हेल्महोल्ट्ज़ समीकरण: Difference between revisions
(Text) |
|||
Line 37: | Line 37: | ||
कंपन स्ट्रिंग का द्वि-आयामी एनालॉग कंपन झिल्ली है, जिसके किनारों को गतिहीन होने के लिए जकड़ा जाता है। हेल्महोल्ट्ज़ समीकरण को 19वीं शताब्दी में कई बुनियादी आकृतियों के लिए हल किया गया था: 1829 में सिमोन डेनिस पोइसन द्वारा आयताकार झिल्ली, 1852 में गेब्रियल लैम द्वारा समबाहु त्रिभुज, और 1862 में [[ अल्फ्रेड क्लेब्सच |अल्फ्रेड क्लेबश]] द्वारा गोलाकार झिल्ली। अण्डाकार ड्रमहेड का अध्ययन एमिले मैथ्यू द्वारा किया गया था। जिससे मैथ्यू के अवकल समीकरण का नेतृत्व हुआ। | कंपन स्ट्रिंग का द्वि-आयामी एनालॉग कंपन झिल्ली है, जिसके किनारों को गतिहीन होने के लिए जकड़ा जाता है। हेल्महोल्ट्ज़ समीकरण को 19वीं शताब्दी में कई बुनियादी आकृतियों के लिए हल किया गया था: 1829 में सिमोन डेनिस पोइसन द्वारा आयताकार झिल्ली, 1852 में गेब्रियल लैम द्वारा समबाहु त्रिभुज, और 1862 में [[ अल्फ्रेड क्लेब्सच |अल्फ्रेड क्लेबश]] द्वारा गोलाकार झिल्ली। अण्डाकार ड्रमहेड का अध्ययन एमिले मैथ्यू द्वारा किया गया था। जिससे मैथ्यू के अवकल समीकरण का नेतृत्व हुआ। | ||
यदि किसी आकृति के किनारे सीधी रेखा खंड हैं, तो एक समाधान केवल | यदि किसी आकृति के किनारे सीधी रेखा खंड हैं, तो एक समाधान केवल समाकलनीय या बंद रूप में जानने योग्य है, यदि यह समतल तरंगों के परिमित रैखिक संयोजन के रूप में अभिव्यक्त होता है जो सीमा की स्थिति को पूरा करता है (सीमा पर शून्य, यानी, झिल्ली जकड़ी हुई)। | ||
यदि डोमेन त्रिज्या | यदि डोमेन त्रिज्या {{mvar|a}} का एक वृत्त है, तो ध्रुवीय निर्देशांक {{mvar|r}} और {{mvar|θ}} परिचय देना उचित है. हेल्महोल्ट्ज़ समीकरण रूप लेता है | ||
<math display="block">A_{rr} + \frac{1}{r} A_r + \frac{1}{r^2}A_{\theta\theta} + k^2 A = 0.</math> | <math display="block">A_{rr} + \frac{1}{r} A_r + \frac{1}{r^2}A_{\theta\theta} + k^2 A = 0.</math> | ||
हम सीमा | हम सीमा अनुबंध लगा सकते हैं कि {{mvar|A}} अगर लुप्त हो जाता है यदि {{math|1= ''r'' = ''a''}}; इस प्रकार | ||
<math display="block">A(a,\theta) = 0.</math> | <math display="block">A(a,\theta) = 0.</math> | ||
चरों के पृथक्करण की विधि प्रपत्र के परीक्षण समाधान की ओर ले जाती है | चरों के पृथक्करण की विधि प्रपत्र के परीक्षण समाधान की ओर ले जाती है | ||
<math display="block">A(r,\theta) = R(r)\Theta(\theta),</math> | <math display="block">A(r,\theta) = R(r)\Theta(\theta),</math> | ||
कहां {{math|Θ}} अवधि | कहां {{math|Θ}} अवधि {{math|2''π''}} के आवधिक होना चाहिए। इससे यह होता है | ||
<math display="block">\Theta'' +n^2 \Theta =0,</math> | <math display="block">\Theta'' +n^2 \Theta =0,</math> | ||
Line 51: | Line 51: | ||
यह आवधिकता की स्थिति से निम्नानुसार है | यह आवधिकता की स्थिति से निम्नानुसार है | ||
<math display="block"> \Theta = \alpha \cos n\theta + \beta \sin n\theta,</math> | <math display="block"> \Theta = \alpha \cos n\theta + \beta \sin n\theta,</math> | ||
और कि {{mvar|n}} पूर्णांक होना चाहिए। रेडियल घटक {{mvar|R}} रूप है | और कि {{mvar|n}} पूर्णांक होना चाहिए। रेडियल घटक {{mvar|R}} का रूप है | ||
<math display="block"> R(r) = \gamma J_n(\rho), </math> | <math display="block"> R(r) = \gamma J_n(\rho), </math> | ||
जहां बेसेल | जहां बेसेल फलन {{math|''J<sub>n</sub>''(''ρ'')}} बेसेल के समीकरण को संतुष्ट करता है | ||
<math display="block"> \rho^2 J_n'' + \rho J_n' +(\rho^2 - n^2)J_n =0, </math> | <math display="block"> \rho^2 J_n'' + \rho J_n' +(\rho^2 - n^2)J_n =0, </math> | ||
और {{math|1= ''ρ'' = ''kr''}} | और {{math|1= ''ρ'' = ''kr''}}। रेडियल फलन {{math|''J<sub>n</sub>''}} में {{mvar|n}} के प्रत्येक मान के लिए अपरिमित रूप से अनेक मूल होते हैं, जिन्हें {{math|''ρ''<sub>''m'',''n''</sub>}} द्वारा दर्शाया गया है। सीमा अनुबंध है कि {{mvar|A}} लुप्त हो जाता है जहां {{math|1= ''r'' = ''a''}} संतुष्ट हो जाएगा यदि संबंधित तरंगों को दिया जाता है | ||
<math display="block">k_{m,n} = \frac{1}{a} \rho_{m,n}.</math> | <math display="block">k_{m,n} = \frac{1}{a} \rho_{m,n}.</math> | ||
सामान्य समाधान {{mvar|A}} | सामान्य समाधान {{mvar|A}} तब {{math|''J<sub>n</sub>''(''k<sub>m,n</sub>r'')}} और {{math|''nθ''}} की ज्या (या कोसाइन) के फिर उत्पादों को शामिल करने वाली अनुबंधों की [[सामान्यीकृत फूरियर श्रृंखला]] का रूप लेता है। ये समाधान एक वृत्ताकार ड्रमहेड के कंपन के तरीके हैं। | ||
=== त्रि-आयामी समाधान === | === त्रि-आयामी समाधान === | ||
Line 64: | Line 64: | ||
<math display="block"> A (r, \theta, \varphi)= \sum_{\ell=0}^\infty \sum_{m=-\ell}^\ell \left( a_{\ell m} j_\ell ( k r ) + b_{\ell m} y_\ell(kr) \right) Y^m_\ell (\theta,\varphi) .</math> | <math display="block"> A (r, \theta, \varphi)= \sum_{\ell=0}^\infty \sum_{m=-\ell}^\ell \left( a_{\ell m} j_\ell ( k r ) + b_{\ell m} y_\ell(kr) \right) Y^m_\ell (\theta,\varphi) .</math> | ||
यह समाधान तरंग समीकरण और प्रसार समीकरण के स्थानिक समाधान से उत्पन्न होता | यह समाधान तरंग समीकरण और प्रसार समीकरण के स्थानिक समाधान से उत्पन्न होता है यहां {{math| ''j<sub>ℓ</sub>''(''kr'')}} और {{math|''y<sub>ℓ</sub>''(''kr'')}} गोलाकार बेसेल फलन हैं, और {{math|''Y''{{su|p=''m''|b=''ℓ''}}(''θ'', ''φ'')}} [[ गोलाकार हार्मोनिक्स |गोलाकार हार्मोनिक्स]] हैं (अब्रामोविट्ज़ और स्टेगुन, 1964)। ध्यान दें कि ये प्रपत्र सामान्य समाधान हैं, और किसी विशिष्ट स्थिति में उपयोग करने के लिए सीमा अनुबंधों को निर्दिष्ट करने की आवश्यकता होती है। अनंत बाहरी डोमेन के लिए, [[ विकिरण की स्थिति |विकिरण की स्थिति]] भी आवश्यक हो सकती है (सोमरफेल्ड, 1949)। | ||
लेखन {{math|1= '''r'''<sub>0</sub> = (''x'', ''y'', ''z'')}} फलन {{math|''A''(''r''<sub>0</sub>)}} स्पर्शोन्मुखता है | |||
<math display="block">A(r_0)=\frac{e^{i k r_0}}{r_0} f\left(\frac{\mathbf{r}_0}{r_0},k,u_0\right) + o\left(\frac 1 {r_0}\right)\text{ as } r_0\to\infty</math> | <math display="block">A(r_0)=\frac{e^{i k r_0}}{r_0} f\left(\frac{\mathbf{r}_0}{r_0},k,u_0\right) + o\left(\frac 1 {r_0}\right)\text{ as } r_0\to\infty</math> | ||
जहां | जहां फलन {{mvar|f}} प्रकीर्णन आयाम कहा जाता है और {{math|''u''<sub>0</sub>(''r''<sub>0</sub>)}} प्रत्येक सीमा बिंदु {{math|''r''<sub>0</sub>}} पर {{mvar|A}} का मान है। | ||
== पैराएक्सियल सन्निकटन == | == पैराएक्सियल सन्निकटन == | ||
<!-- This section is linked from [[Gaussian beam]] --> | <!-- This section is linked from [[Gaussian beam]] --> | ||
{{Further| | {{Further|मंदता परिवर्ती आवरण सन्निकटन}} | ||
हेल्महोल्ट्ज़ समीकरण के | |||
हेल्महोल्ट्ज़ समीकरण के उपाक्षीय सन्निकटन में,<ref>{{cite book |title=फूरियर ऑप्टिक्स का परिचय|edition=2nd |author=J. W. Goodman |pages=61–62 }}</ref> [[ जटिल आयाम | जटिल आयाम]] {{mvar|A}} रूप में अभिव्यक्त किया जाता है | |||
<math display="block">A(\mathbf{r}) = u(\mathbf{r}) e^{ikz} </math> | <math display="block">A(\mathbf{r}) = u(\mathbf{r}) e^{ikz} </math> | ||
जहाँ {{mvar|u}} जटिल-मूल्यवान आयाम का प्रतिनिधित्व करता है जो घातीय कारक द्वारा दर्शाए गए ज्यावक्रीय समतल तरंग को नियंत्रित करता है। फिर एक उपयुक्त धारणा के तहत, {{mvar|u}} लगभग हल करता है | |||
<math display="block">\nabla_{\perp}^2 u + 2ik\frac{\partial u}{\partial z} = 0,</math> | <math display="block">\nabla_{\perp}^2 u + 2ik\frac{\partial u}{\partial z} = 0,</math> | ||
जहाँ <math display="inline">\nabla_\perp^2 \overset{\text{ def }}{=} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}</math> लाप्लास संकारक का अनुप्रस्थ भाग है। | |||
[[ प्रकाशिकी ]] के विज्ञान में इस समीकरण के महत्वपूर्ण अनुप्रयोग हैं, जहाँ यह ऐसे समाधान प्रदान करता है जो [[ परवलय ]] तरंगों या गाऊसी बीम के रूप में विद्युत चुम्बकीय तरंगों (प्रकाश) के प्रसार का वर्णन करता है। अधिकांश [[ लेज़र ]] ऐसे बीम उत्सर्जित करते हैं जो इस रूप को लेते हैं। | [[ प्रकाशिकी |प्रकाशिकी]] के विज्ञान में इस समीकरण के महत्वपूर्ण अनुप्रयोग हैं, जहाँ यह ऐसे समाधान प्रदान करता है जो [[ परवलय |परवलय]] तरंगों या गाऊसी बीम के रूप में विद्युत चुम्बकीय तरंगों (प्रकाश) के प्रसार का वर्णन करता है। अधिकांश[[ लेज़र | लेज़र]] ऐसे बीम उत्सर्जित करते हैं जो इस रूप को लेते हैं। | ||
धारणा जिसके तहत पैराएक्सियल सन्निकटन मान्य है, | धारणा जिसके तहत पैराएक्सियल सन्निकटन मान्य है, आयाम फलन {{mvar|u}} का {{mvar|z}} व्युत्पन्न {{mvar|z}} का धीरे-धीरे बदलता फलन है : | ||
<math display="block"> \left| \frac{ \partial^2 u }{ \partial z^2 } \right| \ll \left| k \frac{\partial u}{\partial z} \right| .</math> | <math display="block"> \left| \frac{ \partial^2 u }{ \partial z^2 } \right| \ll \left| k \frac{\partial u}{\partial z} \right| .</math> | ||
यह स्थिति कहने के बराबर है कि | यह स्थिति कहने के बराबर है कि तरंग वेक्टर {{math|'''k'''}} के बीच और ऑप्टिकल अक्ष {{mvar|z}} के बीच कोण {{mvar|θ}} छोटा है: {{math|''θ'' ≪ 1}}. | ||
हेल्महोल्ट्ज़ समीकरण के | हेल्महोल्ट्ज़ समीकरण के उपाक्षीय रूप को हेल्महोल्ट्ज़ समीकरण के सामान्य रूप में जटिल आयाम के लिए उपर्युक्त अभिव्यक्ति को निम्नानुसार प्रतिस्थापित करके पाया जाता है: | ||
<math display="block">\nabla^{2}(u\left( x,y,z \right) e^{ikz}) + k^2 u\left( x,y,z \right) e^{ikz} = 0.</math> | <math display="block">\nabla^{2}(u\left( x,y,z \right) e^{ikz}) + k^2 u\left( x,y,z \right) e^{ikz} = 0.</math> | ||
Line 93: | Line 94: | ||
<math display="block">\left( \frac {\partial^2}{\partial x^2} + \frac {\partial^2}{\partial y^2} \right) u(x,y,z) e^{ikz} + \left( \frac {\partial^2}{\partial z^2} u (x,y,z) \right) e^{ikz} + 2 \left( \frac \partial {\partial z} u(x,y,z) \right) ik{e^{ikz}}=0.</math> | <math display="block">\left( \frac {\partial^2}{\partial x^2} + \frac {\partial^2}{\partial y^2} \right) u(x,y,z) e^{ikz} + \left( \frac {\partial^2}{\partial z^2} u (x,y,z) \right) e^{ikz} + 2 \left( \frac \partial {\partial z} u(x,y,z) \right) ik{e^{ikz}}=0.</math> | ||
ऊपर बताई गई | ऊपर बताई गई उपाक्षीय असमानता के कारण, {{math|∂<sup>2</sup>''u''/∂''z''<sup>2</sup>}} शब्द {{math|''k''·∂''u''/∂''z''}} पद की तुलना में उपेक्षित है। इससे उपाक्षीय हेल्महोल्ट्ज समीकरण प्राप्त होता है। {{math|1= ''u''('''r''') = ''A''('''r''') ''e''<sup>−''ikz''</sup>}} को प्रतिस्थापित करने पर मूल जटिल आयाम A के लिए पराक्षीय समीकरण देता है:<math display="block">\nabla_{\perp}^2 A + 2ik\frac{\partial A}{\partial z} = 0.</math> | ||
फ़्रेस्नेल विवर्तन समाकल उपाक्षीय हेल्महोल्ट्ज़ समीकरण का एक सटीक समाधान है।<ref>{{Cite journal |doi = 10.1088/0150-536X/13/6/006|title = फ्रेस्नेल प्रसार और विवर्तन और पैराएक्सियल तरंग समीकरण|journal = Journal of Optics|volume = 13|issue = 6|pages = 367–374|year = 1982|last1 = Grella|first1 = R.| bibcode=1982JOpt...13..367G }}</ref> | |||
फ़्रेस्नेल विवर्तन समाकल | |||
== | == विषम हेल्महोल्ट्ज़ समीकरण == | ||
विषम हेल्महोल्ट्ज़ समीकरण समीकरण है | '''विषम हेल्महोल्ट्ज़ समीकरण''' समीकरण है | ||
<math display="block">\nabla^2 A(x) + k^2 A(x) = -f(x) \ \text { in } \R^n,</math> | <math display="block">\nabla^2 A(x) + k^2 A(x) = -f(x) \ \text { in } \R^n,</math> | ||
जहाँ {{math|''ƒ'' : '''R'''<sup>''n''</sup> → '''C'''}} [[ कॉम्पैक्ट समर्थन ]]वाला एक फलन है, और {{math|1= ''n'' = 1, 2, 3.}} यह समीकरण स्क्रीन किए गए पोइसन समीकरण के समान है, और समान होगा यदि धन चिह्न ({{mvar|k}} शब्द के सामने) को ऋणात्मक चिह्न में बदल दिया गया। | |||
इस समीकरण को विशिष्ट रूप से हल करने के लिए, अनंत पर एक सीमा स्थिति निर्दिष्ट करने की आवश्यकता है, जो | इस समीकरण को विशिष्ट रूप से हल करने के लिए, अनंत पर एक सीमा स्थिति निर्दिष्ट करने की आवश्यकता है, जो प्रायः [[सोमरफेल्ड विकिरण स्थिति]] है | ||
<math display="block">\lim_{r \to \infty} r^{\frac{n-1}{2}} \left( \frac{\partial}{\partial r} - ik \right) A( | <math display="block">\lim_{r \to \infty} r^{\frac{n-1}{2}} \left( \frac{\partial}{\partial r} - ik \right) A({x}) = 0</math> | ||
समान रूप से <math>\hat {x}</math> साथ <math>|\hat {x}|=1</math>, जहां लंबवत पट्टियां [[ यूक्लिडियन मानदंड ]] दर्शाती हैं। | '''समान रूप से''' <math>\hat {x}</math> साथ <math>|\hat {x}|=1</math>, जहां लंबवत पट्टियां [[ यूक्लिडियन मानदंड | यूक्लिडियन मानदंड]] दर्शाती हैं। | ||
इस | इस अनुबंध के साथ, अमानवीय हेल्महोल्ट्ज़ समीकरण का हल [[ घुमाव | घुमाव]] है | ||
<math display="block">A(x)=(G*f)(x)=\int_{\R^n}\! G(x-y)f(y)\,\mathrm{d}y</math> | <math display="block">A(x)=(G*f)(x)=\int_{\R^n}\! G(x-y)f(y)\,\mathrm{d}y</math> | ||
(ध्यान दें कि यह इंटीग्रल वास्तव में एक परिमित क्षेत्र पर है, क्योंकि {{mvar|f}} कॉम्पैक्ट समर्थन है)। यहां, {{mvar|G}} इस समीकरण का ग्रीन का कार्य है, अर्थात्, विषम हेल्महोल्ट्ज़ समीकरण का समाधान {{math|''f''}} [[ डिराक डेल्टा समारोह ]] को बराबर करना, इसलिए {{mvar|G}} संतुष्ट | (ध्यान दें कि यह इंटीग्रल वास्तव में एक परिमित क्षेत्र पर है, क्योंकि {{mvar|f}} कॉम्पैक्ट समर्थन है)। यहां, {{mvar|G}} इस समीकरण का ग्रीन का कार्य है, अर्थात्, विषम हेल्महोल्ट्ज़ समीकरण का समाधान {{math|''f''}} [[ डिराक डेल्टा समारोह | डिराक डेल्टा फलन]] को बराबर करना, इसलिए {{mvar|G}} संतुष्ट | ||
<math display="block">\nabla^2 G(x) + k^2 G(x) = -\delta(x) \in \R^n. </math> | <math display="block">\nabla^2 G(x) + k^2 G(x) = -\delta(x) \in \R^n. </math> | ||
Line 123: | Line 124: | ||
के लिए {{math|1= ''n'' = 2}},<ref>ftp://ftp.math.ucla.edu/pub/camreport/cam14-71.pdf</ref> कहां {{math|''H''{{su|p=(1)|b=0}}}} एक बेसेल फलन है # हैंकेल फलन : H.CE.B1, और | के लिए {{math|1= ''n'' = 2}},<ref>ftp://ftp.math.ucla.edu/pub/camreport/cam14-71.pdf</ref> कहां {{math|''H''{{su|p=(1)|b=0}}}} एक बेसेल फलन है # हैंकेल फलन : H.CE.B1, और | ||
<math display="block">G(x) = \frac{e^{ik|x|}}{4\pi |x|}</math> | <math display="block">G(x) = \frac{e^{ik|x|}}{4\pi |x|}</math> | ||
के लिए {{math|1= ''n'' = 3}}. ध्यान दें कि हमने सीमा | के लिए {{math|1= ''n'' = 3}}. ध्यान दें कि हमने सीमा अनुबंध को चुना है जिसके लिए ग्रीन का कार्य एक आउटगोइंग वेव है {{math|{{mabs|''x''}} → ∞}}. | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 13:38, 17 May 2023
गणित में, लाप्लास ऑपरेटर के लिए अभिलक्षणिक मान समस्या को हेल्महोल्ट्ज़ समीकरण के रूप में जाना जाता है। यह रैखिक आंशिक अवकल समीकरण से मेल खाती है
प्रेरणा और उपयोग
हेल्महोल्त्ज़ समीकरण प्रायः अंतरिक्ष और समय दोनों में आंशिक अवकल समीकरणों (पीडीई) से जुड़ी भौतिक समस्याओं के अध्ययन में उत्पन्न होता है। हेल्महोल्त्ज़ समीकरण, जो तरंग समीकरण के एक समय-स्वतंत्र रूप का प्रतिनिधित्व करता है, विश्लेषण की जटिलता को कम करने के लिए चर के पृथक्करण की तकनीक को लागू करने का परिणाम है।
उदाहरण के लिए, तरंग समीकरण पर विचार करें
पहले समीकरण को पुनर्व्यवस्थित करने पर, हम हेल्महोल्ट्ज़ समीकरण प्राप्त करते हैं:
तरंग समीकरण से इसके संबंध के कारण, हेल्महोल्त्ज़ समीकरण भौतिकी के ऐसे क्षेत्रों में समस्याओं में उत्पन्न होता है जैसे विद्युत चुम्बकीय विकिरण, भूकंप विज्ञानऔर ध्वनिकी का अध्ययन।
चरों के पृथक्करण का उपयोग करके हेल्महोल्ट्ज़ समीकरण को हल करना
स्थानिक हेल्महोल्ट्ज़ समीकरण का समाधान:
कंपन झिल्ली
कंपन स्ट्रिंग का द्वि-आयामी एनालॉग कंपन झिल्ली है, जिसके किनारों को गतिहीन होने के लिए जकड़ा जाता है। हेल्महोल्ट्ज़ समीकरण को 19वीं शताब्दी में कई बुनियादी आकृतियों के लिए हल किया गया था: 1829 में सिमोन डेनिस पोइसन द्वारा आयताकार झिल्ली, 1852 में गेब्रियल लैम द्वारा समबाहु त्रिभुज, और 1862 में अल्फ्रेड क्लेबश द्वारा गोलाकार झिल्ली। अण्डाकार ड्रमहेड का अध्ययन एमिले मैथ्यू द्वारा किया गया था। जिससे मैथ्यू के अवकल समीकरण का नेतृत्व हुआ।
यदि किसी आकृति के किनारे सीधी रेखा खंड हैं, तो एक समाधान केवल समाकलनीय या बंद रूप में जानने योग्य है, यदि यह समतल तरंगों के परिमित रैखिक संयोजन के रूप में अभिव्यक्त होता है जो सीमा की स्थिति को पूरा करता है (सीमा पर शून्य, यानी, झिल्ली जकड़ी हुई)।
यदि डोमेन त्रिज्या a का एक वृत्त है, तो ध्रुवीय निर्देशांक r और θ परिचय देना उचित है. हेल्महोल्ट्ज़ समीकरण रूप लेता है
त्रि-आयामी समाधान
गोलाकार निर्देशांक में समाधान है:
ℓ(θ, φ) गोलाकार हार्मोनिक्स हैं (अब्रामोविट्ज़ और स्टेगुन, 1964)। ध्यान दें कि ये प्रपत्र सामान्य समाधान हैं, और किसी विशिष्ट स्थिति में उपयोग करने के लिए सीमा अनुबंधों को निर्दिष्ट करने की आवश्यकता होती है। अनंत बाहरी डोमेन के लिए, विकिरण की स्थिति भी आवश्यक हो सकती है (सोमरफेल्ड, 1949)।
लेखन r0 = (x, y, z) फलन A(r0) स्पर्शोन्मुखता है
पैराएक्सियल सन्निकटन
हेल्महोल्ट्ज़ समीकरण के उपाक्षीय सन्निकटन में,[1] जटिल आयाम A रूप में अभिव्यक्त किया जाता है
प्रकाशिकी के विज्ञान में इस समीकरण के महत्वपूर्ण अनुप्रयोग हैं, जहाँ यह ऐसे समाधान प्रदान करता है जो परवलय तरंगों या गाऊसी बीम के रूप में विद्युत चुम्बकीय तरंगों (प्रकाश) के प्रसार का वर्णन करता है। अधिकांश लेज़र ऐसे बीम उत्सर्जित करते हैं जो इस रूप को लेते हैं।
धारणा जिसके तहत पैराएक्सियल सन्निकटन मान्य है, आयाम फलन u का z व्युत्पन्न z का धीरे-धीरे बदलता फलन है :
हेल्महोल्ट्ज़ समीकरण के उपाक्षीय रूप को हेल्महोल्ट्ज़ समीकरण के सामान्य रूप में जटिल आयाम के लिए उपर्युक्त अभिव्यक्ति को निम्नानुसार प्रतिस्थापित करके पाया जाता है:
फ़्रेस्नेल विवर्तन समाकल उपाक्षीय हेल्महोल्ट्ज़ समीकरण का एक सटीक समाधान है।[2]
विषम हेल्महोल्ट्ज़ समीकरण
विषम हेल्महोल्ट्ज़ समीकरण समीकरण है
इस समीकरण को विशिष्ट रूप से हल करने के लिए, अनंत पर एक सीमा स्थिति निर्दिष्ट करने की आवश्यकता है, जो प्रायः सोमरफेल्ड विकिरण स्थिति है
इस अनुबंध के साथ, अमानवीय हेल्महोल्ट्ज़ समीकरण का हल घुमाव है
0 एक बेसेल फलन है # हैंकेल फलन : H.CE.B1, और
यह भी देखें
- लाप्लास का समीकरण (हेल्महोल्ट्ज़ समीकरण का एक विशेष मामला)
- वीइल विस्तार
टिप्पणियाँ
- ↑ J. W. Goodman. फूरियर ऑप्टिक्स का परिचय (2nd ed.). pp. 61–62.
- ↑ Grella, R. (1982). "फ्रेस्नेल प्रसार और विवर्तन और पैराएक्सियल तरंग समीकरण". Journal of Optics. 13 (6): 367–374. Bibcode:1982JOpt...13..367G. doi:10.1088/0150-536X/13/6/006.
- ↑ ftp://ftp.math.ucla.edu/pub/camreport/cam14-71.pdf
संदर्भ
- Abramowitz, Milton; Stegun, Irene, eds. (1964). Handbook of Mathematical functions with Formulas, Graphs and Mathematical Tables. New York: Dover Publications. ISBN 978-0-486-61272-0.
- Riley, K. F.; Hobson, M. P.; Bence, S. J. (2002). "Chapter 19". Mathematical methods for physics and engineering. New York: Cambridge University Press. ISBN 978-0-521-89067-0.
- Riley, K. F. (2002). "Chapter 16". Mathematical Methods for Scientists and Engineers. Sausalito, California: University Science Books. ISBN 978-1-891389-24-5.
- Saleh, Bahaa E. A.; Teich, Malvin Carl (1991). "Chapter 3". Fundamentals of Photonics. Wiley Series in Pure and Applied Optics. New York: John Wiley & Sons. pp. 80–107. ISBN 978-0-471-83965-1.
- Sommerfeld, Arnold (1949). "Chapter 16". Partial Differential Equations in Physics. New York: Academic Press. ISBN 978-0126546569.
- Howe, M. S. (1998). Acoustics of fluid-structure interactions. New York: Cambridge University Press. ISBN 978-0-521-63320-8.
बाहरी कड़ियाँ
- Helmholtz Equation at EqWorld: The World of Mathematical Equations.
- "Helmholtz equation", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Vibrating Circular Membrane by Sam Blake, The Wolfram Demonstrations Project.
- Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain
श्रेणी:तरंगें श्रेणी:अण्डाकार आंशिक अवकल समीकरण श्रेणी: हरमन वॉन हेल्महोल्ट्ज़