससे विद्युत प्रवाह सक्रिय क्षेत्र में प्रवाहित होता है।<ref>{{cite web |url=https://www.intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/silicon-photonics-overview.html |title = Intel® Silicon Photonics: How Does It Work? {{!}} Intel}}</ref><ref>{{cite web |url=https://optoelectronics.ece.ucsb.edu/ |title = Home {{!}} Bowers}}</ref> <ref>"Hybrid Integrated Platforms for Silicon Photonics," Materials, 3 (3), 1782-1802, March 12, 2010.</ref>


कम लागत वाले इलेक्ट्रॉनिक उपकरणों के बड़े मापदंड पर उत्पादन के लिए इलेक्ट्रॉनिक उद्योग में सिलिकॉन निर्माण और निर्माण का व्यापक रूप से उपयोग किया जाता है। कम लागत वाली एकीकृत ऑप्टिकल उपकरण बनाने के लिए सिलिकॉन फोटोनिक्स इन्हीं इलेक्ट्रॉनिक विनिर्माण विधियों का उपयोग करता है। एक ऑप्टिकल उपकरण के लिए सिलिकॉन का उपयोग करने के साथ एक समस्या यह है कि सिलिकॉन एक खराब प्रकाश उत्सर्जक है और इसका उपयोग विद्युत पंप लेजर बनाने के लिए नहीं किया जा सकता है। इसका अर्थ यह है कि लेज़रों को पहले एक अलग III-V अर्धचालक वेफर पर गढ़ा जाना चाहिए, इससे पहले कि वे प्रत्येक सिलिकॉन उपकरण के साथ व्यक्तिगत रूप से संरेखित हों, एक ऐसी प्रक्रिया में जो महंगी और समय लेने वाली दोनों है, लेज़रों की कुल संख्या को सीमित करते हुए जो एक पर उपयोग किया जा सकता है। सिलिकॉन फोटोनिक परिपथ इस वेफर बॉन्डिंग विधि का उपयोग करके कई हाइब्रिड सिलिकॉन लेसरों को सिलिकॉन वेफर पर एक साथ बनाया जा सकता है, जो सभी सिलिकॉन फोटोनिक उपकरणों से जुड़े होते हैं।
कम लागत वाले इलेक्ट्रॉनिक उपकरणों के बड़े मापदंड पर उत्पादन के लिए इलेक्ट्रॉनिक उद्योग में सिलिकॉन निर्माण और निर्माण का व्यापक रूप से उपयोग किया जाता है। कम लागत वाली एकीकृत ऑप्टिकल उपकरण बनाने के लिए सिलिकॉन फोटोनिक्स इन्हीं इलेक्ट्रॉनिक विनिर्माण विधियों का उपयोग करता है। एक ऑप्टिकल उपकरण के लिए सिलिकॉन का उपयोग करने के साथ एक समस्या यह है कि सिलिकॉन एक खराब प्रकाश उत्सर्जक है और इसका उपयोग विद्युत पंप लेजर बनाने के लिए नहीं किया जा सकता है। इसका अर्थ यह है कि लेज़रों को पहले एक अलग III-V अर्धचालक वेफर पर गढ़ा जाना चाहिए, इससे पहले कि वे प्रत्येक सिलिकॉन उपकरण के साथ व्यक्तिगत रूप से संरेखित हों एक ऐसी प्रक्रिया में जो मूल्यवान और समय लेने वाली दोनों है, लेज़रों की कुल संख्या को सीमित करते हुए जो एक पर उपयोग किया जा सकता है। सिलिकॉन फोटोनिक परिपथ इस वेफर बॉन्डिंग विधि का उपयोग करके कई हाइब्रिड सिलिकॉन लेसरों को सिलिकॉन वेफर पर एक साथ बनाया जा सकता है, जो सभी सिलिकॉन फोटोनिक उपकरणों से जुड़े होते हैं।


== उपयोग ==
== उपयोग ==


नीचे दिए गए संदर्भों में उद्धृत संभावित उपयोगों में कई, संभवतः सैकड़ों हाइब्रिड सिलिकॉन लेसरों को डाई पर बनाना और व्यक्तिगत कंप्यूटर, सर्वर या बैक प्लेन के लिए उच्च बैंडविड्थ ऑप्टिकल लिंक बनाने के लिए उन्हें एक साथ संयोजित करने के लिए सिलिकॉन फोटोनिक्स का उपयोग करना सम्मिलित है। ये लेज़र अब सीएमओएस फाउंड्री में 300 मिमी सिलिकॉन वेफर्स पर प्रति वर्ष एक मिलियन से अधिक की मात्रा में निर्मित किए जाते हैं।<ref>"Heterogeneously Integrated Photonics", Invited paper, IEEE Nanotechnology Magazine 17, April (2019).</ref>
नीचे दिए गए संदर्भों में उद्धृत संभावित उपयोगों में कई, संभवतः सैकड़ों हाइब्रिड सिलिकॉन लेसरों को डाई पर बनाना और व्यक्तिगत कंप्यूटर सर्वर या बैक प्लेन के लिए उच्च बैंडविड्थ ऑप्टिकल लिंक बनाने के लिए उन्हें एक साथ संयोजित करने के लिए सिलिकॉन फोटोनिक्स का उपयोग करना सम्मिलित है। ये लेज़र अब सीएमओएस फाउंड्री में 300 मिमी सिलिकॉन वेफर्स पर प्रति वर्ष एक मिलियन से अधिक की मात्रा में निर्मित किए जाते हैं।<ref>"Heterogeneously Integrated Photonics", Invited paper, IEEE Nanotechnology Magazine 17, April (2019).</ref>


सिलिकॉन वेवगाइड्स के कम हानि का अर्थ है कि इन लेज़रों में बहुत संकीर्ण लाइनविड्थ हो सकते हैं (<1 kHz)<ref>“Tutorial: Si/III-V Heterogeneous Integration for Narrow Linewidth Semiconductor Lasers”, APL Photonics 4, 111101 (2019).</ref> जो सुसंगत ट्रांसमीटर, ऑप्टिकल [[LIDAR का|लीडर का]], जैसे नए अनुप्रयोगों को खोलता है।<ref>"Heterogeneous Silicon Photonics Sensing for Autonomous Cars", invited paper, Optics Express 27(3), 3642 (2019).</ref> ऑप्टिकल जाइरोस्कोप, और अन्य अनुप्रयोग।<ref>“High Performance Photonic Integrated Circuits on Silicon”, invited paper, JSTQE 25(5) 8300215, Sept. 2019.</ref> इन लेज़रों का उपयोग 10 में 1 भाग की स्थिरता के साथ ऑप्टिकल सिंथेसाइज़र बनाने के लिए गैर-रैखिक उपकरणों को पंप करने के लिए किया जा सकता है।<sup>17</sup>.<ref>"An Integrated-Photonics Optical-Frequency Synthesizer," Nature, 557, 81-85, April 25, 2018.</ref>
सिलिकॉन वेवगाइड्स के कम हानि का अर्थ है कि इन लेज़रों में बहुत संकीर्ण लाइनविड्थ हो सकते हैं (<1 kHz)<ref>“Tutorial: Si/III-V Heterogeneous Integration for Narrow Linewidth Semiconductor Lasers”, APL Photonics 4, 111101 (2019).</ref> जो सुसंगत ट्रांसमीटर, ऑप्टिकल [[LIDAR का|लीडर का]], जैसे नए अनुप्रयोगों को खोलता है।<ref>"Heterogeneous Silicon Photonics Sensing for Autonomous Cars", invited paper, Optics Express 27(3), 3642 (2019).</ref> ऑप्टिकल जाइरोस्कोप, और अन्य अनुप्रयोग।<ref>“High Performance Photonic Integrated Circuits on Silicon”, invited paper, JSTQE 25(5) 8300215, Sept. 2019.</ref> इन लेज़रों का उपयोग 10 में 1 भाग की स्थिरता के साथ ऑप्टिकल सिंथेसाइज़र बनाने के लिए गैर-रैखिक उपकरणों को पंप करने के लिए किया जा सकता है।<sup>17</sup>.<ref>"An Integrated-Photonics Optical-Frequency Synthesizer," Nature, 557, 81-85, April 25, 2018.</ref>

Revision as of 15:34, 21 May 2023

एक हाइब्रिड सिलिकॉन लेज़र एक अर्धचालक लेजर है जो सिलिकॉन और समूह III-V अर्धचालक पदार्थ दोनों से बना है। कम लागत बड़े मापदंड पर उत्पादित सिलिकॉन ऑप्टिकल उपकरणों के निर्माण को सक्षम करने के लिए एक सिलिकॉन लेजर की कमी को दूर करने के लिए हाइब्रिड सिलिकॉन लेजर विकसित किया गया था। हाइब्रिड दृष्टिकोण III-V अर्धचालक पदार्थ के प्रकाश उत्सर्जक गुणों का लाभ उठाता है जो सिलिकॉन वेफर (इलेक्ट्रॉनिक्स) पर विद्युत चालित लेसरों को बनाने के लिए सिलिकॉन की प्रक्रिया परिपक्वता के साथ संयुक्त होता है जिसे अन्य सिलिकॉन फोटोनिक उपकरणों के साथ एकीकृत किया जा सकता है।

भौतिकी

एक हाइब्रिड सिलिकॉन लेजर एक ऑप्टिकल स्रोत है जो सिलिकॉन और समूह III-V अर्धचालक पदार्थ (जैसे इंडियम (III) फॉस्फाइड, गैलियम (III) आर्सेनाइड) दोनों से बना है। इसमें एक सिलिकॉन वेवगाइड (ऑप्टिक्स) सम्मिलित है जो एक सक्रिय प्रकाश उत्सर्जक III-V एपिटैक्सियल अर्धचालक वेफर से जुड़ा हुआ है। III-V एपिटैक्सियल वेफर को अलग-अलग परतों के साथ डिज़ाइन किया गया है जैसे कि सक्रिय परत प्रकाश का उत्सर्जन कर सकती है जब यह चमकदार प्रकाश से उत्साहित हो, उदा। उस पर एक लेजर; या इसके माध्यम से विद्युत पास करके सिलिकॉन वेवगाइड में सक्रिय परत जोड़ों से उत्सर्जित प्रकाश उनकी निकटता (<130 एनएम पृथक्करण) के कारण होता है जहां इसे लेजर ऑप्टिकल गुहा बनाने के लिए सिलिकॉन वेवगाइड के अंत में दर्पणों को प्रतिबिंबित करने के लिए निर्देशित किया जा सकता है।[1][2]


बनाना

सिलिकॉन लेजर को प्लाज्मा असिस्टेड वेफर बॉन्डिंग नामक विधि द्वारा निर्मित किया जाता है। सिलिकॉन वेवगाइड्स पहले एक इन्सुलेटर पर सिलिकॉन (एस ओ आई) वेफर पर निर्मित होते हैं। यह एस ओ आई वेफर और अन-प्रतिरुप वाले III-V वेफर को 12 घंटे के लिए 300C के कम (अर्धचालक निर्माण के लिए) तापमान पर एक साथ दबाए जाने से पहले एक ऑक्सीजन प्लाज्मा (भौतिकी) के संपर्क में लाया जाता है। यह प्रक्रिया दो वेफर्स को एक साथ जोड़ती है। III-V वेफर को एपीटैक्सी में विद्युत परतों को उजागर करने के लिए मेस में उकेरा जाता है। इन संपर्क परतों पर धातु के संपर्क गढ़े जाते हैं जिससे विद्युत प्रवाह सक्रिय क्षेत्र में प्रवाहित होता है।[3][4] [5]

कम लागत वाले इलेक्ट्रॉनिक उपकरणों के बड़े मापदंड पर उत्पादन के लिए इलेक्ट्रॉनिक उद्योग में सिलिकॉन निर्माण और निर्माण का व्यापक रूप से उपयोग किया जाता है। कम लागत वाली एकीकृत ऑप्टिकल उपकरण बनाने के लिए सिलिकॉन फोटोनिक्स इन्हीं इलेक्ट्रॉनिक विनिर्माण विधियों का उपयोग करता है। एक ऑप्टिकल उपकरण के लिए सिलिकॉन का उपयोग करने के साथ एक समस्या यह है कि सिलिकॉन एक खराब प्रकाश उत्सर्जक है और इसका उपयोग विद्युत पंप लेजर बनाने के लिए नहीं किया जा सकता है। इसका अर्थ यह है कि लेज़रों को पहले एक अलग III-V अर्धचालक वेफर पर गढ़ा जाना चाहिए, इससे पहले कि वे प्रत्येक सिलिकॉन उपकरण के साथ व्यक्तिगत रूप से संरेखित हों एक ऐसी प्रक्रिया में जो मूल्यवान और समय लेने वाली दोनों है, लेज़रों की कुल संख्या को सीमित करते हुए जो एक पर उपयोग किया जा सकता है। सिलिकॉन फोटोनिक परिपथ इस वेफर बॉन्डिंग विधि का उपयोग करके कई हाइब्रिड सिलिकॉन लेसरों को सिलिकॉन वेफर पर एक साथ बनाया जा सकता है, जो सभी सिलिकॉन फोटोनिक उपकरणों से जुड़े होते हैं।

उपयोग

नीचे दिए गए संदर्भों में उद्धृत संभावित उपयोगों में कई, संभवतः सैकड़ों हाइब्रिड सिलिकॉन लेसरों को डाई पर बनाना और व्यक्तिगत कंप्यूटर सर्वर या बैक प्लेन के लिए उच्च बैंडविड्थ ऑप्टिकल लिंक बनाने के लिए उन्हें एक साथ संयोजित करने के लिए सिलिकॉन फोटोनिक्स का उपयोग करना सम्मिलित है। ये लेज़र अब सीएमओएस फाउंड्री में 300 मिमी सिलिकॉन वेफर्स पर प्रति वर्ष एक मिलियन से अधिक की मात्रा में निर्मित किए जाते हैं।[6]

सिलिकॉन वेवगाइड्स के कम हानि का अर्थ है कि इन लेज़रों में बहुत संकीर्ण लाइनविड्थ हो सकते हैं (<1 kHz)[7] जो सुसंगत ट्रांसमीटर, ऑप्टिकल लीडर का, जैसे नए अनुप्रयोगों को खोलता है।[8] ऑप्टिकल जाइरोस्कोप, और अन्य अनुप्रयोग।[9] इन लेज़रों का उपयोग 10 में 1 भाग की स्थिरता के साथ ऑप्टिकल सिंथेसाइज़र बनाने के लिए गैर-रैखिक उपकरणों को पंप करने के लिए किया जा सकता है।17.[10]

इतिहास

  • स्पंदित वैकल्पिक रूप से पंप लेज़िंग को पहली बार कैलिफोर्निया विश्वविद्यालय, सांता बारबरा में जॉन ई. बोवर्स समूह द्वारा प्रदर्शित किया गया
  • इंटेल कॉर्पोरेशन और यूसीएसबी द्वारा प्रदर्शित कंटीन्यूअस वेव ऑप्टिकली पंप लेज़िंग
  • यूसीएसबी और इंटेल द्वारा प्रदर्शित सतत तरंग विद्युत चालित लेज़िंग
  • एकल तरंग दैर्ध्य ने सिलिकॉन पर प्रतिक्रिया लेसरों को वितरित किया[11]
  • शॉर्ट पल्स मोड लॉक्ड लेजर ऑन सिलिकॉन[12]
  • सिलिकॉन पर क्वांटम कैस्केड लेजर[13]
  • सिलिकॉन पर इंटरबैंड कैस्केड लेजर[14]


संदर्भ

  1. "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells" published in Optics Express, 2005.
  2. "A continuous-wave Hybrid AlGaInAs-Silicon Evanescent Laser" published in Photonic Technology Letters, 2006.
  3. "Intel® Silicon Photonics: How Does It Work? | Intel".
  4. "Home | Bowers".
  5. "Hybrid Integrated Platforms for Silicon Photonics," Materials, 3 (3), 1782-1802, March 12, 2010.
  6. "Heterogeneously Integrated Photonics", Invited paper, IEEE Nanotechnology Magazine 17, April (2019).
  7. “Tutorial: Si/III-V Heterogeneous Integration for Narrow Linewidth Semiconductor Lasers”, APL Photonics 4, 111101 (2019).
  8. "Heterogeneous Silicon Photonics Sensing for Autonomous Cars", invited paper, Optics Express 27(3), 3642 (2019).
  9. “High Performance Photonic Integrated Circuits on Silicon”, invited paper, JSTQE 25(5) 8300215, Sept. 2019.
  10. "An Integrated-Photonics Optical-Frequency Synthesizer," Nature, 557, 81-85, April 25, 2018.
  11. “A Distributed Feedback Silicon Evanescent Laser,” Optics Express, 16 (7), 4413-4419, March, 2008.
  12. "Mode-locked Silicon Evanescent Lasers," Optics Express, 15 (18), 11225-11233, September, 2007.
  13. “Quantum Cascade Laser on Silicon,” Optica, (3)5, 545-551, May 20, 2016.
  14. “Interband Cascade Laser on Silicon,” Optica, (5)8, 996-1005, August 16, 2018.