मोनोड्रोमी प्रमेय: Difference between revisions

From Vigyanwiki
Line 82: Line 82:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/05/2023]]
[[Category:Created On 01/05/2023]]
[[Category:Vigyan Ready]]

Revision as of 19:52, 24 May 2023

एक वक्र के सापेक्ष विश्लेषणात्मक निरंतरता का चित्रण (डिस्क की केवल एक सीमित संख्या दर्शाए जाते हैं)।
प्राकृतिक लघुगणक के वक्र के सापेक्ष विश्लेषणात्मक निरंतरता (लघुगणक का काल्पनिक भाग केवल दर्शाया गया है)।

जटिल विश्लेषण में, मोनोड्रोमी प्रमेय एक जटिल-विश्लेषणात्मक फलन के एक बड़े सेट के विश्लेषणात्मक निरंतरता के बारे में एक महत्वपूर्ण परिणाम देता है। विचार यह है कि एक जटिल-विश्लेषणात्मक फलन को फलन के मूल डोमेन में प्रारंभ होने और बड़े सेट में समाप्त होने वाले वक्रों के सापेक्ष विस्तारित किया जा सकता है। वक्र रणनीति के सापेक्ष इस विश्लेषणात्मक निरंतरता की एक संभावित समस्या यह भी है कि सामान्यतः कई वक्र होते हैं जो बड़े सेट में एक ही बिंदु पर समाप्त होते हैं। मोनोड्रोमी प्रमेय विश्लेषणात्मक निरंतरता के लिए एक निश्चित बिंदु पर समान मूल्य देने के लिए पर्याप्त स्थिति देता हैं, और वहां पहुंचने के लिए उपयोग किए जाने वाले वक्र की उपेक्षा के साथ किया जाता हैं, क्योंकी परिणामी विस्तारित विश्लेषणात्मक फलन अच्छी तरह से परिभाषित और एकल-मूल्यवान हो सकता हैं।

इस प्रमेय को बताने से पहले एक वक्र के सापेक्ष विश्लेषणात्मक निरंतरता को परिभाषित करना और इसके गुणों का अध्ययन करना आवश्यक होता है।

वक्र के सापेक्ष विश्लेषणात्मक निरंतरता

एक वक्र के सापेक्ष विश्लेषणात्मक निरंतरता की परिभाषा थोड़ी तकनीकी होती है, परंतु मूल विचार यह है कि एक बिंदु के चारों ओर परिभाषित एक विश्लेषणात्मक फलन के सापेक्ष प्रारंभ होता है, और उस वक्र को कवर करने वाले छोटे अतिव्यापी डिस्क पर परिभाषित विश्लेषणात्मक फलनों के माध्यम से एक वक्र के सापेक्ष फलन देता है।

ओपचारिक रूप से, एक वक्र पर विचार किया जा सकता हैं माना एक खुली डिस्क में परिभाषित एक विश्लेषणात्मक फलन पर केंद्रित होता है और एक जोड़ी की विश्लेषणात्मक निरंतरता के सापेक्ष में जोड़ियों का संग्रह होता है और के लिए होता है क्योंकी

  • और के प्रति होता हैं
  • प्रत्येक के लिए पर केंद्रित एक खुली डिस्क होती है तथा और एक विश्लेषणात्मक फलन होता है।
  • प्रत्येक के लिए उपस्थित होता हैं तथा ऐसा कि सभी के लिए सापेक्ष के पास होता है जिसका तात्पर्य है कि एक और गैर-खाली प्रतिच्छेदन और फलन हैं एवं और प्रतिच्छेदन से मेल खाता है

एक वक्र के सापेक्ष विश्लेषणात्मक निरंतरता के गुण

एक वक्र के सापेक्ष विश्लेषणात्मक निरंतरता अनिवार्य रूप से अद्वितीय है, इस अर्थ में दो विश्लेषणात्मक निरंतरताएं दी जाती हैं तथा और का सापेक्ष में फलनों और से समान होता है तथा अनौपचारिक रूप से, यह कहता है कि किसी भी दो विश्लेषणात्मक निरंतरता के सापेक्ष में के प्रतिवेश में समान मूल्यों के सापेक्ष समाप्त होता हैं।

यदि वक्र बंद होता है अर्थात, ), की आवश्यकता नहीं है तो समान के प्रतिवेश में होगा, उदाहरण के लिए, यदि कोई एक बिंदु से प्रारंभ करता है तथा के सापेक्ष इस बिंदु के एक प्रतिवेश में परिभाषित जटिल लघुगणक,को देता है और त्रिज्या का चक्र हो मूल पर केंद्रित (से वामावर्त यात्रा की ), प्लस मूल मूल्य पुनः इस वक्र के सापेक्ष एक विश्लेषणात्मक निरंतरता करने से लॉगरिदम के मान के सापेक्ष समाप्त होता है।

मोनोड्रोम प्रमेय

मोनोड्रोमी प्रमेय को धारण करने के लिए निश्चित अंत बिंदु के सापेक्ष समरूपता आवश्यक होती है।

जैसा कि पहले उल्लेख किया गया है, एक ही वक्र के सापेक्ष दो विश्लेषणात्मक निरंतरताएं वक्र के समापन बिंदु पर समान परिणाम देती हैं।यद्यपि, दो भिन्न-भिन्न वक्रों को एक ही बिंदु से बाहर निकलते हुए, उसक्वे चारों ओर एक विश्लेषणात्मक फलन परिभाषित किया जाता है, अंत में पुनः से जुड़ने वाले वक्र के सापेक्ष, यह सामान्य रूप से सच नहीं होता है कि दो वक्रों के सापेक्ष उस फलन की विश्लेषणात्मक निरंतरता समान मूल्य प्राप्त करेगी और उनके सामान्य समापन बिंदु पर समाप्त होगी।

यद्यपि, पिछले खंड की तरह, एक बिंदु के प्रतिवेश में परिभाषित जटिल लघुगणक पर विचार किया जा सकता है और वृत्त मूल और त्रिज्या पर केंद्रित होता है इसलिए यह यात्रा दो तरह से, को वामावर्त, इस वृत्त के ऊपरी अर्ध-तल चाप पर, और दक्षिणावर्त, निचले अर्ध-तल चाप पर संभव होता है ।लघुगणक का मान तथा में दो चापों के सापेक्ष विश्लेषणात्मक निरंतरता भिन्न द्वारा प्राप्त किया जाता हैं।

यद्यपि प्रारंभिक बिंदुओं और अंत बिंदुओं को स्थिर रखते हुए एक वक्र को निरंतर दूसरे में विकृत कर सकता है, और प्रत्येक मध्यवर्ती घटना पर विश्लेषणात्मक निरंतरता संभव होता है,तथा दो वक्रों के सापेक्ष विश्लेषणात्मक निरंतरता समान परिणाम देती हैं, तथा उनका सामान्य समापन बिंदु पर दर्शाए जाते हैं । इसे मोनोड्रोमी प्रमेय कहा जाता है और इसका कथन निम्न सटीक रूप से दिया जाता है।

माना एक बिंदु पर केंद्रित जटिल विमान में एक खुली डिस्क हो और एक जटिल-विश्लेषणात्मक फलन हैं। माना जटिल विमान में एक और बिंदु बनाये गए। यदि वक्रों का परिवार उपस्थित है तो सापेक्ष होता है तथा और सभी के लिए फलनक्रम निरंतर है, और प्रत्येक के लिए की विश्लेषणात्मक निरंतरता करना संभव होता है और सापेक्ष में पुनः की विश्लेषणात्मक निरंतरता सापेक्ष में और पर समान मान Q देता हैं।

मोनोड्रोमी प्रमेय बड़े सेट में बिंदुओं के प्रति फलन के मूल डोमेन में एक बिंदु को जोड़ने वाले वक्र के माध्यम से एक बड़े सेट के लिए एक विश्लेषणात्मक फलन का विस्तार करना संभव बनाता है। नीचे दिए गए प्रमेय में कहा गया है कि इसे मोनोड्रोमी प्रमेय भी कहा जाता है।

माना एक बिंदु पर केंद्रित जटिल विमान में एक खुली डिस्क पर और एक जटिल-विश्लेषणात्मक फलन होता हैं। अगर एक खुला सरलता से जुड़ा हुआ सेट है और इसकी विश्लेषणात्मक निरंतरता करना संभव है तो में निहित किसी भी वक्र को से प्रारंभ होता है और पुनः प्रत्यक्ष विश्लेषणात्मक निरंतरता को स्वीकार करता है और जिसका अर्थ है कि एक जटिल-विश्लेषणात्मक फलन उपस्थित होता है तथा जिस पर प्रतिबंध और होता है।


यह भी देखें

संदर्भ

  • Krantz, Steven G. (1999). Handbook of complex variables. Birkhäuser. ISBN 0-8176-4011-8.
  • Jones, Gareth A.; Singerman, David (1987). Complex functions: an algebraic and geometric viewpoint. Cambridge University Press. ISBN 0-521-31366-X.


बाहरी संबंध