त्रिकोणीय अनियमित नेटवर्क: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Representation of a surface as a triangle mesh with elevated vertices}} | {{short description|Representation of a surface as a triangle mesh with elevated vertices}} | ||
[[File:Delaunay-Triangulation.svg|thumb|त्रिकोणीय अनियमित नेटवर्क]] | [[File:Delaunay-Triangulation.svg|thumb|त्रिकोणीय अनियमित नेटवर्क]] | ||
[[File:Digitales_Geländemodell.png|thumb|टिन [[समोच्च रेखा]]ओं से मढ़ा हुआ]][[ कंप्यूटर चित्रलेख ]] में त्रिकोणीय अनियमित नेटवर्क (टिन)<ref>[https://pro.arcgis.com/en/pro-app/help/data/tin/tin-in-arcgis-pro.htm][http://www.surfacemodeling.com/Help/Guide/start.htm Also known as a "Triangular Irregular Network"]</ref> एक निरंतर [[सतह (गणित)]] की सतहों का एक कंप्यूटर प्रतिनिधित्व है जिसमें पूरी तरह से त्रिकोणीय पहलू (एक [[त्रिकोण जाल]]) सम्मिलित है, जिसका उपयोग मुख्य रूप से डिजिटल एलिवेशन मॉडल या डीईएम के प्रकार में [[ असतत वैश्विक ग्रिड ]] के रूप में किया जाता है। | [[File:Digitales_Geländemodell.png|thumb|टिन [[समोच्च रेखा]]ओं से मढ़ा हुआ]][[ कंप्यूटर चित्रलेख | कंप्यूटर चित्रलेख]] में त्रिकोणीय अनियमित नेटवर्क (टिन)<ref>[https://pro.arcgis.com/en/pro-app/help/data/tin/tin-in-arcgis-pro.htm][http://www.surfacemodeling.com/Help/Guide/start.htm Also known as a "Triangular Irregular Network"]</ref> एक निरंतर [[सतह (गणित)]] की सतहों का एक कंप्यूटर प्रतिनिधित्व है जिसमें पूरी तरह से त्रिकोणीय पहलू (एक [[त्रिकोण जाल]]) सम्मिलित है, जिसका उपयोग मुख्य रूप से डिजिटल एलिवेशन मॉडल या डीईएम के प्रकार में [[ असतत वैश्विक ग्रिड |असतत वैश्विक ग्रिड]] के रूप में किया जाता है। | ||
इन त्रिकोणों के शिखर पारंपरिक विधियों, ग्लोबल पोजिशनिंग सिस्टम रीयल-टाइम किनेमेटिक (जीपीएस आरटीके), [[photogrammetry|फोटोग्रामेट्री]], या कुछ अन्य माध्यमों के माध्यम से सर्वेक्षण सहित विभिन्न माध्यमों के माध्यम से क्षेत्र रिकॉर्डेड स्पॉट एलिवेशन से बनाए गए हैं। त्रि-आयामी {{tmath|(x, y, z)}}डेटा और स्थलाकृति से संबद्ध, टीआईएन सामान्य क्षैतिज {{tmath|(x, y)}} वितरण और संबंधों के विवरण और विश्लेषण के लिए उपयोगी हैं। | इन त्रिकोणों के शिखर पारंपरिक विधियों, ग्लोबल पोजिशनिंग सिस्टम रीयल-टाइम किनेमेटिक (जीपीएस आरटीके), [[photogrammetry|फोटोग्रामेट्री]], या कुछ अन्य माध्यमों के माध्यम से सर्वेक्षण सहित विभिन्न माध्यमों के माध्यम से क्षेत्र रिकॉर्डेड स्पॉट एलिवेशन से बनाए गए हैं। त्रि-आयामी {{tmath|(x, y, z)}}डेटा और स्थलाकृति से संबद्ध, टीआईएन सामान्य क्षैतिज {{tmath|(x, y)}} वितरण और संबंधों के विवरण और विश्लेषण के लिए उपयोगी हैं। | ||
[[भौगोलिक सूचना प्रणाली]] (जीआईएस), और [[कंप्यूटर एडेड डिजाइन]] (सीएडी) सहित भौगोलिक सतह के दृश्य प्रतिनिधित्व के लिए डिजिटल टीआईएन | [[भौगोलिक सूचना प्रणाली]] (जीआईएस), और [[कंप्यूटर एडेड डिजाइन]] (सीएडी) सहित भौगोलिक सतह के दृश्य प्रतिनिधित्व के लिए डिजिटल टीआईएन डेटा संरचनाओं का उपयोग विभिन्न प्रकार के अनुप्रयोगों में किया जाता है। एक टीआईएन भौतिक भूमि की सतह या समुद्र तल का एक [[सरणी डेटा प्रकार]]-आधारित प्रतिनिधित्व है, जो अनियमित रूप से वितरित वर्टेक्स (ज्यामिति) और कार्टेशियन समन्वय प्रणाली के साथ रेखाओं से बना है। त्रि-आयामी निर्देशांक {{tmath|(x, y, z)}} जो गैर-अतिव्यापी त्रिभुजों के नेटवर्क में व्यवस्थित हैं। | ||
एक टीआईएन में त्रिकोणीय [[चौकोर]] बनाने के लिए किनारों से जुड़े तीन आयामों में जुड़े निर्देशांक के साथ द्रव्यमान बिंदुओं के रूप में जाना जाने वाला त्रिकोणीय नेटवर्क होता है। त्रिकोणीय पहलुओं के प्रतिपादन द्वारा त्रि-आयामी दृश्य आसानी से बनाए जाते हैं। उन क्षेत्रों में जहां सतह की ऊंचाई में थोड़ी भिन्नता होती है, बिंदुओं को व्यापक रूप से स्थान दिया जा सकता है जबकि ऊंचाई में अधिक तीव्र भिन्नता वाले क्षेत्रों में बिंदु घनत्व बढ़ जाता है। | एक टीआईएन में त्रिकोणीय [[चौकोर]] बनाने के लिए किनारों से जुड़े तीन आयामों में जुड़े निर्देशांक के साथ द्रव्यमान बिंदुओं के रूप में जाना जाने वाला त्रिकोणीय नेटवर्क होता है। त्रिकोणीय पहलुओं के प्रतिपादन द्वारा त्रि-आयामी दृश्य आसानी से बनाए जाते हैं। उन क्षेत्रों में जहां सतह की ऊंचाई में थोड़ी भिन्नता होती है, बिंदुओं को व्यापक रूप से स्थान दिया जा सकता है जबकि ऊंचाई में अधिक तीव्र भिन्नता वाले क्षेत्रों में बिंदु घनत्व बढ़ जाता है। | ||
[[इलाके|भूभाग]] का प्रतिनिधित्व करने के लिए उपयोग किए जाने वाले टीआईएन को अधिकांशतः [[ डिजिटल ऊंचाई मॉडल ]] (डीईएम) कहा जाता है, जिसे आगे डिजिटल सतह मॉडल (डीएसएम) या डिजिटल भूभाग मॉडल (डीटीएम) बनाने के लिए उपयोग किया जा सकता है। मानचित्रण और विश्लेषण में [[रास्टराज़]] डिजिटल एलिवेशन मॉडल (डीईएम) पर टीआईएन का उपयोग करने का एक लाभ यह है कि टीआईएन के बिंदुओं को एक [[कलन विधि]] के आधार पर भिन्न रूप से वितरित किया जाता है जो यह निर्धारित करता है कि भू-भाग का स्पष्ट प्रतिनिधित्व बनाने के लिए कौन से बिंदु सबसे आवश्यक हैं। डेटा इनपुट इसलिए लचीला है और नियमित रूप से वितरित बिंदुओं के साथ, रेखापुंज डीईएम की तुलना में कम बिंदुओं को संग्रहीत करने की आवश्यकता होती है। जबकि टीआईएन को कुछ प्रकार के जीआईएस अनुप्रयोगों के लिए रेखापुंज डीईएम की तुलना में कम अनुकूल माना जा सकता है, जैसे कि सतह के [[ढलान]] और [[पहलू (भूगोल)]] का विश्लेषण, इसका उपयोग अधिकांशतः सीएडी में समोच्च रेखाएँ बनाने के लिए किया जाता है। डीईएम से डीटीएम और डीएसएम का गठन किया जा सकता है। डीईएम को टीआईएन से प्रक्षेपित किया जा सकता है। | [[इलाके|भूभाग]] का प्रतिनिधित्व करने के लिए उपयोग किए जाने वाले टीआईएन को अधिकांशतः [[ डिजिटल ऊंचाई मॉडल |डिजिटल ऊंचाई मॉडल]] (डीईएम) कहा जाता है, जिसे आगे डिजिटल सतह मॉडल (डीएसएम) या डिजिटल भूभाग मॉडल (डीटीएम) बनाने के लिए उपयोग किया जा सकता है। मानचित्रण और विश्लेषण में [[रास्टराज़]] डिजिटल एलिवेशन मॉडल (डीईएम) पर टीआईएन का उपयोग करने का एक लाभ यह है कि टीआईएन के बिंदुओं को एक [[कलन विधि]] के आधार पर भिन्न रूप से वितरित किया जाता है जो यह निर्धारित करता है कि भू-भाग का स्पष्ट प्रतिनिधित्व बनाने के लिए कौन से बिंदु सबसे आवश्यक हैं। डेटा इनपुट इसलिए लचीला है और नियमित रूप से वितरित बिंदुओं के साथ, रेखापुंज डीईएम की तुलना में कम बिंदुओं को संग्रहीत करने की आवश्यकता होती है। जबकि टीआईएन को कुछ प्रकार के जीआईएस अनुप्रयोगों के लिए रेखापुंज डीईएम की तुलना में कम अनुकूल माना जा सकता है, जैसे कि सतह के [[ढलान]] और [[पहलू (भूगोल)]] का विश्लेषण, इसका उपयोग अधिकांशतः सीएडी में समोच्च रेखाएँ बनाने के लिए किया जाता है। डीईएम से डीटीएम और डीएसएम का गठन किया जा सकता है। डीईएम को टीआईएन से प्रक्षेपित किया जा सकता है। | ||
टीआईएन एक [[Delaunay त्रिभुज|डेलॉनाय त्रिभुज]] या विवश डेलॉनाय पर आधारित है। विवश त्रिभुजों पर डेलाउने अनुरूप त्रिभुजों की सिफारिश की जाती है। ऐसा इसलिए है क्योंकि परिणामी टीआईएन में कम लंबे, पतले त्रिकोण होने की संभावना है, जो सतह विश्लेषण के लिए अवांछनीय हैं। इसके अतिरिक्त, प्राकृतिक निकट प्रक्षेप और थिएसेन (वोरोनोई) बहुभुज पीढ़ी केवल डेलाउने अनुरूप त्रिभुजों पर ही की जा सकती है। एक विवश डेलॉनाय त्रिभुज पर विचार किया जा सकता है जब आपको कुछ किनारों को स्पष्ट रूप से परिभाषित करने की आवश्यकता होती है जो त्रिभुज द्वारा संशोधित नहीं होने की आश्वासन देते हैं (अर्थात, कई किनारों में विभाजित)। प्रतिबंधित डेलाउने त्रिभुज टीआईएन के आकार को कम करने के लिए भी उपयोगी होते हैं, क्योंकि उनके पास कम नोड और त्रिकोण होते हैं जहां ब्रेकलाइन सघन नहीं होती हैं। | टीआईएन एक [[Delaunay त्रिभुज|डेलॉनाय त्रिभुज]] या विवश डेलॉनाय पर आधारित है। विवश त्रिभुजों पर डेलाउने अनुरूप त्रिभुजों की सिफारिश की जाती है। ऐसा इसलिए है क्योंकि परिणामी टीआईएन में कम लंबे, पतले त्रिकोण होने की संभावना है, जो सतह विश्लेषण के लिए अवांछनीय हैं। इसके अतिरिक्त, प्राकृतिक निकट प्रक्षेप और थिएसेन (वोरोनोई) बहुभुज पीढ़ी केवल डेलाउने अनुरूप त्रिभुजों पर ही की जा सकती है। एक विवश डेलॉनाय त्रिभुज पर विचार किया जा सकता है जब आपको कुछ किनारों को स्पष्ट रूप से परिभाषित करने की आवश्यकता होती है जो त्रिभुज द्वारा संशोधित नहीं होने की आश्वासन देते हैं (अर्थात, कई किनारों में विभाजित)। प्रतिबंधित डेलाउने त्रिभुज टीआईएन के आकार को कम करने के लिए भी उपयोगी होते हैं, क्योंकि उनके पास कम नोड और त्रिकोण होते हैं जहां ब्रेकलाइन सघन नहीं होती हैं। | ||
टीआईएन मॉडल को 1970 के दशक की शुरुआत में अनियमित रूप से दूरी वाले बिंदुओं के सेट से सतह बनाने के एक सरल विधि के रूप में विकसित किया गया था। जीआईएस के लिए पहला त्रिकोणीय अनियमित नेटवर्क प्रोग्राम 1973 में [[साइमन फ्रेजर विश्वविद्यालय]] में डेविड डगलस और थॉमस प्यूकर (पोइकर) के निर्देशन में डब्ल्यू रैंडोल्फ फ्रैंकलिन द्वारा लिखा गया था।<ref>Franklin, W. R. (1973). Triangulated irregular network program.</ref> | टीआईएन मॉडल को 1970 के दशक की शुरुआत में अनियमित रूप से दूरी वाले बिंदुओं के सेट से सतह बनाने के एक सरल विधि के रूप में विकसित किया गया था। जीआईएस के लिए पहला त्रिकोणीय अनियमित नेटवर्क प्रोग्राम 1973 में [[साइमन फ्रेजर विश्वविद्यालय]] में डेविड डगलस और थॉमस प्यूकर (पोइकर) के निर्देशन में डब्ल्यू रैंडोल्फ फ्रैंकलिन द्वारा लिखा गया था।<ref>Franklin, W. R. (1973). Triangulated irregular network program.</ref> | ||
== फ़ाइल प्रारूप == | == फ़ाइल प्रारूप == | ||
टीआईएन जानकारी को सहेजने के लिए विभिन्न प्रकार के विभिन्न फ़ाइल प्रारूप उपस्थित हैं, जिनमें एस्री टीआईएन के साथ-साथ एक्वावीओ और आईसीईएम सीएफडी सम्मिलित | टीआईएन जानकारी को सहेजने के लिए विभिन्न प्रकार के विभिन्न फ़ाइल प्रारूप उपस्थित हैं, जिनमें एस्री टीआईएन के साथ-साथ एक्वावीओ और आईसीईएम सीएफडी सम्मिलित हैं।<ref>{{Cite web|url=https://www.xmswiki.com/wiki/TIN_Files|title = TIN Files - XMS Wiki}}</ref><ref>{{Cite web|url=https://www.cfd-online.com/Forums/ansys-meshing/71507-import-geometry-solidworks.html|title=[ICEM] Import geometry from solidworks -- CFD Online Discussion Forums}}</ref> | ||
== संदर्भ == | == संदर्भ == | ||
<references/> | <references/> | ||
Line 28: | Line 26: | ||
*[http://pro.arcgis.com/en/pro-app/help/data/tin/tin-in-arcgis-pro.htm ArcGIS] | *[http://pro.arcgis.com/en/pro-app/help/data/tin/tin-in-arcgis-pro.htm ArcGIS] | ||
{{DEFAULTSORT:Triangulated Irregular Network}} | {{DEFAULTSORT:Triangulated Irregular Network}} | ||
[[Category: | [[Category:All articles with dead external links|Triangulated Irregular Network]] | ||
[[Category:Created On 05/05/2023]] | [[Category:Articles with dead external links from October 2022|Triangulated Irregular Network]] | ||
[[Category:Articles with permanently dead external links|Triangulated Irregular Network]] | |||
[[Category:Created On 05/05/2023|Triangulated Irregular Network]] | |||
[[Category:Lua-based templates|Triangulated Irregular Network]] | |||
[[Category:Machine Translated Page|Triangulated Irregular Network]] | |||
[[Category:Pages with script errors|Triangulated Irregular Network]] | |||
[[Category:Templates Vigyan Ready|Triangulated Irregular Network]] | |||
[[Category:Templates that add a tracking category|Triangulated Irregular Network]] | |||
[[Category:Templates that generate short descriptions|Triangulated Irregular Network]] | |||
[[Category:Templates using TemplateData|Triangulated Irregular Network]] | |||
[[Category:ज्यामितीय डेटा संरचनाएं|Triangulated Irregular Network]] | |||
[[Category:त्रिकोणासन (ज्यामिति)|Triangulated Irregular Network]] | |||
[[Category:भौगोलिक डेटा और जानकारी|Triangulated Irregular Network]] |
Latest revision as of 14:44, 23 May 2023
कंप्यूटर चित्रलेख में त्रिकोणीय अनियमित नेटवर्क (टिन)[1] एक निरंतर सतह (गणित) की सतहों का एक कंप्यूटर प्रतिनिधित्व है जिसमें पूरी तरह से त्रिकोणीय पहलू (एक त्रिकोण जाल) सम्मिलित है, जिसका उपयोग मुख्य रूप से डिजिटल एलिवेशन मॉडल या डीईएम के प्रकार में असतत वैश्विक ग्रिड के रूप में किया जाता है।
इन त्रिकोणों के शिखर पारंपरिक विधियों, ग्लोबल पोजिशनिंग सिस्टम रीयल-टाइम किनेमेटिक (जीपीएस आरटीके), फोटोग्रामेट्री, या कुछ अन्य माध्यमों के माध्यम से सर्वेक्षण सहित विभिन्न माध्यमों के माध्यम से क्षेत्र रिकॉर्डेड स्पॉट एलिवेशन से बनाए गए हैं। त्रि-आयामी डेटा और स्थलाकृति से संबद्ध, टीआईएन सामान्य क्षैतिज वितरण और संबंधों के विवरण और विश्लेषण के लिए उपयोगी हैं।
भौगोलिक सूचना प्रणाली (जीआईएस), और कंप्यूटर एडेड डिजाइन (सीएडी) सहित भौगोलिक सतह के दृश्य प्रतिनिधित्व के लिए डिजिटल टीआईएन डेटा संरचनाओं का उपयोग विभिन्न प्रकार के अनुप्रयोगों में किया जाता है। एक टीआईएन भौतिक भूमि की सतह या समुद्र तल का एक सरणी डेटा प्रकार-आधारित प्रतिनिधित्व है, जो अनियमित रूप से वितरित वर्टेक्स (ज्यामिति) और कार्टेशियन समन्वय प्रणाली के साथ रेखाओं से बना है। त्रि-आयामी निर्देशांक जो गैर-अतिव्यापी त्रिभुजों के नेटवर्क में व्यवस्थित हैं।
एक टीआईएन में त्रिकोणीय चौकोर बनाने के लिए किनारों से जुड़े तीन आयामों में जुड़े निर्देशांक के साथ द्रव्यमान बिंदुओं के रूप में जाना जाने वाला त्रिकोणीय नेटवर्क होता है। त्रिकोणीय पहलुओं के प्रतिपादन द्वारा त्रि-आयामी दृश्य आसानी से बनाए जाते हैं। उन क्षेत्रों में जहां सतह की ऊंचाई में थोड़ी भिन्नता होती है, बिंदुओं को व्यापक रूप से स्थान दिया जा सकता है जबकि ऊंचाई में अधिक तीव्र भिन्नता वाले क्षेत्रों में बिंदु घनत्व बढ़ जाता है।
भूभाग का प्रतिनिधित्व करने के लिए उपयोग किए जाने वाले टीआईएन को अधिकांशतः डिजिटल ऊंचाई मॉडल (डीईएम) कहा जाता है, जिसे आगे डिजिटल सतह मॉडल (डीएसएम) या डिजिटल भूभाग मॉडल (डीटीएम) बनाने के लिए उपयोग किया जा सकता है। मानचित्रण और विश्लेषण में रास्टराज़ डिजिटल एलिवेशन मॉडल (डीईएम) पर टीआईएन का उपयोग करने का एक लाभ यह है कि टीआईएन के बिंदुओं को एक कलन विधि के आधार पर भिन्न रूप से वितरित किया जाता है जो यह निर्धारित करता है कि भू-भाग का स्पष्ट प्रतिनिधित्व बनाने के लिए कौन से बिंदु सबसे आवश्यक हैं। डेटा इनपुट इसलिए लचीला है और नियमित रूप से वितरित बिंदुओं के साथ, रेखापुंज डीईएम की तुलना में कम बिंदुओं को संग्रहीत करने की आवश्यकता होती है। जबकि टीआईएन को कुछ प्रकार के जीआईएस अनुप्रयोगों के लिए रेखापुंज डीईएम की तुलना में कम अनुकूल माना जा सकता है, जैसे कि सतह के ढलान और पहलू (भूगोल) का विश्लेषण, इसका उपयोग अधिकांशतः सीएडी में समोच्च रेखाएँ बनाने के लिए किया जाता है। डीईएम से डीटीएम और डीएसएम का गठन किया जा सकता है। डीईएम को टीआईएन से प्रक्षेपित किया जा सकता है।
टीआईएन एक डेलॉनाय त्रिभुज या विवश डेलॉनाय पर आधारित है। विवश त्रिभुजों पर डेलाउने अनुरूप त्रिभुजों की सिफारिश की जाती है। ऐसा इसलिए है क्योंकि परिणामी टीआईएन में कम लंबे, पतले त्रिकोण होने की संभावना है, जो सतह विश्लेषण के लिए अवांछनीय हैं। इसके अतिरिक्त, प्राकृतिक निकट प्रक्षेप और थिएसेन (वोरोनोई) बहुभुज पीढ़ी केवल डेलाउने अनुरूप त्रिभुजों पर ही की जा सकती है। एक विवश डेलॉनाय त्रिभुज पर विचार किया जा सकता है जब आपको कुछ किनारों को स्पष्ट रूप से परिभाषित करने की आवश्यकता होती है जो त्रिभुज द्वारा संशोधित नहीं होने की आश्वासन देते हैं (अर्थात, कई किनारों में विभाजित)। प्रतिबंधित डेलाउने त्रिभुज टीआईएन के आकार को कम करने के लिए भी उपयोगी होते हैं, क्योंकि उनके पास कम नोड और त्रिकोण होते हैं जहां ब्रेकलाइन सघन नहीं होती हैं।
टीआईएन मॉडल को 1970 के दशक की शुरुआत में अनियमित रूप से दूरी वाले बिंदुओं के सेट से सतह बनाने के एक सरल विधि के रूप में विकसित किया गया था। जीआईएस के लिए पहला त्रिकोणीय अनियमित नेटवर्क प्रोग्राम 1973 में साइमन फ्रेजर विश्वविद्यालय में डेविड डगलस और थॉमस प्यूकर (पोइकर) के निर्देशन में डब्ल्यू रैंडोल्फ फ्रैंकलिन द्वारा लिखा गया था।[2]
फ़ाइल प्रारूप
टीआईएन जानकारी को सहेजने के लिए विभिन्न प्रकार के विभिन्न फ़ाइल प्रारूप उपस्थित हैं, जिनमें एस्री टीआईएन के साथ-साथ एक्वावीओ और आईसीईएम सीएफडी सम्मिलित हैं।[3][4]
संदर्भ
- ↑ [1]Also known as a "Triangular Irregular Network"
- ↑ Franklin, W. R. (1973). Triangulated irregular network program.
- ↑ "TIN Files - XMS Wiki".
- ↑ "[ICEM] Import geometry from solidworks -- CFD Online Discussion Forums".