न्यूरोकंप्यूटेशनल भाषण प्रसंस्करण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 140: Line 140:
=== प्रयोगः वाक् बोध ===
=== प्रयोगः वाक् बोध ===
इस तथ्य के अतिरिक्त कि इसके पहले के संस्करणों में एसीटी मॉडल को शुद्ध भाषण उत्पादन मॉडल (भाषण अधिग्रहण सहित) के रूप में डिजाइन किया गया था, मॉडल भाषण धारणा की महत्वपूर्ण मूलभूत घटनाओं, अर्थात [[श्रेणीबद्ध धारणा]] और [[मैकगर्क प्रभाव]] को प्रदर्शित करने में सक्षम है। स्पष्ट धारणा के स्थितियों में, मॉडल यह प्रदर्शित करने में सक्षम है कि स्पष्ट धारणा स्वरों के स्थितियों में प्लोसिव्स के स्थितियों में अधिक शक्तिशाली है (क्रॉगर एट अल। 2009 देखें)। इसके अतिरिक्त मॉडल अधिनियम मैकगर्क प्रभाव को प्रदर्शित करने में सक्षम था, यदि ध्वन्यात्मक मानचित्र के स्तर के न्यूरॉन्स के निषेध का विशिष्ट तंत्र प्रयुक्त किया गया था (क्रॉगर और कन्नमपुझा 2008 देखें)।<ref>Kröger BJ, Kannampuzha J (2008) A neurofunctional model of speech production including aspects of auditory and audio-visual speech perception. ''Proceedings of the International Conference on Audio-Visual Speech Processing 2008'' (Moreton Island, Queensland, Australia) pp. 83–88</ref>
इस तथ्य के अतिरिक्त कि इसके पहले के संस्करणों में एसीटी मॉडल को शुद्ध भाषण उत्पादन मॉडल (भाषण अधिग्रहण सहित) के रूप में डिजाइन किया गया था, मॉडल भाषण धारणा की महत्वपूर्ण मूलभूत घटनाओं, अर्थात [[श्रेणीबद्ध धारणा]] और [[मैकगर्क प्रभाव]] को प्रदर्शित करने में सक्षम है। स्पष्ट धारणा के स्थितियों में, मॉडल यह प्रदर्शित करने में सक्षम है कि स्पष्ट धारणा स्वरों के स्थितियों में प्लोसिव्स के स्थितियों में अधिक शक्तिशाली है (क्रॉगर एट अल। 2009 देखें)। इसके अतिरिक्त मॉडल अधिनियम मैकगर्क प्रभाव को प्रदर्शित करने में सक्षम था, यदि ध्वन्यात्मक मानचित्र के स्तर के न्यूरॉन्स के निषेध का विशिष्ट तंत्र प्रयुक्त किया गया था (क्रॉगर और कन्नमपुझा 2008 देखें)।<ref>Kröger BJ, Kannampuzha J (2008) A neurofunctional model of speech production including aspects of auditory and audio-visual speech perception. ''Proceedings of the International Conference on Audio-Visual Speech Processing 2008'' (Moreton Island, Queensland, Australia) pp. 83–88</ref>
'''<br /> पी, टी, के/, नासाल /एम, एन/ और पार्श्व /l/ और तीन शब्दांश प्र'''
== यह भी देखें                                                ==
== यह भी देखें                                                ==
{{commons category}}
{{commons category}}
Line 156: Line 154:
== अग्रिम पठन ==
== अग्रिम पठन ==
* [https://www.researchgate.net/profile/Iaroslav_Blagouchine/publication/224080014_Control_of_a_Speech_Robot_via_an_Optimum_Neural-Network-Based_Internal_Model_With_Constraints Iaroslav Blagouchine and Eric Moreau. ''Control of a Speech Robot via an Optimum Neural-Network-Based Internal Model with Constraints.'' IEEE Transactions on Robotics, vol. 26, no. 1, pp. 142—159, February 2010.]
* [https://www.researchgate.net/profile/Iaroslav_Blagouchine/publication/224080014_Control_of_a_Speech_Robot_via_an_Optimum_Neural-Network-Based_Internal_Model_With_Constraints Iaroslav Blagouchine and Eric Moreau. ''Control of a Speech Robot via an Optimum Neural-Network-Based Internal Model with Constraints.'' IEEE Transactions on Robotics, vol. 26, no. 1, pp. 142—159, February 2010.]
[[Category: कम्प्यूटेशनल तंत्रिका विज्ञान]] [[Category: भाषण प्रसंस्करण]]


[[Category: Machine Translated Page]]
[[Category:Commons category link from Wikidata]]
[[Category:Created On 12/05/2023]]
[[Category:Created On 12/05/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Webarchive template wayback links]]
[[Category:कम्प्यूटेशनल तंत्रिका विज्ञान]]
[[Category:भाषण प्रसंस्करण]]

Latest revision as of 15:05, 23 May 2023

न्यूरोकम्प्यूटेशनल भाषण प्रसंस्करण भाषण उत्पादन और भाषण धारणा का कंप्यूटर-सिमुलेशन है, जो भाषण प्रोडक्शन और भाषण अनुभूति की प्राकृतिक न्यूरोनल प्रक्रियाओं का जिक्र करता है, जैसा कि वे मानव तंत्रिका तंत्र (केंद्रीय तंत्रिका तंत्र और परिधीय तंत्रिका तंत्र) में होते हैं। यह विषय तंत्रिका विज्ञान और कम्प्यूटेशनल तंत्रिका विज्ञान पर आधारित है।[1]


निरीक्षण

भाषण प्रसंस्करण के न्यूरोकंप्यूटेशनल मॉडल जटिल हैं। उनमें कम से कम अनुभूति, मोटर प्रणाली और संवेदी प्रणाली सम्मिलित है।

भाषण प्रसंस्करण के न्यूरोकम्प्यूटेशनल मॉडल के संज्ञानात्मक या भाषाई भाग में तंत्रिका सक्रियण या भाषण उत्पादन के पक्ष में ध्वन्यात्मक प्रतिनिधित्व की पीढ़ी सम्मिलित है (उदाहरण के लिए अरडी रूलोफ्स द्वारा विकसित लेवलट मॉडल का न्यूरोकम्प्यूटेशनल और विस्तारित संस्करण:[2] वीवर++[3] साथ ही भाषण धारणा या पढ़ने की समझ के पक्ष में तंत्रिका सक्रियण या प्रयोजन या अर्थ की पीढ़ी है।

भाषण प्रसंस्करण के न्यूरोकम्प्यूटेशनल मॉडल की मोटर प्रणाली भाषण आइटम के ध्वन्यात्मक प्रतिनिधित्व के साथ प्रारंभिक होती है, मोटर योजना को सक्रिय करती है और उस विशेष भाषण आइटम की अभिव्यक्ति के विधि के साथ समाप्त होती है (यह भी देखें: कलात्मक ध्वन्यात्मकता)।

भाषण प्रसंस्करण के न्यूरोकम्प्यूटेशनल मॉडल की संवेदी प्रणाली भाषण आइटम (ध्वनिक ध्वन्यात्मकता) के ध्वनिक संकेत के साथ प्रारंभिक होती है, उस संकेत के लिए श्रव्य ध्वन्यात्मकता उत्पन्न करती है और उस भाषण वस्तु के लिए ध्वन्यात्मक प्रतिनिधित्व सक्रिय करती है।

न्यूरोकंप्यूटेशनल भाषण प्रसंस्करण विषय

न्यूरोकम्प्यूटेशनल भाषण प्रसंस्करण कृत्रिम तंत्रिका नेटवर्क द्वारा भाषण प्रसंस्करण है। न्यूरल मैप्स, मैपिंग और पाथवे, जैसा कि नीचे बताया गया है, मॉडल संरचना हैं, अर्थात कृत्रिम न्यूरल नेटवर्क के अंदर महत्वपूर्ण संरचना हैं।

तंत्रिका मानचित्र

चित्र 1: स्थानीय सक्रियण प्रतिरूप के साथ 2डी न्यूरोनल नक्शा। मैजेंटा: उच्चतम स्तर की सक्रियता वाला न्यूरॉन; नीला: बिना सक्रियता वाले न्यूरॉन्स

कृत्रिम तंत्रिका नेटवर्क को तीन प्रकार के तंत्रिका मानचित्रों में अलग किया जा सकता है, जिन्हें "परतें" भी कहा जाता है:

  1. इनपुट मैप्स (भाषण प्रसंस्करण के स्थितियों में: श्रव्य प्रांतस्था के अंदर प्राथमिक श्रव्य मानचित्र, सोमाटोसेंसरी प्रांतस्था के अंदर प्राथमिक सोमाटोसेंसरी मानचित्र),
  2. आउटपुट मैप्स (प्राथमिक मोटर प्रांतस्था के अंदर प्राथमिक मोटर मैप),
  3. उच्च स्तरीय कॉर्टिकल मानचित्र (जिसे "छिपी हुई परतें" भी कहा जाता है)।

"न्यूरल मैप" शब्द को "न्यूरल लेयर" शब्द के ऊपर पसंद किया गया है, क्योंकि कॉर्टिकल न्यूरल मैप को इंटरकनेक्टेड न्यूरॉन्स के 2डी-मैप के रूप में तैयार किया जाना चाहिए (उदाहरण के लिए स्व-संगठित मानचित्र की तरह; चित्र 1 भी देखें)। इस प्रकार, इस 2डी-नक्शे के अंदर प्रत्येक "मॉडल न्यूरॉन" या "कृत्रिम न्यूरॉन" शारीरिक रूप से कॉर्टिकल कॉलम द्वारा दर्शाया जाता है क्योंकि सेरेब्रल प्रांतस्था शारीरिक रूप से स्तरित संरचना प्रदर्शित करता है।

तंत्रिका प्रतिनिधित्व (तंत्रिका राज्य)

कृत्रिम तंत्रिका नेटवर्क के अंदर तंत्रिका प्रतिनिधित्व विशिष्ट तंत्रिका मानचित्र के अंदर अस्थायी रूप से सक्रिय (तंत्रिका) अवस्था है। प्रत्येक तंत्रिका अवस्था को विशिष्ट तंत्रिका सक्रियण प्रतिरूप द्वारा दर्शाया जाता है। यह सक्रियण प्रतिरूप भाषण प्रसंस्करण के समय बदलता है (उदाहरण के लिए शब्दांश से शब्दांश तक)।

चित्र 2: वितरित सक्रियण प्रतिरूप के साथ 2डी न्यूरोनल मानचित्र। उदाहरण: तंत्रिका स्पेक्ट्रोग्राम (यह श्रव्य तंत्रिका प्रतिनिधित्व सट्टा है; नीचे एसीटी मॉडल देखें)

एसीटी मॉडल में (नीचे देखें), यह माना जाता है कि श्रव्य अवस्था मानचित्र के अंदर "श्रव्य स्पेक्ट्रोग्राम" (चित्र 2 देखें) द्वारा श्रव्य अवस्था का प्रतिनिधित्व किया जा सकता है। यह श्रव्य अवस्था मानचित्र श्रव्य संघ प्रांतस्था (सेरेब्रल प्रांतस्था देखें) में स्थित माना जाता है।

सोमाटोसेंसरी अवस्था को स्पर्शनीय और प्रोप्रियोसेप्टिव अवस्था में विभाजित किया जा सकता है और सोमाटोसेंसरी अवस्था मैप के अंदर विशिष्ट तंत्रिका सक्रियण प्रतिरूप द्वारा दर्शाया जा सकता है। यह अवस्था मानचित्र सोमैटोसेंसरी एसोसिएशन प्रांतस्था में स्थित माना जाता है (सेरेब्रल प्रांतस्था , सोमैटोसेंसरी प्रणाली , सोमैटोसेंसरी प्रांतस्था देखें)।

मोटर योजना अवस्था को मोटर योजना का प्रतिनिधित्व करने के लिए माना जा सकता है, अर्थात विशिष्ट शब्दांश या लंबे भाषण आइटम (जैसे शब्द, लघु वाक्यांश) के लिए भाषण अभिव्यक्ति की योजना बनाना। यह अवस्था मानचित्र प्रीमोटर कोर्टेक्स में स्थित माना जाता है, जबकि प्रत्येक भाषण आर्टिक्यूलेटर का तात्कालिक (या निचला स्तर) सक्रियण प्राथमिक मोटर प्रांतस्था (मोटर प्रांतस्था देखें) के अंदर होता है।

संवेदी और मोटर मानचित्रों में होने वाले तंत्रिका प्रतिनिधित्व (जैसा कि ऊपर प्रस्तुत किया गया है) वितरित प्रतिनिधित्व हैं (हिंटन एट अल। 1968)[4]): संवेदी या मोटर मानचित्र के अंदर प्रत्येक न्यूरॉन कम या ज्यादा सक्रिय होता है, जिससे विशिष्ट सक्रियण प्रतिरूप होता है।

वाक् ध्वनि मानचित्र में होने वाली वाक् इकाइयों के लिए तंत्रिका प्रतिनिधित्व (नीचे देखें: दिवा मॉडल) समयनिष्ठ या स्थानीय प्रतिनिधित्व है। प्रत्येक भाषण आइटम या भाषण इकाई को विशिष्ट न्यूरॉन (मॉडल सेल, नीचे देखें) द्वारा दर्शाया गया है।

न्यूरल मैपिंग (सिनैप्टिक प्रोजेक्शन)

चित्र 3: अधिनियम मॉडल के भाग के रूप में ध्वन्यात्मक मानचित्र ( विशिष्ट ध्वन्यात्मक अवस्था के लिए स्थानीय सक्रियण पैटर्न), मोटर योजना अवस्था मानचित्र (वितरित सक्रियण पैटर्न) और श्रव्य अवस्था मानचित्र (वितरित सक्रियण पैटर्न) के बीच तंत्रिका मानचित्रण। ध्वन्यात्मक मानचित्र के अंदर विजेता न्यूरॉन के साथ केवल तंत्रिका संबंध दिखाए जाते हैं

न्यूरल मैपिंग दो कॉर्टिकल न्यूरल मैप्स को जोड़ती है। न्यूरल मैपिंग (न्यूरल पाथवे के विपरीत) अपने न्यूरल लिंक वेट को समायोजित करके प्रशिक्षण जानकारी संग्रहीत करते हैं (कृत्रिम न्यूरॉन, कृत्रिम तंत्रिका नेटवर्क देखें)। न्यूरल मैपिंग संवेदी या मोटर स्थिति के संवेदी या मोटर अवस्था के वितरित प्रतिनिधित्व (ऊपर देखें) को दूसरे मानचित्र के अंदर समयनिष्ठ या स्थानीय सक्रियण से उत्पन्न करने या सक्रिय करने में सक्षम हैं (उदाहरण के लिए भाषण ध्वनि मानचित्र से मोटर तक सिनैप्टिक प्रक्षेपण देखें) मानचित्र, श्रव्य लक्ष्य क्षेत्र मानचित्र, या दिवा मॉडल में सोमैटोसेंसरी लक्ष्य क्षेत्र मानचित्र, नीचे समझाया गया; या उदाहरण के लिए ध्वन्यात्मक मानचित्र से श्रव्य अवस्था मानचित्र और एसीटी मॉडल में मोटर योजना अवस्था मानचित्र के लिए तंत्रिका मानचित्रण देखें, नीचे समझाया गया है और चित्र 3).

दो न्यूरल मैप्स के बीच न्यूरल मैपिंग कॉम्पैक्ट या घने हैं: न्यूरल मैप के प्रत्येक न्यूरॉन दूसरे न्यूरल मैप के प्रत्येक न्यूरॉन (लगभग) के साथ जुड़े हुए हैं (कई-से-कई-कनेक्शन, कृत्रिम तंत्रिका नेटवर्क देखें)। न्यूरल मैपिंग के लिए इस घनत्व मानदंड के कारण, न्यूरल मैपिंग जो न्यूरल मैपिंग से जुड़े हुए हैं, दूसरे से बहुत दूर नहीं हैं।

तंत्रिका पथ

न्यूरल मैपिंग के विपरीत न्यूरल पाथवे न्यूरल मैप्स को कनेक्ट कर सकते हैं जो बहुत दूर हैं (उदाहरण के लिए विभिन्न कॉर्टिकल लोब में, सेरेब्रल प्रांतस्था देखें)। कार्यात्मक या मॉडलिंग के दृष्टिकोण से, तंत्रिका मार्ग मुख्य रूप से इस जानकारी को संसाधित किए बिना सूचना को अग्रेषित करते हैं। न्यूरल मैपिंग की तुलना में न्यूरल पाथवे को बहुत कम न्यूरल संबंध की आवश्यकता होती है। दोनों न्यूरल मानचित्रों के न्यूरॉन्स के -से- संबंध का उपयोग करके तंत्रिका पथ का मॉडल तैयार किया जा सकता है (स्थलाकृतिक मानचित्रण देखें और सोमैटोटोपिक व्यवस्था देखें)।

उदाहरण: दो न्यूरल मैप्स के स्थितियों में, प्रत्येक में 1,000 मॉडल न्यूरॉन्स होते हैं, न्यूरल मैपिंग के लिए 1,000,000 न्यूरल संबंध (मैनी-टू-मैनी-कनेक्शन) तक की आवश्यकता होती है, जबकि न्यूरल पाथवे संबंध के स्थितियों में केवल 1,000 संबंध की आवश्यकता होती है।

इसके अतिरिक्त , न्यूरल मैपिंग के अंदर संबंध के लिंक वेट को प्रशिक्षण के समय समायोजित किया जाता है, जबकि न्यूरल पाथवे के स्थितियों में न्यूरल संबंध को प्रशिक्षित करने की आवश्यकता नहीं होती है (प्रत्येक संबंध अधिकतम प्रदर्शनी है)।

दिवा मॉडल

भाषण उत्पादन के न्यूरोकम्प्यूटेशनल मॉडलिंग में अग्रणी दृष्टिकोण बोस्टन विश्वविद्यालय में फ्रैंक एच. गींतर और उनके समूह द्वारा विकसित दिवा मॉडल है।[5][6][7][8] मॉडल ध्वन्यात्मक और न्यूरोइमेजिंग डेटा की विस्तृत श्रृंखला के लिए खाता है, किन्तु - प्रत्येक न्यूरोकंप्यूटेशनल मॉडल की तरह - कुछ सीमा तक काल्पनिक रहता है।

मॉडल की संरचना

चित्र 4: दिवा मॉडल का संगठन; यह आंकड़ा गुएन्थर एट अल के बाद अनुकूलन है। 2006

दिवा मॉडल का संगठन या संरचना चित्र 4 में दिखाया गया है।

भाषण ध्वनि नक्शा: प्रारंभिक बिंदु के रूप में ध्वन्यात्मक प्रतिनिधित्व

भाषण ध्वनि नक्शा - ब्रोका के क्षेत्र (बाएं ललाट ऑपेरकुलम) के अवर और पीछे के भाग में स्थित माना जाता है - भाषा-विशिष्ट भाषण इकाइयों (ध्वनियों, अक्षरों, शब्दों, लघु वाक्यांशों) का प्रतिनिधित्व करता है (ध्वन्यात्मक रूप से निर्दिष्ट)। प्रत्येक भाषण इकाई (मुख्य रूप से शब्दांश; उदाहरण के लिए शब्दांश और शब्द हथेली / पाम /, शब्दांश / पीए /, / टा /, / का /, ...) भाषण ध्वनि मानचित्र के अंदर विशिष्ट मॉडल सेल द्वारा प्रस्तुत किया जाता है (अर्थात समयनिष्ठ तंत्रिका प्रतिनिधित्व, ऊपर देखें)। प्रत्येक मॉडल सेल (कृत्रिम न्यूरॉन देखें) न्यूरॉन्स की छोटी जनसंख्या से मेल खाती है जो निकट सीमा पर स्थित हैं और जो साथ आग लगाते हैं।

फीडफॉरवर्ड नियंत्रण: मोटर अभ्यावेदन को सक्रिय करना

भाषण साउंड मैप के अंदर प्रत्येक न्यूरॉन (मॉडल सेल, कृत्रिम न्यूरॉन) को सक्रिय किया जा सकता है और बाद में मोटर मैप की ओर फॉरवर्ड मोटर आदेश को सक्रिय करता है, जिसे आर्टिकुलेटरी वेलोसिटी और पोजिशन मैप कहा जाता है। उस मोटर मैप के स्तर पर सक्रिय तंत्रिका प्रतिनिधित्व भाषण इकाई की अभिव्यक्ति को निर्धारित करता है, अर्थात उस भाषण इकाई के उत्पादन के लिए समय अंतराल के समय सभी आर्टिकुलेटर्स (होंठ, जीभ, वेलम, ग्लोटिस) को नियंत्रित करता है। फॉरवर्ड नियंत्रण में सेरिबैलम जैसी सबकोर्टिकल संरचनाएं भी सम्मिलित होती हैं, जिन्हें यहां विस्तार से नहीं बताया गया है।

वाक् इकाई उन वाक् मदों की मात्रा का प्रतिनिधित्व करती है जिन्हें ही ध्वन्यात्मक श्रेणी में निर्दिष्ट किया जा सकता है। इस प्रकार, प्रत्येक भाषण इकाई को भाषण ध्वनि मानचित्र के अंदर विशिष्ट न्यूरॉन द्वारा दर्शाया जाता है, जबकि भाषण इकाई की प्राप्ति कुछ कलात्मक और ध्वनिक परिवर्तनशीलता प्रदर्शित कर सकती है। यह ध्वन्यात्मक परिवर्तनशीलता दिवा मॉडल में संवेदी लक्ष्य क्षेत्रों को परिभाषित करने की प्रेरणा है (देखें गुएन्थर एट अल। 1998)।[9]


कलात्मक मॉडल: सोमैटोसेंसरी और श्रव्य प्रतिक्रिया जानकारी उत्पन्न करना

मोटर मैप के अंदर सक्रियण प्रतिरूप भाषण आइटम के लिए सभी मॉडल आर्टिकुलेटर्स (होंठ, जीभ, वेलम, ग्लोटिस) के आंदोलन प्रतिरूप को निर्धारित करता है। मॉडल को ओवरलोड न करने के लिए, न्यूरोमस्क्यूलर संधि का कोई विस्तृत मॉडलिंग नहीं किया जाता है। कलात्मक संश्लेषण का उपयोग आर्टिक्यूलेटर मूवमेंट उत्पन्न करने के लिए किया जाता है, जो समय-भिन्न वोकल ट्रैक्ट की पीढ़ी और प्रत्येक विशेष भाषण आइटम के लिए ध्वनिक ध्वन्यात्मकता की पीढ़ी की अनुमति देता है।

कृत्रिम होशियारी के संदर्भ में आर्टिकुलेटरी मॉडल को प्लांट कहा जा सकता है (अर्थात प्रणाली जिसे मस्तिष्क द्वारा नियंत्रित किया जाता है); यह न्यूरोनल भाषण प्रसंस्करण प्रणाली के सन्निहित अनुभूति के भाग का प्रतिनिधित्व करता है। कलात्मक मॉडल संवेदी प्रणाली उत्पन्न करता है जो दिवा मॉडल के लिए प्रतिक्रिया जानकारी उत्पन्न करने का आधार है (नीचे देखें: प्रतिक्रिया नियंत्रण)।

प्रतिक्रिया नियंत्रण: संवेदी लक्ष्य क्षेत्र, अवस्था मानचित्र और त्रुटि मानचित्र

तरफ कलात्मक मॉडल संवेदी प्रणाली उत्पन्न करता है, अर्थात प्रत्येक भाषण इकाई के लिए श्रव्य स्थिति जो श्रव्य अवस्था मानचित्र (वितरित प्रतिनिधित्व) के अंदर न्यूरल रूप से प्रतिनिधित्व करती है, और प्रत्येक भाषण इकाई के लिए सोमैटोसेंसरी अवस्था जो सोमैटोसेंसरी अवस्था मानचित्र के अंदर तंत्रिका रूप से प्रतिनिधित्व करती है (वितरित प्रतिनिधित्व भी)। श्रव्य अवस्था मानचित्र को लौकिक प्रांतस्था में स्थित माना जाता है जबकि सोमाटोसेंसरी अवस्था मानचित्र को पार्श्विका प्रांतस्था में स्थित माना जाता है।

दूसरी ओर, भाषण ध्वनि मानचित्र, यदि विशिष्ट भाषण इकाई (एकल न्यूरॉन सक्रियण; समयनिष्ठ सक्रियण) के लिए सक्रिय किया जाता है, तो भाषण ध्वनि मानचित्र और श्रव्य लक्ष्य क्षेत्र मानचित्र और भाषण ध्वनि मानचित्र और सोमाटोसेंसरी लक्ष्य क्षेत्र के बीच सिनैप्टिक अनुमानों द्वारा संवेदी जानकारी को सक्रिय करता है। नक्शा श्रव्य और सोमाटोसेंसरी लक्ष्य क्षेत्रों को श्रव्य प्रांतस्था में स्थित माना जाता है। उच्च-क्रम श्रव्य कॉर्टिकल क्षेत्र और सोमाटोसेंसरी प्रांतस्था में उच्च-क्रम सोमाटोसेंसरी कॉर्टिकल क्षेत्र क्रमशः ये लक्ष्य क्षेत्र संवेदी सक्रियण प्रतिरूप - जो प्रत्येक भाषण इकाई के लिए उपस्थित हैं - भाषा अधिग्रहण के समय सीखे जाते हैं (नकली प्रशिक्षण द्वारा; नीचे देखें: सीखना)।

परिणाम स्वरुप दो प्रकार की संवेदी जानकारी उपलब्ध होती है यदि भाषण इकाई भाषण ध्वनि मानचित्र के स्तर पर सक्रिय होती है: (i) सीखा संवेदी लक्ष्य क्षेत्र (अर्थात भाषण इकाई के लिए संवेदी अवस्था का इरादा) और (ii) संवेदी अवस्था सक्रियण प्रतिरूप जिसके परिणामस्वरूप विशिष्ट भाषण इकाई (अर्थात वर्तमान संवेदी अवस्था, जो उस विशेष भाषण इकाई के वर्तमान उत्पादन और अभिव्यक्ति को दर्शाती है) के संभावित रूप से अपूर्ण निष्पादन (अभिव्यक्ति) से दोनों प्रकार की संवेदी सूचनाओं को संवेदी त्रुटि मानचित्रों में प्रक्षेपित किया जाता है, अर्थात श्रव्य त्रुटि मानचित्र को जिसे टेम्पोरल कोर्टेक्स (जैसे श्रव्य अवस्था मानचित्र) में स्थित माना जाता है और सोमाटोसेंसरी त्रुटि मानचित्र को पार्श्विका में स्थित माना जाता है। प्रांतस्था (सोमैटोसेंसरी अवस्था मैप की तरह) (चित्र 4 देखें)।

यदि वर्तमान संवेदी स्थिति अभीष्ट संवेदी स्थिति से विचलित होती है, तो दोनों त्रुटि मानचित्र प्रतिक्रिया आदेश उत्पन्न कर रहे हैं जो मोटर मानचित्र की ओर प्रक्षेपित होते हैं और जो मोटर सक्रियण प्रतिरूप को ठीक करने में सक्षम होते हैं और बाद में उत्पादन के अनुसार भाषण इकाई की अभिव्यक्ति होती है। इस प्रकार, कुल मिलाकर, मोटर मैप का सक्रियण प्रतिरूप न केवल भाषण इकाई के लिए सीखे गए विशिष्ट फीडफॉर्वर्ड आदेश से प्रभावित होता है (और भाषण ध्वनि मानचित्र से सिनैप्टिक प्रक्षेपण द्वारा उत्पन्न होता है) किंतु इसके स्तर पर उत्पन्न फीडबैक आदेश द्वारा भी प्रभावित होता है। संवेदी त्रुटि मानचित्र (चित्र 4 देखें)।

सीखना (मॉडलिंग भाषण अधिग्रहण)

जबकि भाषण प्रसंस्करण के न्यूरोसाइंटिफिक मॉडल की संरचना (दिवा मॉडल के लिए चित्र 4 में दी गई) मुख्य रूप से विकास द्वारा निर्धारित की जाती है, (भाषा-विशिष्ट) ज्ञान के साथ-साथ (भाषा-विशिष्ट) बोलने के कौशल के समय सीखा और प्रशिक्षित किया जाता है। भाषा अधिग्रहण दिवा मॉडल के स्थितियों में यह माना जाता है कि नवजात शिशु के पास पहले से संरचित (भाषा-विशिष्ट) भाषण ध्वनि मानचित्र उपलब्ध नहीं है; अर्थात भाषण ध्वनि मानचित्र के अंदर कोई न्यूरॉन किसी भी भाषण इकाई से संबंधित नहीं है। किंतु भाषण ध्वनि मानचित्र के संगठन के साथ-साथ मोटर मानचित्र और संवेदी लक्ष्य क्षेत्र मानचित्रों के अनुमानों के ट्यूनिंग को भाषण अधिग्रहण के समय सीखा या प्रशिक्षित किया जाता है। प्रारंभिक भाषण अधिग्रहण के दो महत्वपूर्ण चरणों को दिवा दृष्टिकोण में प्रतिरूपित किया गया है: बड़बड़ा कर और अनुकरण द्वारा सीखना।

बड़बड़ाना

बड़बड़ाने के समय संवेदी त्रुटि मानचित्रों और मोटर मानचित्रों के बीच अन्तर्ग्रथनी अनुमानों को ट्यून किया जाता है। यह प्रशिक्षण अर्ध-यादृच्छिक फीडफॉरवर्ड आदेश, अर्थात दिवा मॉडल बैबल्स की मात्रा उत्पन्न करके किया जाता है। इनमें से प्रत्येक बबलिंग आदेश आर्टिकुलेटरी आइटम के उत्पादन की ओर जाता है, जिसे पूर्व-भाषाई (अर्थात गैर-भाषा-विशिष्ट) भाषण आइटम के रूप में भी लेबल किया जाता है (अर्थात आर्टिकुलेटरी मॉडल बबलिंग मोटर आदेश के आधार पर आर्टिकुलेटरी मूवमेंट प्रतिरूप उत्पन्न करता है)। इसके बाद, ध्वनिक संकेत उत्पन्न होता है।

कलात्मक और ध्वनिक संकेत के आधार पर, प्रत्येक (पूर्व-भाषाई) भाषण आइटम के लिए संवेदी अवस्था मानचित्र (चित्र 4 देखें) के स्तर पर विशिष्ट श्रव्य और सोमैटोसेंसरी अवस्था प्रतिरूप सक्रिय होता है। इस बिंदु पर दिवा मॉडल में विभिन्न भाषण मदों के लिए संवेदी और संबंधित मोटर सक्रियण प्रतिरूप उपलब्ध है, जो मॉडल को संवेदी त्रुटि मानचित्रों और मोटर मानचित्र के बीच अन्तर्ग्रथनी अनुमानों को ट्यून करने में सक्षम बनाता है। इस प्रकार, बड़बड़ाने के समय दिवा मॉडल फीडबैक आदेश सीखता है (अर्थात विशिष्ट संवेदी इनपुट के लिए उचित (फीडबैक) मोटर आदेश कैसे तैयार करें)।

नकल

नकल के समय दिवा मॉडल अपने भाषण साउंड मैप को व्यवस्थित करता है और भाषण साउंड मैप और मोटर मैप के बीच सिनैप्टिक प्रक्षेपण को ट्यून करता है - अर्थात फॉरवर्ड मोटर आदेश की ट्यूनिंग - साथ ही भाषण साउंड मैप और संवेदी लक्ष्य क्षेत्रों के बीच सिनैप्टिक प्रक्षेपण (चित्र 4 देखें)। . भाषा-विशिष्ट भाषण इकाइयों (जैसे पृथक भाषण ध्वनियाँ, शब्दांश, शब्द, लघु वाक्यांश) की प्राप्ति का प्रतिनिधित्व करने वाले ध्वनिक भाषण संकेतों की मात्रा के लिए मॉडल को उजागर करके नकली प्रशिक्षण किया जाता है।

भाषण ध्वनि मानचित्र और श्रव्य लक्ष्य क्षेत्र मानचित्र के बीच सिनैप्टिक अनुमानों का ट्यूनिंग भाषण ध्वनि मानचित्र के न्यूरॉन को उस भाषण आइटम के ध्वन्यात्मक प्रतिनिधित्व के लिए असाइन करके और उस भाषण आइटम के श्रव्य प्रतिनिधित्व के साथ जोड़कर पूरा किया जाता है, जो सक्रिय होता है। श्रव्य लक्ष्य क्षेत्र मानचित्र पर श्रव्य क्षेत्र (अर्थात भाषण इकाई की श्रव्य परिवर्तनशीलता का विनिर्देश) होता है, क्योंकि विशिष्ट भाषण इकाई (अर्थात विशिष्ट ध्वन्यात्मक प्रतिनिधित्व) को कई (थोड़ा) अलग ध्वनिक (श्रवण) बोध (भाषण मद के बीच अंतर के लिए) द्वारा अनुभूत किया जा सकता है और भाषण यूनिट ऊपर देखें: फीडफॉरवर्ड नियंत्रण )।

भाषण साउंड मैप और मोटर मैप (अर्थात फॉरवर्ड मोटर आदेश की ट्यूनिंग) के बीच सिनैप्टिक प्रक्षेपण की ट्यूनिंग फीडबैक आदेश की सहायता से पूरी की जाती है, क्योंकि सेंसरी एरर मैप और मोटर मैप के बीच अनुमान पहले से ही बबलिंग ट्रेनिंग के समय ट्यून किए गए थे (ऊपर देखें) . इस प्रकार दिवा मॉडल उचित फीडफॉरवर्ड मोटर आदेश खोजने का प्रयास करके श्रव्य भाषण वस्तु की नकल करने की प्रयाश करता है। इसके बाद, मॉडल उस भाषण आइटम के लिए पहले से सीखे गए श्रव्य लक्ष्य क्षेत्र (इच्छित संवेदी अवस्था) के साथ परिणामी संवेदी आउटपुट (उस प्रयास की अभिव्यक्ति के बाद वर्तमान संवेदी स्थिति) की तुलना करता है। फिर मॉडल श्रव्य प्रतिक्रिया प्रणाली के श्रव्य त्रुटि मानचित्र से उत्पन्न वर्तमान फीडबैक मोटर आदेश द्वारा वर्तमान फीडफॉरवर्ड मोटर आदेश को अपडेट करता है। इस प्रक्रिया को कई बार दोहराया जा सकता है (कई प्रयास)। दिवा मॉडल प्रयाश करने के प्रयास से वर्तमान और इच्छित श्रव्य स्थिति के बीच घटते श्रव्य अंतर के साथ वाक् वस्तु का उत्पादन करने में सक्षम है।

नकल के समय दिवा मॉडल भाषण साउंड मैप से सोमाटोसेंसरी टारगेट रीजन मैप में सिनैप्टिक प्रक्षेपण को ट्यून करने में भी सक्षम है, क्योंकि प्रत्येक नया नकली प्रयास भाषण आइटम का नया आर्टिक्यूलेशन उत्पन्न करता है और इस तरह सोमातोसेंसोरी अवस्था प्रतिरूप उत्पन्न करता है जो ध्वन्यात्मक प्रतिनिधित्व से जुड़ा होता है। उस भाषण मद की है।

अस्तव्यस्तता प्रयोग

एफ 1 का वास्तविक समय अस्तव्यस्तता : श्रव्य प्रतिक्रिया का प्रभाव

जबकि भाषण अधिग्रहण के समय श्रव्य प्रतिक्रिया सबसे महत्वपूर्ण है, यदि मॉडल ने प्रत्येक भाषण इकाई के लिए उचित फीडफॉर्वर्ड मोटर आदेश सीखा है तो इसे कम सक्रिय किया जा सकता है। किन्तु यह दिखाया गया है कि श्रव्य अस्तव्यस्तता के स्थितियों में श्रव्य प्रतिक्रिया को दृढ़ता से सह-सक्रिय करने की आवश्यकता है (उदाहरण के लिए फॉर्मेंट आवृत्ति को स्थानांतरित करना टूरविल एट अल। 2005)।[10] यह दृश्य अस्तव्यस्तता के समय आंदोलनों तक पहुंचने पर दृश्य प्रतिक्रिया के शक्तिशाली प्रभाव के समान है (उदाहरण के लिए प्रिज्म (ऑप्टिक्स) के माध्यम से देखने के द्वारा वस्तुओं के स्थान को स्थानांतरित करना)।

जबड़े का अप्रत्याशित अवरोधन: सोमैटोसेंसरी फीडबैक का प्रभाव

श्रव्य प्रतिक्रिया के तुलनीय विधि से, सोमाटोसेंसरी प्रतिक्रिया भी भाषण उत्पादन के समय दृढ़ता से सह-सक्रिय हो सकती है, उदा। जबड़े के अचानक अवरुद्ध होने के स्थितियों में (टूरविल एट अल. 2005) है ।

अधिनियम मॉडल

भाषण प्रसंस्करण के न्यूरोकंप्यूटेशनल मॉडलिंग में और दृष्टिकोण बर्न्ड जे. क्रॉगर और उनके समूह द्वारा विकसित एसीटी मॉडल है।[11] आरडब्ल्यूटीएच आचेन विश्वविद्यालय, जर्मनी में (क्रोगर एट अल। 2014,[12] क्रॉगर एट अल 2009,[13] क्रॉगर एट अल 2011[14]). अधिनियम मॉडल बड़े भाग में दिवा मॉडल के अनुरूप है। एसीटी मॉडल मोटर लक्ष्य रिपॉजिटरी पर केंद्रित है (अर्थात मोटर कौशल के लिए दीर्घकालिक स्मृति, मानसिक पाठ्यक्रम की तुलना में, लेवलट और व्हील्डन 1994 देखें[15]), जिसे दिवा मॉडल में विस्तार से नहीं बताया गया है। इसके अतिरिक्त , एसीटी मॉडल स्पष्ट रूप से मोटर लक्ष्य के स्तर का परिचय देता है, अर्थात भाषण वस्तुओं के उत्पादन के लिए उच्च स्तरीय मोटर विवरण (मोटर लक्ष्य, मोटर प्रांतस्था देखें)। एसीटी मॉडल - किसी भी न्यूरोकंप्यूटेशनल मॉडल की तरह - कुछ सीमा तक काल्पनिक बना हुआ है।

संरचना

चित्र 5: एसीटी मॉडल का संगठन

एसीटी मॉडल का संगठन या संरचना चित्र 5 में दिया गया है।

भाषण उत्पादन के लिए, एसीटी मॉडल भाषण आइटम (ध्वन्यात्मक मानचित्र) के ध्वन्यात्मक के सक्रियण के साथ प्रारंभिक होता है। लगातार शब्दांश के स्थितियों में, ध्वन्यात्मकता के स्तर पर सह-सक्रियण होता है, जिससे संवेदी प्रणाली के स्तर पर और मोटर प्रणाली के सह-सक्रियण के लिए संवेदी तंत्र के स्तर पर और सह-सक्रियण होता है। मोटर योजना मानचित्र का स्तर दुर्लभ शब्दांश के स्थितियों में, मोटर लक्ष्य के लिए प्रयास उस भाषण आइटम के लिए मोटर योजना मॉड्यूल द्वारा ध्वन्यात्मक मानचित्र के माध्यम से ध्वन्यात्मक समान भाषण वस्तुओं के लिए मोटर योजनाओं को सक्रिय करके उत्पन्न किया जाता है (क्रॉगर एट अल देखें। 2011)[16]). मोटर लक्ष्य या वोकल ट्रैक्ट एक्शन स्कोर में अस्थायी रूप से ओवरलैपिंग वोकल ट्रैक्ट एक्शन सम्मिलित होते हैं, जिन्हें प्रोग्राम किया जाता है और बाद में मोटर कार्यक्रम मोटर प्रोग्रामिंग, निष्पादन और नियंत्रण मॉड्यूल द्वारा निष्पादित किया जाता है। (इच्छित) मोटर योजना के सही निष्पादन को नियंत्रित करने के लिए इस मॉड्यूल को रीयल-टाइम सोमैटोसेंसरी फीडबैक जानकारी मिलती है। मोटर प्रोग्रामिंग प्राथमिक मोटर प्रांतस्था के स्तर पर सक्रियण प्रतिरूप की ओर ले जाती है और बाद में न्यूरोमस्कुलर जंक्शन को सक्रिय करती है। मोटोनूरॉन स्नायु उत्पन्न करते हैं और बाद में सभी आर्टिकुलेटरी ध्वन्यात्मक (होंठ, जीभ, वेलम, ग्लोटिस) के आंदोलन प्रतिरूप ध्वनिक ध्वन्यात्मकता उत्पन्न करने के लिए कलात्मक संश्लेषण का उपयोग किया जाता है।

कलात्मक ध्वन्यात्मकता और ध्वनिक ध्वन्यात्मक प्रतिक्रिया संकेतों का उपयोग संवेदी प्रीप्रसंस्करण मॉड्यूल के माध्यम से सोमाटोसेंसरी और श्रव्य प्रणाली उत्पन्न करने के लिए किया जाता है, जिसे श्रव्य और सोमैटोसेंसरी मानचित्र की ओर अग्रेषित किया जाता है। संवेदी-ध्वन्यात्मक प्रसंस्करण मॉड्यूल के स्तर पर, श्रव्य और सोमाटोसेंसरी जानकारी को अल्पकालिक स्मृति में संग्रहीत किया जाता है और बाहरी संवेदी संकेत (ES, चित्र 5, जो संवेदी प्रतिक्रिया पाश के माध्यम से सक्रिय होते हैं) की तुलना पहले से ही प्रशिक्षित की जा सकती है। संवेदी संकेत (TS, चित्र 5, जो ध्वन्यात्मक मानचित्र के माध्यम से सक्रिय होते हैं)। श्रव्य और सोमाटोसेंसरी त्रुटि संकेत उत्पन्न हो सकते हैं यदि बाहरी और इच्छित (प्रशिक्षित) संवेदी संकेत स्पष्ट रूप से भिन्न हैं (cf. दिवा मॉडल)।

चित्र 5 में हल्का हरा क्षेत्र उन तंत्रिका मानचित्रों और प्रसंस्करण मॉड्यूल को इंगित करता है, जो शब्दांश को पूरी इकाई के रूप में संसाधित करते हैं (विशिष्ट प्रसंस्करण समय विंडो लगभग 100 एमएस और अधिक)। इस प्रसंस्करण में ध्वन्यात्मक मानचित्र और संवेदी-ध्वन्यात्मक प्रसंस्करण मॉड्यूल और सीधे जुड़े मोटर योजना अवस्था मानचित्र के अंदर सीधे जुड़े संवेदी अवस्था मानचित्र सम्मिलित हैं, जबकि प्राथमिक मोटर मानचित्र के साथ-साथ (प्राथमिक) श्रव्य और (प्राथमिक) सोमैटोसेंसरी मानचित्र प्रक्रिया छोटी होती है टाइम विंडो (अधिनियम मॉडल में लगभग 10 एमएस)।

चित्र 6: एसीटी मॉडल के तंत्रिका मानचित्रों के लिए मस्तिष्क क्षेत्रों का काल्पनिक स्थान

एसीटी मॉडल के अंदर तंत्रिका मानचित्रों का काल्पनिक मोटर प्रांतस्था चित्र 6 में दिखाया गया है। प्राथमिक मोटर और प्राथमिक संवेदी मानचित्रों के काल्पनिक स्थान मैजेंटा में दिए गए हैं, मोटर योजना अवस्था मानचित्र और संवेदी अवस्था मानचित्रों के काल्पनिक स्थान (संवेदी-ध्वन्यात्मक के अंदर ) प्रसंस्करण मॉड्यूल, दिवा में त्रुटि मानचित्रों की तुलना में) नारंगी रंग में दिया गया है, और दर्पण न्यूरॉन ध्वन्यात्मक मानचित्र के लिए काल्पनिक स्थान लाल रंग में दिए गए हैं। दोहरे तीर न्यूरोनल मैपिंग का संकेत देते हैं। न्यूरल मैपिंग न्यूरल मैप्स को जोड़ती है, जो दूसरे से बहुत दूर नहीं हैं (ऊपर देखें)। ध्वन्यात्मक मानचित्र के दो दर्पण न्यूरॉन स्थान तंत्रिका मार्ग (ऊपर देखें) के माध्यम से जुड़े हुए हैं, जिससे ध्वन्यात्मक मानचित्र के दोनों अहसासों के लिए वर्तमान सक्रियण प्रतिरूप का एक-से- प्रतिबिंब होता है। ध्वन्यात्मक मानचित्र के दो स्थानों के बीच यह तंत्रिका मार्ग पूलिका आर्कुएटस (AF, चित्र 5 और चित्र 6 देखें) का भाग माना जाता है।

भाषण धारणा के लिए, मॉडल बाहरी ध्वनिक संकेत से प्रारंभिक होता है (उदाहरण के लिए बाहरी स्पीकर द्वारा उत्पादित)। यह संकेत पूर्व-संसाधित है, श्रव्य मानचित्र को पार करता है, और श्रवण-ध्वन्यात्मक प्रसंस्करण मॉड्यूल (ES: बाहरी संकेत, चित्र 5 देखें) के स्तर पर प्रत्येक शब्दांश या शब्द के लिए सक्रियण प्रतिरूप की ओर जाता है। द वेंट्रल पाथ ऑफ़ भाषण पर्सेप्शन (देखें हिकोक और पॉपेल 2007[17]) सीधे लेक्सिकल आइटम को सक्रिय करेगा, किन्तु अधिनियम में प्रयुक्त नहीं किया गया है। किंतु एसीटी में ध्वन्यात्मक स्थिति की सक्रियता फोनेमिक मानचित्र के माध्यम से होती है और इस प्रकार उस भाषण वस्तु के लिए मोटर अभ्यावेदन का संयोजन हो सकता है (अर्थात भाषण धारणा का पृष्ठीय मार्ग; ibid।)।

क्रिया संचय

स्व-आयोजन ध्वन्यात्मक मानचित्र। तीन लिंक भार अभ्यावेदन में से प्रत्येक ध्वन्यात्मक मानचित्र के अंदर ही खंड को संदर्भित करता है और इस प्रकार समान 10 × 10 न्यूरॉन्स को संदर्भित करता है

ध्वन्यात्मक नक्शा मोटर योजना अवस्था मानचित्र, संवेदी अवस्था मानचित्र (संवेदी-ध्वन्यात्मक प्रसंस्करण मॉड्यूल के अंदर होने वाला), और ध्वन्यात्मक (राज्य) मानचित्र के साथ क्रिया संचय का निर्माण करता है। ध्वन्यात्मक मानचित्र एसीटी में स्व-संगठित मानचित्र के रूप में प्रयुक्त किया गया है। स्व-संगठित तंत्रिका मानचित्र और विभिन्न भाषण वस्तुओं को इस मानचित्र के अंदर विभिन्न न्यूरॉन्स द्वारा दर्शाया गया है (समयनिष्ठ या स्थानीय प्रतिनिधित्व, ऊपर देखें: तंत्रिका प्रतिनिधित्व)। ध्वन्यात्मक मानचित्र तीन प्रमुख विशेषताओं को प्रदर्शित करता है:

  • फोनेमिक के लिए ध्वन्यात्मक मानचित्र के अंदर से अधिक ध्वन्यात्मकता हो सकती है (चित्र 7 में ध्वन्यात्मक लिंक भार देखें: उदाहरण के लिए शब्दांश / डी: एम / ध्वन्यात्मक मानचित्र के अंदर तीन न्यूरॉन्स द्वारा दर्शाया गया है)
  • फोनेटोपी : ध्वन्यात्मक मानचित्र विभिन्न ध्वन्यात्मकता के संबंध में भाषण वस्तुओं का क्रम प्रदर्शित करता है (चित्र 7 में ध्वन्यात्मक लिंक भार देखें। तीन उदाहरण: (i) शब्दांश /p@/, /t@/, और /k@/ ध्वन्यात्मक मानचित्र के अंदर बाईं ओर ऊपर की ओर क्रम में होते हैं; (ii) शब्दांश-प्रारंभिक प्लोसिव ध्वन्यात्मक मानचित्र के ऊपरी बाएँ भाग में होते हैं जबकि शब्दांश प्रारंभिक फ्रिकेटिव निचले दाहिने आधे भाग में होते हैं; (iii) सीवी शब्दांश और सीवीसी शब्दांश ध्वन्यात्मक मानचित्र के विभिन्न क्षेत्रों में भी होते हैं।)
  • ध्वन्यात्मक मानचित्र हाइपरमोडल या मल्टीमॉडल इंटरेक्शन है: ध्वन्यात्मक मानचित्र के स्तर पर ध्वन्यात्मक आइटम की सक्रियता (i) ध्वन्यात्मक स्थिति (चित्र 7 में ध्वन्यात्मक लिंक भार देखें), (ii) मोटर योजना स्थिति (देखें) चित्र 7 में मोटर प्लान लिंक वज़न), (iii) श्रव्य अवस्था (चित्र 7 में श्रव्य लिंक भार देखें), और (iv) सोमैटोसेंसरी अवस्था (चित्र 7 में नहीं दिखाया गया है)। इन सभी अवस्थाओं को ध्वन्यात्मक मानचित्र के अंदर प्रत्येक न्यूरॉन के बीच सिनैप्टिक लिंक वेट को ट्यून करके भाषण अधिग्रहण के समय सीखा या प्रशिक्षित किया जाता है, जो विशेष ध्वन्यात्मक स्थिति का प्रतिनिधित्व करता है और संबंधित मोटर योजना और संवेदी अवस्था मानचित्रों के अंदर सभी न्यूरॉन्स (चित्र 3 भी देखें)।

ध्वन्यात्मक मानचित्र क्रिया-विशिष्ट धारणा को प्रयुक्त करता है। एसीटी मॉडल के अंदर क्रिया-धारणा-लिंक (चित्र 5 और चित्र 6 भी देखें: ललाट पालि में ध्वन्यात्मक मानचित्र का दोहरा तंत्रिका प्रतिनिधित्व और लौकिक लोब के चौराहे पर और पार्श्विक भाग)।

मोटर योजना

मोटर योजना भाषण वस्तुओं के उत्पादन और अभिव्यक्ति के लिए उच्च स्तरीय मोटर विवरण है (मोटर लक्ष्य, मोटर कौशल, आर्टिकुलेटरी ध्वन्यात्मकता, कलात्मक ध्वनि विज्ञान देखें)। हमारे न्यूरोकम्प्यूटेशनल मॉडल अधिनियम में मोटर प्लान को वोकल ट्रैक्ट एक्शन स्कोर के रूप में परिमाणित किया जाता है। वोकल ट्रैक्ट एक्शन स्कोर मात्रात्मक रूप से वोकल ट्रैक्ट एक्शन (जिसे आर्टिकुलेटरी जेस्चर भी कहा जाता है) की संख्या निर्धारित करते हैं, जिन्हें भाषण आइटम, उनकी प्राप्ति की डिग्री और अवधि, और सभी वोकल ट्रैक्ट क्रियाओं के अस्थायी संगठन का निर्माण करने के लिए सक्रिय करने की आवश्यकता होती है। भाषण आइटम (वोकल ट्रैक्ट एक्शन स्कोर के विस्तृत विवरण के लिए उदाहरण के लिए क्रोगर और बिरखोलज़ 2007 देखें)।[18] प्रत्येक वोकल ट्रैक्ट एक्शन (आर्टिक्यूलेटरी जेस्चर) का विस्तृत अनुभव भाषण आइटम और विशेष रूप से उनके टेम्पोरल ओवरलैप के निर्माण के सभी वोकल ट्रैक्ट एक्शन के अस्थायी संगठन पर निर्भर करता है। इस प्रकार भाषण आइटम के अंदर प्रत्येक वोकल ट्रैक्ट क्रिया का विस्तृत अनुभव हमारे न्यूरोकंप्यूटेशनल मॉडल अधिनियम में मोटर योजना स्तर के नीचे निर्दिष्ट किया गया है (क्रॉगर एट अल। 2011 देखें)।[19]



सेंसरिमोटर और संज्ञानात्मक पहलुओं को एकीकृत करना: एक्शन रिपॉजिटरी और मेंटल लेक्सिकॉन का युग्मन

भाषण प्रसंस्करण के ध्वन्यात्मक या सेंसरिमोटर मॉडल (जैसे दिवा या अधिनियम) की गंभीर समस्या यह है कि भाषण अधिग्रहण के समय ध्वन्यात्मक मानचित्र का विकास मॉडलिंग नहीं किया जाता है। इस समस्या का संभावित समाधान भाषण अधिग्रहण की प्रारंभिक में (यहां तक कि नकली प्रशिक्षण की प्रारंभिक में भी; क्रोगर एट अल देखें 2011 राजपूत जर्नल ऑफ बिहेवियरल रोबोटिक्स) स्पष्ट रूप से ध्वन्यात्मक मानचित्र प्रस्तुत किए बिना एक्शन रिपॉजिटरी और मानसिक शब्दकोष का सीधा युग्मन हो सकता है।

प्रयोग: भाषण अधिग्रहण

सभी न्यूरोसाइंटिफिक या न्यूरोकंप्यूटेशनल दृष्टिकोणों के लिए बहुत ही महत्वपूर्ण उद्देश्य संरचना और ज्ञान को अलग करना है। जबकि मॉडल की संरचना (अर्थात मानव न्यूरोनल नेटवर्क की, जो भाषण प्रसंस्करण के लिए आवश्यक है) मुख्य रूप से विकास द्वारा निर्धारित की जाती है, ज्ञान मुख्य रूप से सीखने की प्रक्रियाओं द्वारा भाषा अधिग्रहण के समय एकत्र किया जाता है। (i) पांच-स्वर प्रणाली /इ, ई, ए, ओ, यू/ (क्रॉगर एट अल। 2009 देखें), (ii) छोटा व्यंजन प्रणाली सीखने के लिए मॉडल अधिनियम के साथ विभिन्न शिक्षण प्रयोग किए गए थे। वॉयस प्लोसिव्स /बी, डी, जी / सीवी सिलेबल्स (उक्त।) के रूप में पहले प्राप्त किए गए सभी पांच स्वरों के संयोजन में, (iii) छोटी मॉडल भाषा जिसमें पांच-स्वर प्रणाली सम्मिलित है, वॉयस और अनवॉइस्ड प्लोसिव्स /बी, डी, जी, पी, टी, के/, नासाल /एम, एन/ और पार्श्व /l/ और तीन शब्दांश प्रकार (वी, सीवी,और सीसीवी ) (क्रॉगर एट अल देखें। 2011)[20] और (iv) 6 साल के बच्चे के लिए मानक जर्मन के 200 सबसे अधिक बार आने वाले शब्दांश (क्रॉगर और अन्य 2011 देखें)।[21] सभी स्थितियों में, विभिन्न ध्वन्यात्मक विशेषताओं के संबंध में ध्वन्यात्मक वस्तुओं का क्रम देखा जा सकता है।

प्रयोगः वाक् बोध

इस तथ्य के अतिरिक्त कि इसके पहले के संस्करणों में एसीटी मॉडल को शुद्ध भाषण उत्पादन मॉडल (भाषण अधिग्रहण सहित) के रूप में डिजाइन किया गया था, मॉडल भाषण धारणा की महत्वपूर्ण मूलभूत घटनाओं, अर्थात श्रेणीबद्ध धारणा और मैकगर्क प्रभाव को प्रदर्शित करने में सक्षम है। स्पष्ट धारणा के स्थितियों में, मॉडल यह प्रदर्शित करने में सक्षम है कि स्पष्ट धारणा स्वरों के स्थितियों में प्लोसिव्स के स्थितियों में अधिक शक्तिशाली है (क्रॉगर एट अल। 2009 देखें)। इसके अतिरिक्त मॉडल अधिनियम मैकगर्क प्रभाव को प्रदर्शित करने में सक्षम था, यदि ध्वन्यात्मक मानचित्र के स्तर के न्यूरॉन्स के निषेध का विशिष्ट तंत्र प्रयुक्त किया गया था (क्रॉगर और कन्नमपुझा 2008 देखें)।[22]

यह भी देखें

संदर्भ

  1. "Towards neurocomputational speech and sound processing". नॉनलाइनियर स्पीच प्रोसेसिंग में प्रगति. Springer. January 2007. pp. 58–77. ISBN 978-3-540-71503-0.
  2. "अरडी रूलोफ्स". Archived from the original on 2012-04-26. Retrieved 2011-12-08.
  3. WEAVER++
  4. Hinton GE, McClelland JL, Rumelhart DE (1968) Distributed representations. In: Rumelhart DE, McClelland JL (eds.). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations (MIT Press, Cambridge, MA)
  5. DIVA model: a model of speech production, focussing on feedback control processes, developed by Frank H. Guenther and his group at Boston University, MA, USA. The term "DIVA" refers to "Directions Into Velocities of Articulators"
  6. Guenther, F.H., Ghosh, S.S., and Tourville, J.A. (2006) pdf Archived 2012-04-15 at the Wayback Machine. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96, pp. 280–301
  7. Guenther FH (2006) Cortical interaction underlying the production of speech sounds. Journal of Communication Disorders 39, 350–365
  8. Guenther, F.H., and Perkell, J.S. (2004) pdf Archived 2012-04-15 at the Wayback Machine. A neural model of speech production and its application to studies of the role of auditory feedback in speech. In: B. Maassen, R. Kent, H. Peters, P. Van Lieshout, and W. Hulstijn (eds.), Speech Motor Control in Normal and Disordered Speech (pp. 29–49). Oxford: Oxford University Press
  9. Guenther, Frank H.; Hampson, Michelle; Johnson, Dave (1998). "भाषण आंदोलनों की योजना के लिए संदर्भ फ़्रेमों की एक सैद्धांतिक जांच।". Psychological Review. 105 (4): 611–633. doi:10.1037/0033-295x.105.4.611-633. PMID 9830375. S2CID 11179837.
  10. Tourville J, Guenther F, Ghosh S, Reilly K, Bohland J, Nieto-Castanon A (2005) Effects of acoustic and articulatory perturbation on cortical activity during speech production. Poster, 11th annual meeting of the Organization of Human Brain Mapping (Toronto, Canada)
  11. ACT model: A model of speech production, perception, and acquisition, developed by Bernd J. Kröger and his group at RWTH Aachen University, Germany. The term "ACT" refers to the term "ACTion"
  12. BJ Kröger, J Kannampuzha, E Kaufmann (2014) pdf Associative learning and self-organization as basic principles for simulating speech acquisition, speech production, and speech perception. EPJ Nonlinear Biomedical Physics 2 (1), 1-28
  13. Kröger BJ, Kannampuzha J, Neuschaefer-Rube C (2009) pdf Towards a neurocomputational model of speech production and perception. Speech Communication 51: 793-809
  14. Kröger, Bernd J.; Birkholz, Peter; Neuschaefer-Rube, Christiane (1 June 2011). "फेस-टू-फेस कम्युनिकेशन में वर्ड प्रोसेसिंग के लिए आर्टिक्यूलेशन-आधारित विकासात्मक रोबोटिक्स दृष्टिकोण की ओर". Paladyn, Journal of Behavioral Robotics. 2 (2): 82–93. doi:10.2478/s13230-011-0016-6. S2CID 10317127.
  15. Levelt, Willem J.M.; Wheeldon, Linda (April 1994). "Do speakers have access to a mental syllabary?". Cognition. 50 (1–3): 239–269. doi:10.1016/0010-0277(94)90030-2. hdl:2066/15533. PMID 8039363. S2CID 7845880.
  16. Kröger BJ, Miller N, Lowit A, Neuschaefer-Rube C. (2011) Defective neural motor speech mappings as a source for apraxia of speech: Evidence from a quantitative neural model of speech processing. In: Lowit A, Kent R (eds.) Assessment of Motor Speech Disorders. (Plural Publishing, San Diego, CA) pp. 325-346
  17. Hickok G, Poeppel D (2007) Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences 4, 131–138
  18. Kröger BJ, Birkholz P (2007) A gesture-based concept for speech movement control in articulatory speech synthesis. In: Esposito A, Faundez-Zanuy M, Keller E, Marinaro M (eds.) Verbal and Nonverbal Communication Behaviours, LNAI 4775 (Springer Verlag, Berlin, Heidelberg) pp. 174-189
  19. Kröger BJ, Birkholz P, Kannampuzha J, Eckers C, Kaufmann E, Neuschaefer-Rube C (2011) Neurobiological interpretation of a quantitative target approximation model for speech actions. In: Kröger BJ, Birkholz P (eds.) Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2011 (TUDpress, Dresden, Germany), pp. 184-194
  20. Kröger BJ, Miller N, Lowit A, Neuschaefer-Rube C. (2011) Defective neural motor speech mappings as a source for apraxia of speech: Evidence from a quantitative neural model of speech processing. In: Lowit A, Kent R (eds.) Assessment of Motor Speech Disorders. (Plural Publishing, San Diego, CA) pp. 325-346
  21. Kröger BJ, Birkholz P, Kannampuzha J, Kaufmann E, Neuschaefer-Rube C (2011) Towards the acquisition of a sensorimotor vocal tract action repository within a neural model of speech processing. In: Esposito A, Vinciarelli A, Vicsi K, Pelachaud C, Nijholt A (eds.) Analysis of Verbal and Nonverbal Communication and Enactment: The Processing Issues. LNCS 6800 (Springer, Berlin), pp. 287-293
  22. Kröger BJ, Kannampuzha J (2008) A neurofunctional model of speech production including aspects of auditory and audio-visual speech perception. Proceedings of the International Conference on Audio-Visual Speech Processing 2008 (Moreton Island, Queensland, Australia) pp. 83–88


अग्रिम पठन