होलोमोर्फिक कार्यों की विश्लेषणात्मकता: Difference between revisions
No edit summary |
|||
Line 4: | Line 4: | ||
* एक बिंदु '''''a''''' पर [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक]] कहा जाता है यदि यह ''a'' पर केंद्रित कुछ खुली डिस्क के अंदर हर बिंदु पर [[अलग-अलग]] होता है, और | * एक बिंदु '''''a''''' पर [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक]] कहा जाता है यदि यह ''a'' पर केंद्रित कुछ खुली डिस्क के अंदर हर बिंदु पर [[अलग-अलग]] होता है, और | ||
* a पर [[विश्लेषणात्मक कार्य|विश्लेषणात्मक]] (ऐनलिटिक) कहा जाता है | * a पर [[विश्लेषणात्मक कार्य|विश्लेषणात्मक]] (ऐनलिटिक) कहा जाता है यदि <math>a</math> पर केंद्रित कुछ खुली डिस्क में इसे [[अभिसरण शक्ति श्रृंखला|अभिसारी घात श्रेणी]] के रूप में विस्तारित किया जा सकता है<math display="block">f(z)=\sum_{n=0}^\infty c_n(z-a)^n</math> (इसका तात्पर्य है कि [[अभिसरण की त्रिज्या]] धनात्मक है)। | ||
सम्मिश्र विश्लेषण के सबसे महत्वपूर्ण प्रमेयों में से एक यह है कि '''होलोमार्फिक फलन वैश्लेषिक और विपर्येण (वाइस वर्स)''' हैं। इस प्रमेय के परिणाम हैं | सम्मिश्र विश्लेषण के सबसे महत्वपूर्ण प्रमेयों में से एक यह है कि '''होलोमार्फिक फलन वैश्लेषिक और विपर्येण (वाइस वर्स)''' हैं। इस प्रमेय के परिणाम हैं | ||
Line 45: | Line 45: | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
* चूँकि घात श्रेणी को पद-वार (टर्म-वाइज़) अवकलित किया जा सकता है, उपरोक्त तर्क को विपरीत दिशा में लागू करने और <math display="block"> \frac 1 {(w-z)^{n+1}} </math> के लिए घात श्रेणी व्यंजक <math display="block">f^{(n)}(a) = {n! \over 2\pi i} \int_C {f(w) \over (w-a)^{n+1}}\, dw</math>देती | * चूँकि घात श्रेणी को पद-वार (टर्म-वाइज़) अवकलित किया जा सकता है, उपरोक्त तर्क को विपरीत दिशा में लागू करने और <math display="block"> \frac 1 {(w-z)^{n+1}} </math> के लिए घात श्रेणी व्यंजक <math display="block">f^{(n)}(a) = {n! \over 2\pi i} \int_C {f(w) \over (w-a)^{n+1}}\, dw</math>देती है। यह अवकलज के लिए [[कॉची का समाकल सूत्र]] है। अतः ऊपर प्राप्त घात श्रेणी की [[टेलर श्रेणी]] <math>f</math> है। | ||
* तर्क काम करता है, | * तर्क काम करता है, यदि <math>z</math> कोई भी बिंदु है जो केंद्र के पास है, <math>a</math> की तुलना में कोई सिंगयुलैरीटी <math>f</math> है। इसलिए, टेलरश्रेणी के अभिसरण की त्रिज्या <math>a</math> से निकटतम सिंगयुलैरीटी की दूरी से छोटी नहीं हो सकती है (न ही यह बड़ी हो सकती है, क्योंकि घात श्रेणी में अभिसरण के अपने वृत्तों के आंतरिक भाग में कोई सिंगयुलैरीटी नहीं है)। | ||
* [[आइडेन्टिटी प्रमेय|आइडेंटिटी प्रमेय]] की एक विशेष स्थिति पूर्ववर्ती टिप्पणी से अनुसरण करती है। यदि दो होलोमॉर्फिक फलन खुले प्रतिवेश (संभवतः काफी छोटे) पर मान लेते हैं <math>U</math> का <math>a</math>, तो वे खुली डिस्क <math>B_d(a)</math> पर सम्पाती होते हैं, जहां <math>d</math>, <math>a</math> से निकटतम सिंगयुलैरीटी की दूरी है। | * [[आइडेन्टिटी प्रमेय|आइडेंटिटी प्रमेय]] की एक विशेष स्थिति पूर्ववर्ती टिप्पणी से अनुसरण करती है। यदि दो होलोमॉर्फिक फलन खुले प्रतिवेश (संभवतः काफी छोटे) पर मान लेते हैं <math>U</math> का <math>a</math>, तो वे खुली डिस्क <math>B_d(a)</math> पर सम्पाती होते हैं, जहां <math>d</math>, <math>a</math> से निकटतम सिंगयुलैरीटी की दूरी है। | ||
Revision as of 13:19, 24 May 2023
Mathematical analysis → Complex analysis |
Complex analysis |
---|
Complex numbers |
Complex functions |
Basic Theory |
Geometric function theory |
People |
|
सम्मिश्र विश्लेषण में, सम्मिश्र चर का एक संमिश्र मान फलन f:
- एक बिंदु a पर होलोमॉर्फिक कहा जाता है यदि यह a पर केंद्रित कुछ खुली डिस्क के अंदर हर बिंदु पर अलग-अलग होता है, और
- a पर विश्लेषणात्मक (ऐनलिटिक) कहा जाता है यदि पर केंद्रित कुछ खुली डिस्क में इसे अभिसारी घात श्रेणी के रूप में विस्तारित किया जा सकता है(इसका तात्पर्य है कि अभिसरण की त्रिज्या धनात्मक है)।
सम्मिश्र विश्लेषण के सबसे महत्वपूर्ण प्रमेयों में से एक यह है कि होलोमार्फिक फलन वैश्लेषिक और विपर्येण (वाइस वर्स) हैं। इस प्रमेय के परिणाम हैं
- आइडेंटिटी प्रमेय के दो होलोमोर्फिक फलन जो अपने प्रक्षेत्र (डोमेन) के सर्वनिष्ठ के अंदर एक संचय बिंदु के साथ अनंत समुच्चय S के प्रत्येक बिंदु पर निर्धारित होते हैं, उनके प्रक्षेत्र के हर जुड़े हुए खुले उपसमुच्चय में हर जगह निर्धारित होते हैं जिसमें समुच्चय S होता है, और
- तथ्य यह है कि, चूंकि घात श्रेणी अनंततः अवकलनीय होती है, इसलिए होलोमोर्फिक फलन भी होते हैं (यह वास्तविक अवकलनीय फलनों की स्थिति के विपरीत है), और
- तथ्य यह है कि अभिसरण की त्रिज्या हमेशा केंद्र से दूरी होती है, निकटतम गैर-हटाने योग्य सिंगयुलैरीटी के लिए; यदि कोई सिंगयुलैरीटी नहीं है (अर्थात, यदि एक पूर्ण फलन है), तो अभिसरण की त्रिज्या अनंत है। वास्तव में, यह प्रमेय का परिणाम नहीं है, बल्कि प्रमाण का बाइप्राडक्ट है।
- सम्मिश्र समतल पर कोई बम्प फलन पूर्ण नहीं हो सकता। विशेष रूप से, सम्मिश्र समतल के किसी भी जुड़े हुए खुले उपसमुच्चय पर,उस समुच्चय पर परिभाषित कोई बम्प फलन नहीं हो सकता है जो समुच्चय पर होलोमोर्फिक हो। यह सम्मिश्र मैनिफोल्ड के अध्ययन के लिए महत्वपूर्ण प्रभाव डालता हैं, क्योंकि यह एकांक के विभाजन के उपयोग को रोकता है। इसके विपरीत एकांक का विभाजन एक टूल है जिसका उपयोग किसी वास्तविक मैनिफोल्ड पर किया जा सकता है।
प्रमाण
तर्क, पहले कॉची द्वारा दिया गया, कॉची के समाकल सूत्र और व्यंजक की घात श्रेणी प्रसार पर निर्भर करता है
- को पर केंद्रित एक खुली डिस्क होने दें और मान लें के बंद होने वाले खुले प्रतिवैस के अंदर f हर जगह अलग-अलग होता है। को धनात्मक रूप से उन्मुख (यानी, वामावर्त) वृत्त होने दें जो की सीमा है और को एक बिंदु होने दें। कॉची के समाकलन सूत्र से प्रारंभ करके, हमारे पास है
समाकल और अनंत योग का इंटरचेंज यह देखते हुए उचित है कि पर कुछ धनात्मक संख्या से परिबद्ध है, जबकि C में सभी के लिए
कुछ धनात्मक के लिए भी। इसलिए हमारे पास है
पर, और जैसा कि वीयरस्ट्रैस M-टेस्ट से पता चलता है कि श्रेणी पर समान रूप से अभिसरण करती है, योग और समाकल को आपस में बदला जा सकता है।
जैसा कि गुणक समाकलन के चर पर निर्भर नहीं करता है, यह प्रतिफल (यील्ड) के लिए फैक्टर्ड हो सकता है
जिसमें एक घात श्रेणी का वांछित रूप है
गुणांक के साथ
टिप्पणियाँ
- चूँकि घात श्रेणी को पद-वार (टर्म-वाइज़) अवकलित किया जा सकता है, उपरोक्त तर्क को विपरीत दिशा में लागू करने और के लिए घात श्रेणी व्यंजकदेती है। यह अवकलज के लिए कॉची का समाकल सूत्र है। अतः ऊपर प्राप्त घात श्रेणी की टेलर श्रेणी है।
- तर्क काम करता है, यदि कोई भी बिंदु है जो केंद्र के पास है, की तुलना में कोई सिंगयुलैरीटी है। इसलिए, टेलरश्रेणी के अभिसरण की त्रिज्या से निकटतम सिंगयुलैरीटी की दूरी से छोटी नहीं हो सकती है (न ही यह बड़ी हो सकती है, क्योंकि घात श्रेणी में अभिसरण के अपने वृत्तों के आंतरिक भाग में कोई सिंगयुलैरीटी नहीं है)।
- आइडेंटिटी प्रमेय की एक विशेष स्थिति पूर्ववर्ती टिप्पणी से अनुसरण करती है। यदि दो होलोमॉर्फिक फलन खुले प्रतिवेश (संभवतः काफी छोटे) पर मान लेते हैं का , तो वे खुली डिस्क पर सम्पाती होते हैं, जहां , से निकटतम सिंगयुलैरीटी की दूरी है।