हाइपरज्यामेट्रिक फ़ंक्शन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 72: Line 72:
इसलिए सभी कार्य जो इसके अनिवार्य रूप से विशेष मामले हैं, जैसे बेसेल कार्य, को हाइपरज्यामितीय कार्यों की सीमा के रूप में व्यक्त किया जा सकता है। इनमें गणितीय भौतिकी के सामान्यतः  उपयोग किए जाने वाले अधिकांश कार्य सम्मलित  हैं।
इसलिए सभी कार्य जो इसके अनिवार्य रूप से विशेष मामले हैं, जैसे बेसेल कार्य, को हाइपरज्यामितीय कार्यों की सीमा के रूप में व्यक्त किया जा सकता है। इनमें गणितीय भौतिकी के सामान्यतः  उपयोग किए जाने वाले अधिकांश कार्य सम्मलित  हैं।


[[लेजेंड्रे समारोह]] 3 नियमित एकवचन बिंदुओं के साथ दूसरे क्रम के अंतर समीकरण के समाधान हैं, इसलिए इसे हाइपरजियोमेट्रिक फ़ंक्शन के संदर्भ में कई तरीकों से व्यक्त किया जा सकता है, उदाहरण के लिए
[[लेजेंड्रे समारोह]] 3 नियमित एकवचन बिंदुओं के साथ दूसरे क्रम के अंतर समीकरण के समाधान हैं, इसलिए इसे हाइपरजियोमेट्रिक फ़ंक्शन के संदर्भ में कई विधियों  से व्यक्त किया जा सकता है, उदाहरण के लिए


<math display=block>{}_2F_1(a,1-a;c;z) = \Gamma(c)z^{\tfrac{1-c}{2}}(1-z)^{\tfrac{c-1}{2}}P_{-a}^{1-c}(1-2z)</math>
<math display=block>{}_2F_1(a,1-a;c;z) = \Gamma(c)z^{\tfrac{1-c}{2}}(1-z)^{\tfrac{c-1}{2}}P_{-a}^{1-c}(1-2z)</math>
Line 262: Line 262:
{{main|Gauss continued fraction}}
{{main|Gauss continued fraction}}


गॉस ने एक सतत अंश के रूप में दो हाइपरज्यामितीय कार्यों के भागफल को लिखने के कई तरीके देने के लिए सन्निहित संबंधों का उपयोग किया, उदाहरण के लिए:
गॉस ने एक सतत अंश के रूप में दो हाइपरज्यामितीय कार्यों के भागफल को लिखने के कई विधि े देने के लिए सन्निहित संबंधों का उपयोग किया, उदाहरण के लिए:


<math display=block>\frac{{}_2F_1(a+1,b;c+1;z)}{{}_2F_1(a,b;c;z)} = \cfrac{1}{1 + \cfrac{\frac{(a-c)b}{c(c+1)} z}{1 + \cfrac{\frac{(b-c-1)(a+1)}{(c+1)(c+2)} z}{1 + \cfrac{\frac{(a-c-1)(b+1)}{(c+2)(c+3)} z}{1 + \cfrac{\frac{(b-c-2)(a+2)}{(c+3)(c+4)} z}{1 + {}\ddots}}}}}</math>
<math display=block>\frac{{}_2F_1(a+1,b;c+1;z)}{{}_2F_1(a,b;c;z)} = \cfrac{1}{1 + \cfrac{\frac{(a-c)b}{c(c+1)} z}{1 + \cfrac{\frac{(b-c-1)(a+1)}{(c+1)(c+2)} z}{1 + \cfrac{\frac{(a-c-1)(b+1)}{(c+2)(c+3)} z}{1 + \cfrac{\frac{(b-c-2)(a+2)}{(c+3)(c+4)} z}{1 + {}\ddots}}}}}</math>
Line 298: Line 298:


<math display=block>{}_2F_1 \left (\tfrac{3}{2}a,\tfrac{1}{2}(3a-1);a+\tfrac{1}{2};-\tfrac{z^2}{3} \right) = (1+z)^{1-3a} \, {}_2F_1 \left (a-\tfrac{1}{3}, a; 2a; 2z(3+z^2)(1+z)^{-3} \right )</math>
<math display=block>{}_2F_1 \left (\tfrac{3}{2}a,\tfrac{1}{2}(3a-1);a+\tfrac{1}{2};-\tfrac{z^2}{3} \right) = (1+z)^{1-3a} \, {}_2F_1 \left (a-\tfrac{1}{3}, a; 2a; 2z(3+z^2)(1+z)^{-3} \right )</math>
डिग्री 4 और 6 के कुछ परिवर्तन भी हैं। अन्य डिग्री के परिवर्तन केवल तभी उपस्थित  होते हैं जब a, b, और c कुछ परिमेय संख्याएँ हों {{harv|Vidunas|2005}}. उदाहरण के लिए,
घात 4 और 6 के कुछ परिवर्तन भी हैं। अन्य घात के परिवर्तन केवल तभी उपस्थित  होते हैं जब a, b, और c कुछ परिमेय संख्याएँ हों {{harv|Vidunas|2005}}. उदाहरण के लिए,
<math display=block>{}_2F_1 \left (\tfrac{1}{4},\tfrac{3}{8};\tfrac{7}{8}; z \right) (z^4-60z^3+134z^2-60z+1)^{1/16}  =
<math display=block>{}_2F_1 \left (\tfrac{1}{4},\tfrac{3}{8};\tfrac{7}{8}; z \right) (z^4-60z^3+134z^2-60z+1)^{1/16}  =
   {}_2F_1 \left (\tfrac{1}{48}, \tfrac{17}{48}; \tfrac{7}{8}; \tfrac{-432 z (z-1)^2 (z+1)^8}{(z^4-60z^3+134z^2-60z+1)^3} \right ).</math>
   {}_2F_1 \left (\tfrac{1}{48}, \tfrac{17}{48}; \tfrac{7}{8}; \tfrac{-432 z (z-1)^2 (z+1)^8}{(z^4-60z^3+134z^2-60z+1)^3} \right ).</math>
Line 348: Line 348:
== यह भी देखें ==
== यह भी देखें ==
*अपेल श्रृंखला, हाइपरज्यामितीय श्रृंखला का 2-चर सामान्यीकरण
*अपेल श्रृंखला, हाइपरज्यामितीय श्रृंखला का 2-चर सामान्यीकरण
*[[बुनियादी हाइपरज्यामितीय श्रृंखला]] जहां शब्दों का अनुपात सूचकांक का एक आवधिक कार्य है
*[[बुनियादी हाइपरज्यामितीय श्रृंखला|मौलिक  हाइपरज्यामितीय श्रृंखला]] जहां शब्दों का अनुपात सूचकांक का एक आवधिक कार्य है
*द्विपक्षीय हाइपरज्यामितीय श्रृंखला <sub>''p''</sub>H<sub>''p''</sub> सामान्यीकृत हाइपरज्यामितीय श्रृंखला के समान हैं, लेकिन सभी पूर्णांकों पर अभिव्यक्त हैं
*द्विपक्षीय हाइपरज्यामितीय श्रृंखला <sub>''p''</sub>H<sub>''p''</sub> सामान्यीकृत हाइपरज्यामितीय श्रृंखला के समान हैं, लेकिन सभी पूर्णांकों पर अभिव्यक्त हैं
* [[द्विपद श्रृंखला]] <sub>1</sub>F<sub>0</sub>
* [[द्विपद श्रृंखला]] <sub>1</sub>F<sub>0</sub>

Revision as of 14:39, 23 May 2023

fफ़ाइल: हाइपर जियोमेट्रिक फ़ंक्शन 2F1(a,b; c; z) का प्लॉट a=2 और b=3 और c= के साथ4 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the hypergeometric function 2F1(ए, बी; सी; जेड) ए = 2 और बी = 3 और सी = 4 जटिल विमान में -2-2i से 2 + 2i तक मैथमैटिका 13.1 फ़ंक्शन कॉम्प्लेक्सप्लॉट 3 डी | थंब | हाइपरजेमेट्रिक फ़ंक्शन का प्लॉट 2F1(a,b; c; z) a=2 और b=3 और c=4 के साथ कॉम्प्लेक्स प्लेन में -2-2i से 2+2i तक मेथेमेटिका 13.1 फ़ंक्शन ComplexPlot3D के साथ बनाए गए रंगों के साथ

गणित में, गाऊसी या साधारण हाइपरज्यामितीय फलन 2F1(a,b;c;z) 'हाइपरज्यामितीय श्रृंखला' द्वारा प्रस्तुत एक विशेष कार्य है, जिसमें विशेष मामले या सीमित मामले (गणित) के रूप में कई अन्य विशेष कार्य सम्मलित हैं। यह दूसरे क्रम के रैखिक फलन साधारण अवकल समीकरण (ODE) का एक हल है। तीन नियमित एकवचन बिंदुओं के साथ प्रत्येक दूसरे क्रम के रैखिक ODE को इस समीकरण में रूपांतरित किया जा सकता है।

हाइपरज्यामेट्रिक फ़ंक्शन से जुड़े हजारों प्रकाशित पहचान (गणित) में से कुछ की व्यवस्थित सूचियों के लिए, संदर्भ कार्यों को देखें Erdélyi et al. (1953) और Olde Daalhuis (2010). सभी पहचानों को व्यवस्थित करने के लिए कोई ज्ञात प्रणाली नहीं है; वास्तव में, कोई ज्ञात एल्गोरिथम नहीं है जो सभी पहचान उत्पन्न कर सके; कई अलग-अलग एल्गोरिदम ज्ञात हैं जो पहचान की विभिन्न श्रृंखला उत्पन्न करते हैं। पहचान की एल्गोरिथम खोज का सिद्धांत एक सक्रिय शोध विषय बना हुआ है।

इतिहास

हाइपरज्यामितीय श्रृंखला शब्द का पहली बार उपयोग जॉन वालिस ने अपनी 1655 की पुस्तक अरिथमेटिका इन्फिनिटोरम में किया था।

हाइपरज्यामितीय श्रृंखला का अध्ययन लियोनहार्ड यूलर द्वारा किया गया था, लेकिन पहला पूर्ण व्यवस्थित उपचार किसके द्वारा दिया गया था Carl Friedrich Gauss (1813).

उन्नीसवीं शताब्दी के अध्ययनों में वे सम्मलित थे Ernst Kummer (1836), और द्वारा मौलिक लक्षण वर्णन Bernhard Riemann (1857) हाइपरजियोमेट्रिक फ़ंक्शन का अंतर समीकरण के माध्यम से इसे संतुष्ट करता है।

रीमैन ने दिखाया कि दूसरे क्रम का अंतर समीकरण 2F1(z), जटिल विमान में जांच की गई, इसकी तीन नियमित विलक्षणता द्वारा विशेषता (रीमैन क्षेत्र पर) की जा सकती है।

ऐसे मामले जहां समाधान बीजगणितीय कार्य हैं, हरमन ब्लैक (श्वार्ज़ की सूची) द्वारा पाए गए।

हाइपरज्यामितीय श्रृंखला

हाइपरजियोमेट्रिक फ़ंक्शन के लिए परिभाषित किया गया है |z| < 1 शक्ति श्रृंखला द्वारा

यदि यह अपरिभाषित (या अनंत) है c एक गैर-सकारात्मक पूर्णांक के बराबर है। यहाँ (q)n (उभरता हुआ) पोचममेर प्रतीक है, जिसे इसके द्वारा परिभाषित किया गया है:

यदि कोई हो तो श्रृंखला समाप्त हो जाती है a या b एक गैर-सकारात्मक पूर्णांक है, जिस स्थिति में फ़ंक्शन बहुपद में कम हो जाता है:

जटिल तर्कों के लिए z साथ |z| ≥ 1 यह जटिल विमान में किसी भी पथ के साथ विश्लेषणात्मक निरंतरता हो सकती है जो शाखा बिंदु 1 और अनंतता से बचती है।

जैसा c → −m, कहाँ m एक गैर-ऋणात्मक पूर्णांक है, एक के पास है 2F1(z) → ∞. मूल्य से विभाजित करना Γ(c) गामा समारोह की, हमारे पास सीमा है:

2F1(z) सामान्यीकृत हाइपरज्यामितीय श्रृंखला का सबसे सामान्य प्रकार है pFq, और अधिकांशतः सरल रूप से निर्दिष्ट किया जाता है F(z).

विभेद सूत्र

पहचान का उपयोग करना , यह दिखाया गया है

और अधिक सामान्यतः ,


विशेष मामले

कई सामान्य गणितीय कार्यों को हाइपरजियोमेट्रिक फ़ंक्शन के संदर्भ में या इसके सीमित स्थितियों के रूप में व्यक्त किया जा सकता है। कुछ विशिष्ट उदाहरण हैं

जब a=1 और b=c, श्रृंखला एक सादे ज्यामितीय श्रृंखला में कम हो जाती है, अर्थात

इसलिए, नाम हाइपरजियोमेट्रिक। इस समारोह को ज्यामितीय श्रृंखला के सामान्यीकरण के रूप में माना जा सकता है।

संगम हाइपरज्यामितीय समारोह (या कुमेर का फ़ंक्शन) को हाइपरजियोमेट्रिक फ़ंक्शन की सीमा के रूप में दिया जा सकता है

इसलिए सभी कार्य जो इसके अनिवार्य रूप से विशेष मामले हैं, जैसे बेसेल कार्य, को हाइपरज्यामितीय कार्यों की सीमा के रूप में व्यक्त किया जा सकता है। इनमें गणितीय भौतिकी के सामान्यतः उपयोग किए जाने वाले अधिकांश कार्य सम्मलित हैं।

लेजेंड्रे समारोह 3 नियमित एकवचन बिंदुओं के साथ दूसरे क्रम के अंतर समीकरण के समाधान हैं, इसलिए इसे हाइपरजियोमेट्रिक फ़ंक्शन के संदर्भ में कई विधियों से व्यक्त किया जा सकता है, उदाहरण के लिए

जैकोबी बहुपद पी सहित कई ऑर्थोगोनल बहुपद(α,β)
n
और उनके विशेष मामले लीजेंड्रे बहुपद, चेबिशेव बहुपद, गेगेनबॉयर बहुपद को हाइपरज्यामितीय कार्यों के संदर्भ में लिखा जा सकता है

अन्य बहुपद जो विशेष मामले हैं उनमें सम्मलित हैं क्रावचौक बहुपद, मीक्सनर बहुपद, मीक्सनर-पोलाकजेक बहुपद।

दिया गया , होने देना

तब

मॉड्यूलर लैम्ब्डा समारोह है, जहां

.

j-invariant, एक मॉड्यूलर फॉर्म # मॉड्यूलर फ़ंक्शंस, एक तर्कसंगत फ़ंक्शन है .

अपूर्ण बीटा कार्य Bx(पी, क्यू) से संबंधित हैं

पूर्ण अण्डाकार समाकल K और E द्वारा दिए गए हैं


हाइपरज्यामेट्रिक अंतर समीकरण

हाइपरजियोमेट्रिक फ़ंक्शन यूलर के हाइपरजियोमेट्रिक डिफरेंशियल इक्वेशन का एक समाधान है

जिसके तीन नियमित एकवचन बिंदु हैं: 0,1 और ∞। तीन स्वेच्छ नियमित एकवचन बिंदुओं के लिए इस समीकरण का सामान्यीकरण रीमैन के अवकल समीकरण द्वारा दिया गया है। तीन नियमित एकवचन बिंदुओं के साथ किसी भी दूसरे क्रम के रैखिक अंतर समीकरण को चर के परिवर्तन द्वारा हाइपरज्यामितीय अंतर समीकरण में परिवर्तित किया जा सकता है।

एकवचन बिंदुओं पर समाधान

हाइपरज्यामितीय अंतर समीकरण के समाधान हाइपरज्यामितीय श्रृंखला से निर्मित होते हैं 2F1(ए, बी; सी; जेड)। समीकरण के दो रैखिक रूप से स्वतंत्र समाधान हैं। तीन एकवचन बिंदुओं 0, 1, ∞ में से प्रत्येक पर, सामान्यतः x के रूप के दो विशेष समाधान होते हैंs x का एक होलोमॉर्फिक फ़ंक्शन है, जहां s इंडिकियल समीकरण की दो जड़ों में से एक है और x एक स्थानीय चर है जो एक नियमित विलक्षण बिंदु पर गायब हो जाता है। यह इस प्रकार 3 × 2 = 6 विशेष समाधान देता है।

बिंदु z = 0 के आसपास, दो स्वतंत्र समाधान हैं, यदि c एक गैर-सकारात्मक पूर्णांक नहीं है,

और, इस शर्त पर कि c एक पूर्णांक नहीं है,

यदि c एक गैर-सकारात्मक पूर्णांक 1−m है, तो इनमें से पहला समाधान उपस्थित नहीं है और इसके द्वारा प्रतिस्थापित किया जाना चाहिए दूसरा समाधान उपस्थित नहीं है जब c 1 से अधिक पूर्णांक है, और पहले समाधान के बराबर है, या इसका प्रतिस्थापन, जब c कोई अन्य पूर्णांक है। इसलिए जब c एक पूर्णांक है, तो दूसरे समाधान के लिए एक अधिक जटिल अभिव्यक्ति का उपयोग किया जाना चाहिए, पहले समाधान के बराबर ln(z), साथ ही z की शक्तियों में एक और श्रृंखला, जिसमें डिगामा समारोह सम्मलित है। देखना Olde Daalhuis (2010) जानकारी के लिए।

z = 1 के आसपास, यदि c − a − b एक पूर्णांक नहीं है, तो इसके दो स्वतंत्र समाधान होते हैं

और

लगभग z = ∞, यदि a − b एक पूर्णांक नहीं है, तो इसके दो स्वतंत्र समाधान होते हैं

और

दोबारा, जब गैर-अभिन्नता की शर्तें पूरी नहीं होती हैं, तो अन्य समाधान उपस्थित होते हैं जो अधिक जटिल होते हैं।

उपरोक्त 6 समाधानों में से कोई भी 3 एक रैखिक संबंध को संतुष्ट करता है क्योंकि समाधानों का स्थान 2-आयामी है, (6
3
) = उनके बीच 20 रैखिक संबंध जिन्हें कनेक्शन सूत्र कहा जाता है।

कुमेर के 24 उपाय

एन एकवचन बिंदुओं के साथ एक दूसरे क्रम के फ्यूचियन समीकरण में समरूपता का एक समूह है जो इसके समाधान पर कार्य करता है (प्रोजेक्टिवली), कॉक्सेटर समूह डब्ल्यू (डी) के लिए आइसोमोर्फिकn) आदेश 2n−1n!. हाइपरज्यामितीय समीकरण केस एन = 3 है, ऑर्डर 24 आइसोमोर्फिक के समूह के साथ 4 बिंदुओं पर सममित समूह के लिए, जैसा कि पहले वर्णित है गंभीर दु:ख सममित समूह की उपस्थिति आकस्मिक है और 3 से अधिक एकवचन बिंदुओं के लिए कोई एनालॉग नहीं है, और कभी-कभी समूह को 3 बिंदुओं पर सममित समूह के विस्तार के रूप में सोचना बेहतर होता है (3 एकवचन बिंदुओं के क्रमपरिवर्तन के रूप में कार्य करना) एक क्लेन 4-समूह (जिसके तत्व समान संख्या में एकवचन बिंदुओं पर घातांक के अंतर के संकेतों को बदलते हैं)। Kummer के 24 रूपांतरणों का समूह तीन परिवर्तनों द्वारा एक समाधान F(a,b;c;z) से एक में उत्पन्न होता है

जो 4 अंक 1, 2, 3, 4 पर सममित समूह के साथ एक समरूपता के अनुसार पारदर्शिता (12), (23), और (34) के अनुरूप है। (इनमें से पहला और तीसरा वास्तव में एफ (ए, b;c;z) जबकि दूसरा अंतर समीकरण का एक स्वतंत्र समाधान है।)

कुमार के 24 = 6 × 4 परिवर्तनों को हाइपरजोमेट्रिक फ़ंक्शन में लागू करने से ऊपर दिए गए 6 = 2 × 3 समाधान 3 एकवचन बिंदुओं में से प्रत्येक पर 2 संभावित घातांकों में से प्रत्येक के अनुरूप होते हैं, जिनमें से प्रत्येक पहचान के कारण 4 बार प्रकट होता है


क्यू-फॉर्म

हाइपरज्यामितीय अंतर समीकरण को क्यू-फॉर्म में लाया जा सकता है

प्रतिस्थापन करके u = wv और पहले-व्युत्पन्न शब्द को हटा दें। एक पाता है

और v का हल दिया गया है

जो है

श्वार्जियन व्युत्पन्न के संबंध में क्यू-फॉर्म महत्वपूर्ण है (Hille 1976, pp. 307–401).

श्वार्ज त्रिकोण के नक्शे

श्वार्ज़ त्रिभुज मानचित्र या श्वार्ज़ एस-फ़ंक्शंस समाधान के जोड़े के अनुपात हैं।

जहाँ k बिन्दु 0, 1, ∞ में से एक है। अंकन

कभी-कभी प्रयोग भी किया जाता है। ध्यान दें कि कनेक्शन गुणांक त्रिभुज मानचित्रों पर मोबियस परिवर्तन बन जाते हैं।

ध्यान दें कि प्रत्येक त्रिभुज मानचित्र नियमित एकवचन बिंदु z ∈ {0, 1, ∞} पर क्रमशः है, साथ में

और
λ, μ और ν वास्तविक के विशेष मामले में, 0 ≤ λ,μ,ν < 1 के साथ, फिर एस-नक्शे ऊपरी अर्ध-तल एच के अनुरूप मानचित्र होते हैं जो रीमैन क्षेत्र पर त्रिभुजों के अनुरूप होते हैं, जो गोलाकार चाप से घिरे होते हैं। यह मैपिंग श्वार्ज़ियन डेरिवेटिव # श्वार्ज-क्रिस्टोफ़ेल मैपिंग के सर्कुलर आर्क पॉलीगॉन की सर्कुलर आर्क्स वाले त्रिकोणों की कॉनफ़ॉर्मल मैपिंग है। एकवचन बिंदु 0,1 और ∞ त्रिभुज के शीर्षों पर भेजे जाते हैं। त्रिभुज के कोण क्रमशः πλ, πμ और πν हैं।

इसके अतिरिक्त , λ=1/p, μ=1/q और ν=1/r पूर्णांकों p, q, 'के मामले में 'r, फिर त्रिभुज गोले, जटिल तल या ऊपरी आधे तल को टाइल करता है, चाहे λ + μ + ν - 1 धनात्मक, शून्य या ऋणात्मक हो; और त्रिकोण समूह 〈pqr〉 = Δ(pq, ' 'आर)।

मोनोड्रोमी समूह

एक हाइपरज्यामितीय समीकरण का मोनोड्रोमी वर्णन करता है कि कैसे मौलिक समाधान बदल जाते हैं जब विश्लेषणात्मक रूप से जेड विमान में पथ के चारों ओर जारी रहता है जो उसी बिंदु पर लौटते हैं। यही है, जब पथ एक विलक्षणता के चारों ओर घूमता है 2F1, समापन बिंदु पर समाधानों का मान प्रारंभिक बिंदु से भिन्न होगा।

हाइपरज्यामितीय समीकरण के दो मौलिक समाधान एक रैखिक परिवर्तन द्वारा एक दूसरे से संबंधित हैं; इस प्रकार मोनोड्रोमी एक मैपिंग (समूह समरूपतावाद) है:

जहां प1 मौलिक समूह है। दूसरे शब्दों में, मोनोड्रोमी मौलिक समूह का दो आयामी रैखिक प्रतिनिधित्व है। समीकरण का मोनोड्रोमी समूह इस मानचित्र की छवि है, अर्थात मोनोड्रोमी मैट्रिसेस द्वारा उत्पन्न समूह। मौलिक समूह के मोनोड्रोमी प्रतिनिधित्व को एकवचन बिंदुओं पर प्रतिपादकों के संदर्भ में स्पष्ट रूप से गणना की जा सकती है।[1] यदि (α, α'), (β, β') और (γ,γ') 0, 1 और ∞ पर एक्सपोनेंट हैं, तो z लेने पर0 0 के पास, 0 और 1 के आस-पास के लूप में मोनोड्रोमी मैट्रिसेस हैं

कहाँ

यदि 1−a, c−a−b, a−b हर k, l, m के साथ गैर-पूर्णांक परिमेय संख्याएँ हैं तो मोनोड्रोमी समूह परिमित है यदि और केवल यदि , श्वार्ज़ की सूची या पिकार्ड-वेसियट सिद्धांत|कोवासिक का एल्गोरिदम देखें।

अभिन्न सूत्र

यूलर प्रकार

यदि बी बीटा समारोह है तो

बशर्ते कि z एक ऐसी वास्तविक संख्या न हो जो 1 से अधिक या उसके बराबर हो। इसे (1 − zx) का विस्तार करके सिद्ध किया जा सकता है−a द्विपद प्रमेय का उपयोग करके और फिर 1 से छोटे निरपेक्ष मान के साथ z के लिए शब्द द्वारा शब्द को एकीकृत करना, और कहीं और विश्लेषणात्मक निरंतरता द्वारा। जब z एक वास्तविक संख्या 1 से अधिक या उसके बराबर हो, तो विश्लेषणात्मक निरंतरता का उपयोग किया जाना चाहिए, क्योंकि (1 − zx) समाकल के समर्थन में किसी बिंदु पर शून्य है, इसलिए समाकलन का मान अ-परिभाषित हो सकता है। यह 1748 में यूलर द्वारा दिया गया था और इसका तात्पर्य यूलर और Pfaff के अतिज्यामितीय परिवर्तनों से है।

अन्य अभ्यावेदन, अन्य प्रमुख शाखा के अनुरूप, समान इंटीग्रैंड लेकर दिए गए हैं, लेकिन विभिन्न आदेशों में एकवचन को बंद करने के लिए एक बंद पोचममेर चक्र होने के लिए एकीकरण का मार्ग ले रहे हैं। इस तरह के रास्ते मोनोड्रोमी एक्शन के अनुरूप हैं।

बार्न्स अभिन्न

बार्न्स इंटीग्रल का मूल्यांकन करने के लिए बार्न्स ने अवशेष के सिद्धांत (जटिल विश्लेषण) का उपयोग किया

जैसा

जहां खंभे −a, −a − 1, ..., −b, −b − 1, ..., ध्रुवों 0, 1, 2... को ध्रुवों से अलग करने के लिए समोच्च रेखा खींची गई है। यह तब तक मान्य है जब तक z एक गैर-ऋणात्मक वास्तविक संख्या नहीं है।

जॉन ट्रांसफॉर्म

गॉस हाइपरजियोमेट्रिक फ़ंक्शन को जॉन ट्रांसफ़ॉर्म के रूप में लिखा जा सकता है (Gelfand, Gindikin & Graev 2003, 2.1.2).

गॉस के सन्निहित संबंध

छह कार्य

से सटे हुए कहलाते हैं 2F1(a, b; c; z). गॉस ने दिखाया 2F1(a, b; c; z) को इसके सन्निहित कार्यों में से किन्हीं दो के रैखिक संयोजन के रूप में लिखा जा सकता है, जिसके संदर्भ में तर्कसंगत गुणांक हैं a, b, c, और z. यह देता है

संबंध, के दाहिने हाथ की किन्हीं दो रेखाओं की पहचान करके दिया गया है

कहाँ F = 2F1(a, b; c; z), F(a+) = 2F1(a + 1, b; c; z), और इसी तरह। बार-बार इन संबंधों को लागू करने से एक रैखिक संबंध खत्म हो जाता है C(z) प्रपत्र के किसी भी तीन कार्यों के बीच

जहाँ m, n और l पूर्णांक हैं।

गॉस का निरंतर अंश

गॉस ने एक सतत अंश के रूप में दो हाइपरज्यामितीय कार्यों के भागफल को लिखने के कई विधि े देने के लिए सन्निहित संबंधों का उपयोग किया, उदाहरण के लिए:


परिवर्तन सूत्र

परिवर्तन सूत्र तर्क z के विभिन्न मूल्यों पर दो हाइपरज्यामितीय कार्यों से संबंधित हैं।

आंशिक रैखिक परिवर्तन

यूलर का परिवर्तन है

यह दो Pfaff रूपांतरणों को जोड़कर अनुसरण करता है
जो बदले में यूलर के अभिन्न प्रतिनिधित्व का अनुसरण करता है। यूलर के पहले और दूसरे परिवर्तनों के विस्तार के लिए, देखें Rathie & Paris (2007) और Rakha & Rathie (2011). इसे रैखिक संयोजन के रूप में भी लिखा जा सकता है


द्विघात परिवर्तन

यदि दो संख्याएँ 1 − c, c − 1, a − b, b − a, a + b − c, c − a − b बराबर हैं या उनमें से एक 1/2 है तो एक 'द्विघात परिवर्तन' होता है हाइपरजियोमेट्रिक फ़ंक्शन का, इसे द्विघात समीकरण से संबंधित z के एक अलग मान से जोड़ना। द्वारा पहला उदाहरण दिया गया था Kummer (1836), और द्वारा एक पूरी सूची दी गई थी Goursat (1881). एक विशिष्ट उदाहरण है


उच्च क्रम परिवर्तन

यदि 1−c, a−b, a+b−c संकेतों से भिन्न है या उनमें से दो 1/3 या −1/3 हैं तो हाइपरज्यामितीय फ़ंक्शन का एक 'घन परिवर्तन' होता है, जो इसे एक अलग मान से जोड़ता है z एक घन समीकरण से संबंधित है। द्वारा पहला उदाहरण दिया गया था Goursat (1881). एक विशिष्ट उदाहरण है

घात 4 और 6 के कुछ परिवर्तन भी हैं। अन्य घात के परिवर्तन केवल तभी उपस्थित होते हैं जब a, b, और c कुछ परिमेय संख्याएँ हों (Vidunas 2005). उदाहरण के लिए,


विशेष बिंदुओं पर मान z

देखना Slater (1966, Appendix III) विशेष बिंदुओं पर सारांश सूत्रों की सूची के लिए, जिनमें से अधिकांश भी दिखाई देते हैं Bailey (1935). Gessel & Stanton (1982) अधिक बिंदुओं पर और मूल्यांकन दें। Koepf (1995) दिखाता है कि इनमें से अधिकांश पहचानों को कंप्यूटर एल्गोरिदम द्वारा कैसे सत्यापित किया जा सकता है।

=== z = 1=== पर विशेष मान गॉस का योग प्रमेय, कार्ल फ्रेडरिक गॉस के नाम पर, पहचान है

जो यूलर के अभिन्न सूत्र से z = 1 लगाकर अनुसरण करता है। इसमें एक विशेष मामले के रूप में वैंडरमोंड पहचान सम्मलित है।

विशेष मामले के लिए जहां ,

द्विपक्षीय हाइपरज्यामितीय श्रृंखला|डगल का सूत्र z = 1 पर द्विपक्षीय अतिज्यामितीय श्रृंखला के लिए इसे सामान्यीकृत करता है।

कुमेर प्रमेय (z = −1)

ऐसे कई मामले हैं जहां z = −1 पर z = −1 पर z = −1 को z = 1 में बदलने के लिए और फिर परिणाम का मूल्यांकन करने के लिए गॉस के प्रमेय का उपयोग करके हाइपरज्यामितीय कार्यों का मूल्यांकन किया जा सकता है . एक विशिष्ट उदाहरण कुमेर का प्रमेय है, जिसका नाम अर्न्स्ट कुमेर के नाम पर रखा गया है:

जो कुमेर के द्विघात रूपांतरणों से अनुसरण करता है

और पहली सर्वसमिका में z = −1 रखकर गॉस की प्रमेय। कुमार के योग के सामान्यीकरण के लिए देखें Lavoie, Grondin & Rathie (1996).

=== z = 1/2=== पर मान गॉस का दूसरा योग प्रमेय है

बेली का प्रमेय है

गॉस के दूसरे संकलन प्रमेय और बेली के योग प्रमेय के सामान्यीकरण के लिए, देखें Lavoie, Grondin & Rathie (1996).

अन्य बिंदु

मापदंडों के विशेष तर्कसंगत मूल्यों पर एक बीजगणितीय संख्या के रूप में हाइपरजियोमेट्रिक फ़ंक्शन देने वाले कई अन्य सूत्र हैं, जिनमें से कुछ में सूचीबद्ध हैं Gessel & Stanton (1982) और Koepf (1995). द्वारा कुछ विशिष्ट उदाहरण दिए गए हैं

जिसे इस रूप में पुन: प्रस्तुत किया जा सकता है

जब भी −π < x < π और T (सामान्यीकृत) चेबीशेव बहुपद है।

यह भी देखें

संदर्भ

  1. Ince 1944, pp. 393–393


बाहरी संबंध