वृत्ताकार झिल्ली कंपन: Difference between revisions

From Vigyanwiki
(Created page with "thumb|right|200px|एक आदर्श गोलाकार [[ ड्रम सिर के कंपन के संभावित...")
 
No edit summary
Line 1: Line 1:
[[Image:Drum vibration mode12.gif|thumb|right|200px|एक आदर्श गोलाकार [[ ड्रम सिर ]] के कंपन के संभावित तरीकों में से एक (मोड <math>u_{12}</math> नीचे नोटेशन के साथ)। अन्य संभावित मोड लेख के नीचे दिखाए गए हैं।]]तनाव के तहत एक द्वि-आयामी [[ध्वनिक झिल्ली]] [[अनुप्रस्थ कंपन]] का समर्थन कर सकती है। एक आदर्श [[ ढोल पर चढ़ा हुआ चमड़ा ]] के गुणों को एक कठोर फ्रेम से जुड़ी एक समान मोटाई की गोलाकार झिल्ली के कंपन द्वारा तैयार किया जा सकता है। प्रतिध्वनि की घटना के कारण, कुछ कंपन [[आवृत्ति]] पर, इसकी [[गुंजयमान आवृत्ति]], झिल्ली कंपन ऊर्जा को संग्रहीत कर सकती है, सतह खड़ी तरंगों के एक विशिष्ट पैटर्न में चलती है। इसे [[सामान्य मोड]] कहा जाता है। एक झिल्ली में इन सामान्य तरीकों की एक अनंत संख्या होती है, जो सबसे कम आवृत्ति से शुरू होती है जिसे [[मौलिक मोड]] कहा जाता है।
[[Image:Drum vibration mode12.gif|thumb|right|200px|एक आदर्श गोलाकार [[ ड्रम सिर ]] के कंपन के संभावित तरीकों में से एक (मोड <math>u_{12}</math> नीचे नोटेशन के साथ)। अन्य संभावित मोड लेख के नीचे दिखाए गए हैं।]]तनाव के तहत एक द्वि-आयामी [[ध्वनिक झिल्ली]] [[अनुप्रस्थ कंपन]] का समर्थन कर सकती है। एक आदर्श [[ ढोल पर चढ़ा हुआ चमड़ा ]] के गुणों को एक कठोर ढांचा से जुड़ी एक समान मोटाई की गोलाकार झिल्ली के कंपन द्वारा तैयार किया जा सकता है। अनुनाद की घटना के कारण, कुछ कंपन [[आवृत्ति]] पर, इसकी [[गुंजयमान आवृत्ति|गुंजयमान आवृत्तियों]] पर, झिल्ली कंपन ऊर्जा को संग्रहीत कर सकती है, सतह खड़ी तरंगों के एक विशिष्ट पैटर्न में चलती है। इसे [[सामान्य मोड]] कहा जाता है। एक झिल्ली में इन सामान्य तरीकों की एक अनंत संख्या होती है, जो सबसे कम आवृत्ति से शुरू होती है जिसे [[मौलिक मोड]] कहा जाता है।


झिल्ली में कंपन करने के असीमित तरीके मौजूद होते हैं, प्रत्येक प्रारंभिक समय में झिल्ली के आकार और उस समय झिल्ली पर प्रत्येक बिंदु के अनुप्रस्थ वेग पर निर्भर करता है। झिल्ली के कंपन द्वि-आयामी [[तरंग समीकरण]] के समाधान द्वारा डिरिचलेट सीमा स्थितियों के साथ दिए जाते हैं जो फ्रेम की बाधा का प्रतिनिधित्व करते हैं। यह दिखाया जा सकता है कि झिल्ली के किसी भी मनमाने ढंग से जटिल कंपन को झिल्ली के सामान्य तरीकों की संभवतः अनंत [[श्रृंखला (गणित)]] में विघटित किया जा सकता है। यह फूरियर श्रृंखला में समय संकेत के अपघटन के समान है।
झिल्ली में कंपन करने के असीमित तरीके मौजूद होते हैं, प्रत्येक प्रारंभिक समय में झिल्ली के आकार और उस समय झिल्ली पर प्रत्येक बिंदु के अनुप्रस्थ वेग पर निर्भर करता है। झिल्ली के कंपन द्वि-आयामी [[तरंग समीकरण]] के समाधान द्वारा डिरिचलेट सीमा स्थितियों के साथ दिए जाते हैं जो फ्रेम की बाधा का प्रतिनिधित्व करते हैं। यह दिखाया जा सकता है कि झिल्ली के किसी भी मनमाने ढंग से जटिल कंपन को झिल्ली के सामान्य तरीकों की संभवतः अनंत [[श्रृंखला (गणित)]] में विघटित किया जा सकता है। यह फूरियर श्रृंखला में समय संकेत के अपघटन के समान है।

Revision as of 11:35, 17 May 2023

एक आदर्श गोलाकार ड्रम सिर के कंपन के संभावित तरीकों में से एक (मोड नीचे नोटेशन के साथ)। अन्य संभावित मोड लेख के नीचे दिखाए गए हैं।

तनाव के तहत एक द्वि-आयामी ध्वनिक झिल्ली अनुप्रस्थ कंपन का समर्थन कर सकती है। एक आदर्श ढोल पर चढ़ा हुआ चमड़ा के गुणों को एक कठोर ढांचा से जुड़ी एक समान मोटाई की गोलाकार झिल्ली के कंपन द्वारा तैयार किया जा सकता है। अनुनाद की घटना के कारण, कुछ कंपन आवृत्ति पर, इसकी गुंजयमान आवृत्तियों पर, झिल्ली कंपन ऊर्जा को संग्रहीत कर सकती है, सतह खड़ी तरंगों के एक विशिष्ट पैटर्न में चलती है। इसे सामान्य मोड कहा जाता है। एक झिल्ली में इन सामान्य तरीकों की एक अनंत संख्या होती है, जो सबसे कम आवृत्ति से शुरू होती है जिसे मौलिक मोड कहा जाता है।

झिल्ली में कंपन करने के असीमित तरीके मौजूद होते हैं, प्रत्येक प्रारंभिक समय में झिल्ली के आकार और उस समय झिल्ली पर प्रत्येक बिंदु के अनुप्रस्थ वेग पर निर्भर करता है। झिल्ली के कंपन द्वि-आयामी तरंग समीकरण के समाधान द्वारा डिरिचलेट सीमा स्थितियों के साथ दिए जाते हैं जो फ्रेम की बाधा का प्रतिनिधित्व करते हैं। यह दिखाया जा सकता है कि झिल्ली के किसी भी मनमाने ढंग से जटिल कंपन को झिल्ली के सामान्य तरीकों की संभवतः अनंत श्रृंखला (गणित) में विघटित किया जा सकता है। यह फूरियर श्रृंखला में समय संकेत के अपघटन के समान है।

ड्रमों पर कंपन के अध्ययन ने गणितज्ञों को एक प्रसिद्ध गणितीय समस्या उत्पन्न करने के लिए प्रेरित किया कि क्या 1992 में द्वि-आयामी सेटिंग में उत्तर दिए जाने के साथ ड्रम के आकार की सुनवाई होती है।

प्रेरणा

वाइब्रेटिंग ड्रम हेड समस्या का विश्लेषण ड्रम और टिंपनो जैसे पर्क्यूशन इंस्ट्रूमेंट्स की व्याख्या करता है। हालाँकि, कान का परदा के काम करने में एक जैविक अनुप्रयोग भी है। एक शैक्षिक दृष्टिकोण से एक द्वि-आयामी वस्तु के मोड मोड, नोड्स, एंटीनोड और यहां तक ​​​​कि क्वांटम संख्याओं के अर्थ को नेत्रहीन रूप से प्रदर्शित करने का एक सुविधाजनक तरीका है। परमाणु की संरचना को समझने के लिए ये अवधारणाएँ महत्वपूर्ण हैं।

समस्या

एक खुली डिस्क पर विचार करें त्रिज्या का मूल पर केंद्रित है, जो अभी भी ड्रम हेड आकार का प्रतिनिधित्व करेगा। किसी भी समय एक बिंदु पर ड्रम हेड आकार की ऊंचाई में स्टिल ड्रम हैड शेप से मापे जाने पर इसे द्वारा निरूपित किया जाएगा जो सकारात्मक और नकारात्मक दोनों मान ले सकता है। होने देना की सीमा (टोपोलॉजी) को निरूपित करें अर्थात् त्रिज्या का वृत्त मूल पर केंद्रित है, जो कठोर फ्रेम का प्रतिनिधित्व करता है जिससे ड्रम हेड जुड़ा हुआ है।

ड्रम हेड के कंपन को नियंत्रित करने वाला गणितीय समीकरण शून्य सीमा स्थितियों के साथ तरंग समीकरण है,

की गोलाकार ज्यामिति के कारण , बेलनाकार निर्देशांक का उपयोग करना सुविधाजनक होगा, फिर, उपरोक्त समीकरणों को इस प्रकार लिखा जाता है

यहाँ, एक सकारात्मक स्थिरांक है, जो गति देता है जिस पर अनुप्रस्थ कंपन तरंगें झिल्ली में फैलती हैं। भौतिक मापदंडों के संदर्भ में, तरंग गति, c, द्वारा दी गई है

कहाँ , झिल्ली सीमा पर परिणामी रेडियल झिल्ली है (), , झिल्ली की मोटाई है, और झिल्ली घनत्व है। यदि झिल्ली में समान तनाव है, तो किसी दिए गए दायरे में समान तनाव बल, लिखा जा सकता है

कहाँ अज़ीमुथल दिशा में परिणामी झिल्ली है।

अक्षीय मामला

हम पहले एक वृत्ताकार ड्रम हेड के कंपन के संभावित तरीकों का अध्ययन करेंगे जो घूर्णी समरूपता हैं। फिर, समारोह कोण पर निर्भर नहीं करता और तरंग समीकरण सरल हो जाता है

हम अलग-अलग चरों में समाधान खोजेंगे, उपरोक्त समीकरण में इसे प्रतिस्थापित करना और दोनों पक्षों को विभाजित करना पैदावार

इस समानता का वाम पक्ष निर्भर नहीं करता है और दाहिनी ओर निर्भर नहीं करता है यह इस प्रकार है कि दोनों पक्षों को किसी स्थिरांक के बराबर होना चाहिए के लिए अलग-अलग समीकरण प्राप्त करते हैं और :

के लिए समीकरण ऐसे समाधान हैं जो तेजी से बढ़ते या घटते हैं के लिए रैखिक या स्थिर हैं और के लिए आवधिक हैं . शारीरिक रूप से यह उम्मीद की जाती है कि कंपन ड्रम हेड की समस्या का समाधान समय पर दोलन होगा, और यह केवल तीसरा मामला छोड़ता है, इसलिए हम चुनते हैं सुविधा के लिए। तब, साइन और कोसाइन कार्यों का एक रैखिक संयोजन है,

के लिए समीकरण की ओर मुड़ना अवलोकन के साथ कि इस दूसरे क्रम के अवकल समीकरण के सभी समाधान कोटि 0 के बेसल फलनों का एक रैखिक संयोजन हैं, क्योंकि यह बेसेल के अवकल समीकरण का एक विशेष मामला है:

बेसेल समारोह के लिए असीमित है जिसके परिणामस्वरूप कंपन ड्रम हेड समस्या का अभौतिक समाधान होता है, इसलिए स्थिर शून्य होना चाहिए। हम भी मानेंगे अन्यथा इस स्थिरांक को बाद में स्थिरांकों में अवशोषित किया जा सकता है और से आ रही यह इस प्रकार है कि

आवश्यकता है कि ऊंचाई ड्रम हेड की सीमा पर शून्य होने से स्थिति उत्पन्न होती है

बेसेल समारोह सकारात्मक जड़ों की अनंत संख्या है,

हमें वह मिल गया के लिए इसलिए

इसलिए, अक्षीय समाधान वाइब्रेटिंग ड्रम हेड की समस्या जिसे अलग-अलग चर में दर्शाया जा सकता है

कहाँ


सामान्य मामला

सामान्य मामला, जब कोण पर भी निर्भर हो सकता है समान व्यवहार किया जाता है। हम अलग-अलग चरों में एक समाधान मानते हैं,

इसे तरंग समीकरण में प्रतिस्थापित करना और चरों को अलग करना, देता है

कहाँ एक स्थिरांक है। पहले की तरह, के लिए समीकरण से यह इस प्रकार है कि साथ और

समीकरण से

हम दोनों पक्षों को से गुणा करके प्राप्त करते हैं और अलग करने वाले चर, वह

और

कुछ स्थिर के लिए तब से आवधिक है, अवधि के साथ एक कोणीय चर होने के नाते, यह उसी का अनुसरण करता है

कहाँ और और कुछ स्थिरांक हैं। इसका तात्पर्य यह भी है के लिए समीकरण पर वापस जा रहे हैं इसका समाधान बेसेल फलनों का एक रैखिक संयोजन है और पिछले अनुभाग के समान तर्क के साथ, हम पहुँचते हैं

कहाँ साथ -वें की सकारात्मक जड़ हमने दिखाया कि कंपन ड्रम हेड समस्या के अलग-अलग चर में सभी समाधान फॉर्म के हैं

के लिए


कई कंपन मोड के एनिमेशन

नीचे अनेक विधाओं को उनकी क्वांटम संख्याओं के साथ दिखाया गया है। हाइड्रोजन परमाणु के अनुरूप तरंग कार्यों के साथ-साथ संबद्ध कोणीय आवृत्तियों को भी दर्शाया गया है . के मान बेसेल फलन के मूल हैं . यह सीमा स्थिति से निकाला जाता है कौन सी पैदावार .



के अधिक मूल्य निम्नलिखित पायथन कोड का उपयोग करके आसानी से गणना की जा सकती है scipy पुस्तकालय:[1] <वाक्यविन्यास लैंग = पायथन लाइन = 1> scipy आयात विशेष से sc के रूप में एम = 0 # बेसेल फ़ंक्शन का क्रम (यानी गोलाकार झिल्ली के लिए कोणीय मोड) nz = 3 # जड़ों की वांछित संख्या alpha_mn = sc.jn_zeros(m, nz) # Jm का NZ शून्य आउटपुट करता है </वाक्यविन्यास हाइलाइट>

यह भी देखें

  • कंपन स्ट्रिंग, एक आयामी मामला
  • कूल पैटर्न, एक संबंधित घटना का प्रारंभिक विवरण, विशेष रूप से संगीत वाद्ययंत्रों के साथ; cymatics भी देखें
  • ड्रम के आकार को सुनना, झिल्ली के आकार के संबंध में विधाओं की विशेषता
  • परमाणु कक्षीय, एक संबंधित क्वांटम-मैकेनिकल और त्रि-आयामी समस्या

संदर्भ

  • H. Asmar, Nakhle (2005). Partial differential equations with Fourier series and boundary value problems. Upper Saddle River, N.J.: Pearson Prentice Hall. p. 198. ISBN 0-13-148096-0.