हाइपरज्यामेट्रिक फ़ंक्शन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Special function defined by a hypergeometric series}} | {{Short description|Special function defined by a hypergeometric series}} | ||
{{hatnote| | {{hatnote| हाइपर ज्यामितीय फलन शब्द कभी-कभी सामान्यीकृत हाइपर ज्यामितीय फलन को संदर्भित करता है। अन्य हाइपर ज्यामितीय फलनो के लिए यह भी देखें।}} | ||
fफ़ाइल: हाइपर | |||
fफ़ाइल: हाइपर ज्यामितीय फलन 2F1(a,b; c; z) का प्लॉट a=2 और b=3 और c= के साथ4 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the hypergeometric function 2F1(ए, बी; सी; जेड) ए = 2 और बी = 3 और सी = 4 जटिल विमान में -2-2i से 2 + 2i तक मैथमैटिका 13.1 फलन कॉम्प्लेक्सप्लॉट 3 डी | थंब | हाइपरजेमेट्रिक फलन का प्लॉट 2F1(a,b; c; z) a=2 और b=3 और c=4 के साथ कॉम्प्लेक्स प्लेन में -2-2i से 2+2i तक मेथेमेटिका 13.1 फलन ComplexPlot3D के साथ बनाए गए रंगों के साथ | |||
गणित में, गाऊसी या साधारण हाइपरज्यामितीय फलन <sub>2</sub>F<sub>1</sub>(a,b;c;z) 'हाइपरज्यामितीय श्रृंखला' द्वारा प्रस्तुत एक [[विशेष कार्य]] है, जिसमें विशेष मामले या सीमित मामले (गणित) के रूप में कई अन्य विशेष कार्य सम्मलित हैं। यह दूसरे क्रम के रैखिक फलन साधारण अवकल समीकरण (ODE) का एक हल है। तीन [[नियमित एकवचन बिंदु]]ओं के साथ प्रत्येक दूसरे क्रम के रैखिक ODE को इस समीकरण में रूपांतरित किया जा सकता है। | गणित में, गाऊसी या साधारण हाइपरज्यामितीय फलन <sub>2</sub>F<sub>1</sub>(a,b;c;z) 'हाइपरज्यामितीय श्रृंखला' द्वारा प्रस्तुत एक [[विशेष कार्य]] है, जिसमें विशेष मामले या सीमित मामले (गणित) के रूप में कई अन्य विशेष कार्य सम्मलित हैं। यह दूसरे क्रम के रैखिक फलन साधारण अवकल समीकरण (ODE) का एक हल है। तीन [[नियमित एकवचन बिंदु]]ओं के साथ प्रत्येक दूसरे क्रम के रैखिक ODE को इस समीकरण में रूपांतरित किया जा सकता है। | ||
हाइपरज्यामेट्रिक | हाइपरज्यामेट्रिक फलन से जुड़े हजारों प्रकाशित [[पहचान (गणित)]] में से कुछ की व्यवस्थित सूचियों के लिए, संदर्भ कार्यों को देखें {{harvtxt | Erdélyi | Magnus | Oberhettinger | Tricomi |1953}} और {{harvtxt | Olde Daalhuis | 2010}}. सभी पहचानों को व्यवस्थित करने के लिए कोई ज्ञात प्रणाली नहीं है; वास्तव में, कोई ज्ञात एल्गोरिथम नहीं है जो सभी पहचान उत्पन्न कर सके; कई अलग-अलग एल्गोरिदम ज्ञात हैं जो पहचान की विभिन्न श्रृंखला उत्पन्न करते हैं। पहचान की एल्गोरिथम खोज का सिद्धांत एक सक्रिय शोध विषय बना हुआ है। | ||
== इतिहास == | == इतिहास == | ||
Line 13: | Line 13: | ||
हाइपरज्यामितीय श्रृंखला का अध्ययन [[लियोनहार्ड यूलर]] द्वारा किया गया था, लेकिन पहला पूर्ण व्यवस्थित उपचार किसके द्वारा दिया गया था {{harvs|txt|authorlink=Carl Friedrich Gauss|first=Carl Friedrich|last=Gauss|year=1813}}. | हाइपरज्यामितीय श्रृंखला का अध्ययन [[लियोनहार्ड यूलर]] द्वारा किया गया था, लेकिन पहला पूर्ण व्यवस्थित उपचार किसके द्वारा दिया गया था {{harvs|txt|authorlink=Carl Friedrich Gauss|first=Carl Friedrich|last=Gauss|year=1813}}. | ||
उन्नीसवीं शताब्दी के अध्ययनों में वे सम्मलित थे {{harvs|txt|authorlink=Ernst Kummer|first=Ernst|last=Kummer|year=1836}}, और द्वारा मौलिक लक्षण वर्णन {{harvs|txt|authorlink=Bernhard Riemann|first=Bernhard|last=Riemann|year=1857}} | उन्नीसवीं शताब्दी के अध्ययनों में वे सम्मलित थे {{harvs|txt|authorlink=Ernst Kummer|first=Ernst|last=Kummer|year=1836}}, और द्वारा मौलिक लक्षण वर्णन {{harvs|txt|authorlink=Bernhard Riemann|first=Bernhard|last=Riemann|year=1857}} हाइपर ज्यामितीय फलन का अंतर समीकरण के माध्यम से इसे संतुष्ट करता है। | ||
रीमैन ने दिखाया कि दूसरे क्रम का अंतर समीकरण <sub>2</sub>F<sub>1</sub>(z), जटिल विमान में जांच की गई, इसकी तीन [[नियमित विलक्षणता]] द्वारा विशेषता ([[रीमैन क्षेत्र]] पर) की जा सकती है। | रीमैन ने दिखाया कि दूसरे क्रम का अंतर समीकरण <sub>2</sub>F<sub>1</sub>(z), जटिल विमान में जांच की गई, इसकी तीन [[नियमित विलक्षणता]] द्वारा विशेषता ([[रीमैन क्षेत्र]] पर) की जा सकती है। | ||
Line 20: | Line 20: | ||
== हाइपरज्यामितीय श्रृंखला == | == हाइपरज्यामितीय श्रृंखला == | ||
हाइपर ज्यामितीय फलन के लिए परिभाषित किया गया है {{math|{{!}}''z''{{!}} < 1}} शक्ति श्रृंखला द्वारा | |||
<math display=block>{}_2F_1(a,b;c;z) = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!} = 1 + \frac{ab}{c}\frac{z}{1!} + \frac{a(a+1)b(b+1)}{c(c+1)}\frac{z^2}{2!} + \cdots.</math> | <math display=block>{}_2F_1(a,b;c;z) = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!} = 1 + \frac{ab}{c}\frac{z}{1!} + \frac{a(a+1)b(b+1)}{c(c+1)}\frac{z^2}{2!} + \cdots.</math> | ||
Line 28: | Line 28: | ||
q(q+1) \cdots (q+n-1) & n > 0 | q(q+1) \cdots (q+n-1) & n > 0 | ||
\end{cases}</math> | \end{cases}</math> | ||
यदि कोई हो तो श्रृंखला समाप्त हो जाती है {{mvar|a}} या {{mvar|b}} एक गैर-सकारात्मक पूर्णांक है, जिस स्थिति में | यदि कोई हो तो श्रृंखला समाप्त हो जाती है {{mvar|a}} या {{mvar|b}} एक गैर-सकारात्मक पूर्णांक है, जिस स्थिति में फलन बहुपद में कम हो जाता है: | ||
<math display=block>{}_2F_1(-m,b;c;z) = \sum_{n=0}^m (-1)^n \binom{m}{n} \frac{(b)_n}{(c)_n} z^n.</math> | <math display=block>{}_2F_1(-m,b;c;z) = \sum_{n=0}^m (-1)^n \binom{m}{n} \frac{(b)_n}{(c)_n} z^n.</math> | ||
Line 53: | Line 53: | ||
== विशेष मामले == | == विशेष मामले == | ||
कई सामान्य गणितीय कार्यों को | कई सामान्य गणितीय कार्यों को हाइपर ज्यामितीय फलन के संदर्भ में या इसके सीमित स्थितियों के रूप में व्यक्त किया जा सकता है। कुछ विशिष्ट उदाहरण हैं | ||
<math display=block>\begin{align} | <math display=block>\begin{align} | ||
Line 65: | Line 65: | ||
<math display=block>\begin{align} | <math display=block>\begin{align} | ||
_2F_1\left(1, b; b; z\right) &= 1 + z + z^2 + z^3 + z^4 + \cdots \end{align}</math> | _2F_1\left(1, b; b; z\right) &= 1 + z + z^2 + z^3 + z^4 + \cdots \end{align}</math> | ||
इसलिए, नाम | इसलिए, नाम हाइपर ज्यामितीय । इस समारोह को ज्यामितीय श्रृंखला के सामान्यीकरण के रूप में माना जा सकता है। | ||
[[संगम हाइपरज्यामितीय समारोह]] (या कुमेर का | [[संगम हाइपरज्यामितीय समारोह]] (या कुमेर का फलन ) को हाइपर ज्यामितीय फलन की सीमा के रूप में दिया जा सकता है | ||
<math display=block>M(a,c,z) = \lim_{b\to\infty}{}_2F_1(a,b;c;b^{-1}z)</math> | <math display=block>M(a,c,z) = \lim_{b\to\infty}{}_2F_1(a,b;c;b^{-1}z)</math> | ||
इसलिए सभी कार्य जो इसके अनिवार्य रूप से विशेष मामले हैं, जैसे बेसेल कार्य, को हाइपरज्यामितीय कार्यों की सीमा के रूप में व्यक्त किया जा सकता है। इनमें गणितीय भौतिकी के सामान्यतः उपयोग किए जाने वाले अधिकांश कार्य सम्मलित हैं। | इसलिए सभी कार्य जो इसके अनिवार्य रूप से विशेष मामले हैं, जैसे बेसेल कार्य, को हाइपरज्यामितीय कार्यों की सीमा के रूप में व्यक्त किया जा सकता है। इनमें गणितीय भौतिकी के सामान्यतः उपयोग किए जाने वाले अधिकांश कार्य सम्मलित हैं। | ||
[[लेजेंड्रे समारोह]] 3 नियमित एकवचन बिंदुओं के साथ दूसरे क्रम के अंतर समीकरण के समाधान हैं, इसलिए इसे | [[लेजेंड्रे समारोह]] 3 नियमित एकवचन बिंदुओं के साथ दूसरे क्रम के अंतर समीकरण के समाधान हैं, इसलिए इसे हाइपर ज्यामितीय फलन के संदर्भ में कई विधियों से व्यक्त किया जा सकता है, उदाहरण के लिए | ||
<math display=block>{}_2F_1(a,1-a;c;z) = \Gamma(c)z^{\tfrac{1-c}{2}}(1-z)^{\tfrac{c-1}{2}}P_{-a}^{1-c}(1-2z)</math> | <math display=block>{}_2F_1(a,1-a;c;z) = \Gamma(c)z^{\tfrac{1-c}{2}}(1-z)^{\tfrac{c-1}{2}}P_{-a}^{1-c}(1-2z)</math> | ||
Line 90: | Line 90: | ||
<math display=block>\theta_2(\tau)=\sum_{n\in\mathbb{Z}}e^{\pi i\tau (n+1/2)^2},\quad \theta_3(\tau)=\sum_{n\in\mathbb{Z}}e^{\pi i\tau n^2}</math>. | <math display=block>\theta_2(\tau)=\sum_{n\in\mathbb{Z}}e^{\pi i\tau (n+1/2)^2},\quad \theta_3(\tau)=\sum_{n\in\mathbb{Z}}e^{\pi i\tau n^2}</math>. | ||
[[j-invariant]], एक मॉड्यूलर फॉर्म # मॉड्यूलर | [[j-invariant]], एक मॉड्यूलर फॉर्म # मॉड्यूलर फलन , एक तर्कसंगत फलन है <math>\lambda (\tau)</math>. | ||
अपूर्ण बीटा कार्य B<sub>''x''</sub>(पी, क्यू) से संबंधित हैं | अपूर्ण बीटा कार्य B<sub>''x''</sub>(पी, क्यू) से संबंधित हैं | ||
Line 104: | Line 104: | ||
== हाइपरज्यामेट्रिक अंतर समीकरण == | == हाइपरज्यामेट्रिक अंतर समीकरण == | ||
हाइपर ज्यामितीय फलन यूलर के हाइपर ज्यामितीय डिफरेंशियल इक्वेशन का एक समाधान है | |||
<math display=block>z(1-z)\frac {d^2w}{dz^2} + \left[c-(a+b+1)z \right] \frac {dw}{dz} - ab\,w = 0.</math> | <math display=block>z(1-z)\frac {d^2w}{dz^2} + \left[c-(a+b+1)z \right] \frac {dw}{dz} - ab\,w = 0.</math> | ||
Line 110: | Line 110: | ||
===एकवचन बिंदुओं पर समाधान=== | ===एकवचन बिंदुओं पर समाधान=== | ||
हाइपरज्यामितीय अंतर समीकरण के समाधान हाइपरज्यामितीय श्रृंखला से निर्मित होते हैं <sub>2</sub>F<sub>1</sub>(ए, बी; सी; जेड)। समीकरण के दो [[रैखिक रूप से स्वतंत्र]] समाधान हैं। तीन एकवचन बिंदुओं 0, 1, ∞ में से प्रत्येक पर, सामान्यतः x के रूप के दो विशेष समाधान होते हैं<sup>s</sup> x का एक होलोमॉर्फिक | हाइपरज्यामितीय अंतर समीकरण के समाधान हाइपरज्यामितीय श्रृंखला से निर्मित होते हैं <sub>2</sub>F<sub>1</sub>(ए, बी; सी; जेड)। समीकरण के दो [[रैखिक रूप से स्वतंत्र]] समाधान हैं। तीन एकवचन बिंदुओं 0, 1, ∞ में से प्रत्येक पर, सामान्यतः x के रूप के दो विशेष समाधान होते हैं<sup>s</sup> x का एक होलोमॉर्फिक फलन है, जहां s इंडिकियल समीकरण की दो जड़ों में से एक है और x एक स्थानीय चर है जो एक नियमित विलक्षण बिंदु पर गायब हो जाता है। यह इस प्रकार 3 × 2 = 6 विशेष समाधान देता है। | ||
बिंदु z = 0 के आसपास, दो स्वतंत्र समाधान हैं, यदि c एक गैर-सकारात्मक पूर्णांक नहीं है, | बिंदु z = 0 के आसपास, दो स्वतंत्र समाधान हैं, यदि c एक गैर-सकारात्मक पूर्णांक नहीं है, | ||
Line 147: | Line 147: | ||
जो 4 अंक 1, 2, 3, 4 पर सममित समूह के साथ एक समरूपता के अनुसार पारदर्शिता (12), (23), और (34) के अनुरूप है। (इनमें से पहला और तीसरा वास्तव में एफ (ए, b;c;z) जबकि दूसरा अंतर समीकरण का एक स्वतंत्र समाधान है।) | जो 4 अंक 1, 2, 3, 4 पर सममित समूह के साथ एक समरूपता के अनुसार पारदर्शिता (12), (23), और (34) के अनुरूप है। (इनमें से पहला और तीसरा वास्तव में एफ (ए, b;c;z) जबकि दूसरा अंतर समीकरण का एक स्वतंत्र समाधान है।) | ||
कुमार के 24 = 6 × 4 परिवर्तनों को हाइपरजोमेट्रिक | कुमार के 24 = 6 × 4 परिवर्तनों को हाइपरजोमेट्रिक फलन में लागू करने से ऊपर दिए गए 6 = 2 × 3 समाधान 3 एकवचन बिंदुओं में से प्रत्येक पर 2 संभावित घातांकों में से प्रत्येक के अनुरूप होते हैं, जिनमें से प्रत्येक पहचान के कारण 4 बार प्रकट होता है | ||
<math display=block>\begin{align} | <math display=block>\begin{align} | ||
Line 173: | Line 173: | ||
=== श्वार्ज त्रिकोण के नक्शे === | === श्वार्ज त्रिकोण के नक्शे === | ||
{{Main|Schwarz triangle function}} | {{Main|Schwarz triangle function}} | ||
श्वार्ज़ त्रिभुज मानचित्र या श्वार्ज़ ''एस''- | श्वार्ज़ त्रिभुज मानचित्र या श्वार्ज़ ''एस''-फलन समाधान के जोड़े के अनुपात हैं। | ||
<math display=block>s_k(z) = \frac{\phi_k^{(1)}(z)}{\phi_k^{(0)}(z)}</math> | <math display=block>s_k(z) = \frac{\phi_k^{(1)}(z)}{\phi_k^{(0)}(z)}</math> | ||
Line 234: | Line 234: | ||
=== [[जॉन ट्रांसफॉर्म]] === | === [[जॉन ट्रांसफॉर्म]] === | ||
गॉस | गॉस हाइपर ज्यामितीय फलन को जॉन ट्रांसफ़ॉर्म के रूप में लिखा जा सकता है {{harv|Gelfand|Gindikin|Graev|2003|loc=2.1.2}}. | ||
== गॉस के सन्निहित संबंध == | == गॉस के सन्निहित संबंध == | ||
Line 289: | Line 289: | ||
=== द्विघात परिवर्तन === | === द्विघात परिवर्तन === | ||
यदि दो संख्याएँ 1 − c, c − 1, a − b, b − a, a + b − c, c − a − b बराबर हैं या उनमें से एक 1/2 है तो एक 'द्विघात परिवर्तन' होता है | यदि दो संख्याएँ 1 − c, c − 1, a − b, b − a, a + b − c, c − a − b बराबर हैं या उनमें से एक 1/2 है तो एक 'द्विघात परिवर्तन' होता है हाइपर ज्यामितीय फलन का, इसे द्विघात समीकरण से संबंधित z के एक अलग मान से जोड़ना। द्वारा पहला उदाहरण दिया गया था {{harvtxt|Kummer|1836}}, और द्वारा एक पूरी सूची दी गई थी {{harvtxt|Goursat|1881}}. एक विशिष्ट उदाहरण है | ||
<math display=block>{}_2F_1(a,b;2b;z) = (1-z)^{-\frac{a}{2}} {}_2F_1 \left (\tfrac{1}{2}a, b-\tfrac{1}{2}a; b+\tfrac{1}{2}; \frac{z^2}{4z-4} \right)</math> | <math display=block>{}_2F_1(a,b;2b;z) = (1-z)^{-\frac{a}{2}} {}_2F_1 \left (\tfrac{1}{2}a, b-\tfrac{1}{2}a; b+\tfrac{1}{2}; \frac{z^2}{4z-4} \right)</math> | ||
Line 295: | Line 295: | ||
=== उच्च क्रम परिवर्तन === | === उच्च क्रम परिवर्तन === | ||
यदि 1−c, a−b, a+b−c संकेतों से भिन्न है या उनमें से दो 1/3 या −1/3 हैं तो हाइपरज्यामितीय | यदि 1−c, a−b, a+b−c संकेतों से भिन्न है या उनमें से दो 1/3 या −1/3 हैं तो हाइपरज्यामितीय फलन का एक 'घन परिवर्तन' होता है, जो इसे एक अलग मान से जोड़ता है z एक घन समीकरण से संबंधित है। द्वारा पहला उदाहरण दिया गया था {{harvtxt|Goursat|1881}}. एक विशिष्ट उदाहरण है | ||
<math display=block>{}_2F_1 \left (\tfrac{3}{2}a,\tfrac{1}{2}(3a-1);a+\tfrac{1}{2};-\tfrac{z^2}{3} \right) = (1+z)^{1-3a} \, {}_2F_1 \left (a-\tfrac{1}{3}, a; 2a; 2z(3+z^2)(1+z)^{-3} \right )</math> | <math display=block>{}_2F_1 \left (\tfrac{3}{2}a,\tfrac{1}{2}(3a-1);a+\tfrac{1}{2};-\tfrac{z^2}{3} \right) = (1+z)^{1-3a} \, {}_2F_1 \left (a-\tfrac{1}{3}, a; 2a; 2z(3+z^2)(1+z)^{-3} \right )</math> | ||
Line 338: | Line 338: | ||
=== अन्य बिंदु === | === अन्य बिंदु === | ||
मापदंडों के विशेष तर्कसंगत मूल्यों पर एक बीजगणितीय संख्या के रूप में | मापदंडों के विशेष तर्कसंगत मूल्यों पर एक बीजगणितीय संख्या के रूप में हाइपर ज्यामितीय फलन देने वाले कई अन्य सूत्र हैं, जिनमें से कुछ में सूचीबद्ध हैं {{harvtxt | Gessel | Stanton | 1982}} और {{harvtxt|Koepf|1995}}. द्वारा कुछ विशिष्ट उदाहरण दिए गए हैं | ||
<math display=block>{}_2F_1 \left(a,-a;\tfrac{1}{2};\tfrac{x^2}{4(x-1)} \right ) = \frac{(1-x)^a+(1-x)^{-a}}{2},</math> | <math display=block>{}_2F_1 \left(a,-a;\tfrac{1}{2};\tfrac{x^2}{4(x-1)} \right ) = \frac{(1-x)^a+(1-x)^{-a}}{2},</math> | ||
Line 348: | Line 348: | ||
== यह भी देखें == | == यह भी देखें == | ||
*अपेल श्रृंखला, हाइपरज्यामितीय श्रृंखला का 2-चर सामान्यीकरण | *अपेल श्रृंखला, हाइपरज्यामितीय श्रृंखला का 2-चर सामान्यीकरण | ||
*[[बुनियादी हाइपरज्यामितीय श्रृंखला|मौलिक | *[[बुनियादी हाइपरज्यामितीय श्रृंखला|मौलिक हाइपर ज्यामितीय श्रृंखला]] जहां शब्दों का अनुपात सूचकांक का एक आवधिक कार्य है | ||
*द्विपक्षीय हाइपरज्यामितीय श्रृंखला <sub>''p''</sub>H<sub>''p''</sub> सामान्यीकृत हाइपरज्यामितीय श्रृंखला के समान हैं, लेकिन सभी पूर्णांकों पर अभिव्यक्त हैं | *द्विपक्षीय हाइपरज्यामितीय श्रृंखला <sub>''p''</sub>H<sub>''p''</sub> सामान्यीकृत हाइपरज्यामितीय श्रृंखला के समान हैं, लेकिन सभी पूर्णांकों पर अभिव्यक्त हैं | ||
* [[द्विपद श्रृंखला]] <sub>1</sub>F<sub>0</sub> | * [[द्विपद श्रृंखला]] <sub>1</sub>F<sub>0</sub> | ||
*संगम अतिज्यामितीय श्रृंखला <sub>1</sub>F<sub>1</sub>(ए; सी; जेड) | *संगम अतिज्यामितीय श्रृंखला <sub>1</sub>F<sub>1</sub>(ए; सी; जेड) | ||
*अण्डाकार | *अण्डाकार हाइपर ज्यामितीय श्रृंखला जहां शब्दों का अनुपात सूचकांक का एक अण्डाकार कार्य है | ||
*[[यूलर हाइपरजियोमेट्रिक इंटीग्रल]], का इंटीग्रल रिप्रेजेंटेशन <sub>2</sub>F<sub>1</sub> | *[[यूलर हाइपरजियोमेट्रिक इंटीग्रल|यूलर हाइपर ज्यामितीय इंटीग्रल]], का इंटीग्रल रिप्रेजेंटेशन <sub>2</sub>F<sub>1</sub> | ||
* [[फॉक्स एच-फ़ंक्शन]], मीजर जी-फंक्शन का विस्तार | * [[फॉक्स एच-फ़ंक्शन|फॉक्स एच-फलन]] , मीजर जी-फंक्शन का विस्तार | ||
*फॉक्स-राइट फलन, सामान्यीकृत अतिज्यामितीय फलन का एक सामान्यीकरण | *फॉक्स-राइट फलन, सामान्यीकृत अतिज्यामितीय फलन का एक सामान्यीकरण | ||
*[[हाइपरज्यामितीय समीकरण का फ्रोबेनियस समाधान]] | *[[हाइपरज्यामितीय समीकरण का फ्रोबेनियस समाधान]] | ||
*इज़राइल गेलफैंड द्वारा प्रस्तुत किया गया [[सामान्य [[सामान्यीकृत हाइपरजोमेट्रिक फ़ंक्शन]]]]|I. एम। गेलफैंड। | *इज़राइल गेलफैंड द्वारा प्रस्तुत किया गया [[सामान्य [[सामान्यीकृत हाइपरजोमेट्रिक फ़ंक्शन|सामान्यीकृत हाइपरजोमेट्रिक फलन]] ]]|I. एम। गेलफैंड। | ||
* सामान्यीकृत हाइपरज्यामितीय श्रृंखला <sub>''p''</sub>F<sub>''q''</sub> जहां शब्दों का अनुपात सूचकांक का तर्कसंगत कार्य है | * सामान्यीकृत हाइपरज्यामितीय श्रृंखला <sub>''p''</sub>F<sub>''q''</sub> जहां शब्दों का अनुपात सूचकांक का तर्कसंगत कार्य है | ||
*ज्यामितीय श्रृंखला, जहां शब्दों का अनुपात स्थिर है | *ज्यामितीय श्रृंखला, जहां शब्दों का अनुपात स्थिर है | ||
Line 364: | Line 364: | ||
* [[हम्बर्ट श्रृंखला]] 2 चर के 7 हाइपरज्यामितीय कार्य | * [[हम्बर्ट श्रृंखला]] 2 चर के 7 हाइपरज्यामितीय कार्य | ||
*[[हाइपरज्यामितीय वितरण]], एक असतत संभाव्यता वितरण | *[[हाइपरज्यामितीय वितरण]], एक असतत संभाव्यता वितरण | ||
* एक [[मैट्रिक्स तर्क का हाइपरजियोमेट्रिक फ़ंक्शन]], | * एक [[मैट्रिक्स तर्क का हाइपरजियोमेट्रिक फ़ंक्शन|मैट्रिक्स तर्क का हाइपर ज्यामितीय फलन]] , हाइपर ज्यामितीय श्रृंखला का बहुभिन्नरूपी सामान्यीकरण | ||
*काम्पे डे फेरिएट | *काम्पे डे फेरिएट फलन , दो चरों की हाइपरज्यामितीय श्रृंखला | ||
*[[लॉरिसेला हाइपरज्यामितीय श्रृंखला]], तीन चरों की अतिज्यामितीय श्रृंखला | *[[लॉरिसेला हाइपरज्यामितीय श्रृंखला]], तीन चरों की अतिज्यामितीय श्रृंखला | ||
*[[मैक्रोबर्ट ई-फंक्शन]], सामान्यीकृत हाइपरज्यामितीय श्रृंखला का एक विस्तार <sub>''p''</sub>F<sub>''q''</sub> मामले में पी> क्यू + 1। | *[[मैक्रोबर्ट ई-फंक्शन]], सामान्यीकृत हाइपरज्यामितीय श्रृंखला का एक विस्तार <sub>''p''</sub>F<sub>''q''</sub> मामले में पी> क्यू + 1। | ||
*[[ मेजर जी-फ़ंक्शन ]], सामान्यीकृत हाइपरज्यामितीय श्रृंखला का एक विस्तार <sub>''p''</sub>F<sub>''q''</sub> मामले में पी> क्यू + 1। | *[[ मेजर जी-फ़ंक्शन | मेजर जी-फलन]] , सामान्यीकृत हाइपरज्यामितीय श्रृंखला का एक विस्तार <sub>''p''</sub>F<sub>''q''</sub> मामले में पी> क्यू + 1। | ||
* [[मॉड्यूलर हाइपरज्यामितीय श्रृंखला]], दीर्घवृत्तीय अतिज्यामितीय श्रृंखला का एक समाप्ति रूप | * [[मॉड्यूलर हाइपरज्यामितीय श्रृंखला]], दीर्घवृत्तीय अतिज्यामितीय श्रृंखला का एक समाप्ति रूप | ||
* [[थीटा हाइपरज्यामितीय श्रृंखला]], एक विशेष प्रकार की दीर्घवृत्तीय अतिज्यामितीय श्रृंखला। | * [[थीटा हाइपरज्यामितीय श्रृंखला]], एक विशेष प्रकार की दीर्घवृत्तीय अतिज्यामितीय श्रृंखला। | ||
*विरासोरो [[अनुरूप ब्लॉक]], [[द्वि-आयामी अनुरूप क्षेत्र सिद्धांत]] में विशेष कार्य जो कुछ स्थितियों में | *विरासोरो [[अनुरूप ब्लॉक]], [[द्वि-आयामी अनुरूप क्षेत्र सिद्धांत]] में विशेष कार्य जो कुछ स्थितियों में हाइपर ज्यामितीय कार्यों को कम करते हैं। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 21:28, 23 May 2023
fफ़ाइल: हाइपर ज्यामितीय फलन 2F1(a,b; c; z) का प्लॉट a=2 और b=3 और c= के साथ4 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the hypergeometric function 2F1(ए, बी; सी; जेड) ए = 2 और बी = 3 और सी = 4 जटिल विमान में -2-2i से 2 + 2i तक मैथमैटिका 13.1 फलन कॉम्प्लेक्सप्लॉट 3 डी | थंब | हाइपरजेमेट्रिक फलन का प्लॉट 2F1(a,b; c; z) a=2 और b=3 और c=4 के साथ कॉम्प्लेक्स प्लेन में -2-2i से 2+2i तक मेथेमेटिका 13.1 फलन ComplexPlot3D के साथ बनाए गए रंगों के साथ
गणित में, गाऊसी या साधारण हाइपरज्यामितीय फलन 2F1(a,b;c;z) 'हाइपरज्यामितीय श्रृंखला' द्वारा प्रस्तुत एक विशेष कार्य है, जिसमें विशेष मामले या सीमित मामले (गणित) के रूप में कई अन्य विशेष कार्य सम्मलित हैं। यह दूसरे क्रम के रैखिक फलन साधारण अवकल समीकरण (ODE) का एक हल है। तीन नियमित एकवचन बिंदुओं के साथ प्रत्येक दूसरे क्रम के रैखिक ODE को इस समीकरण में रूपांतरित किया जा सकता है।
हाइपरज्यामेट्रिक फलन से जुड़े हजारों प्रकाशित पहचान (गणित) में से कुछ की व्यवस्थित सूचियों के लिए, संदर्भ कार्यों को देखें Erdélyi et al. (1953) और Olde Daalhuis (2010) . सभी पहचानों को व्यवस्थित करने के लिए कोई ज्ञात प्रणाली नहीं है; वास्तव में, कोई ज्ञात एल्गोरिथम नहीं है जो सभी पहचान उत्पन्न कर सके; कई अलग-अलग एल्गोरिदम ज्ञात हैं जो पहचान की विभिन्न श्रृंखला उत्पन्न करते हैं। पहचान की एल्गोरिथम खोज का सिद्धांत एक सक्रिय शोध विषय बना हुआ है।
इतिहास
हाइपरज्यामितीय श्रृंखला शब्द का पहली बार उपयोग जॉन वालिस ने अपनी 1655 की पुस्तक अरिथमेटिका इन्फिनिटोरम में किया था।
हाइपरज्यामितीय श्रृंखला का अध्ययन लियोनहार्ड यूलर द्वारा किया गया था, लेकिन पहला पूर्ण व्यवस्थित उपचार किसके द्वारा दिया गया था Carl Friedrich Gauss (1813).
उन्नीसवीं शताब्दी के अध्ययनों में वे सम्मलित थे Ernst Kummer (1836), और द्वारा मौलिक लक्षण वर्णन Bernhard Riemann (1857) हाइपर ज्यामितीय फलन का अंतर समीकरण के माध्यम से इसे संतुष्ट करता है।
रीमैन ने दिखाया कि दूसरे क्रम का अंतर समीकरण 2F1(z), जटिल विमान में जांच की गई, इसकी तीन नियमित विलक्षणता द्वारा विशेषता (रीमैन क्षेत्र पर) की जा सकती है।
ऐसे मामले जहां समाधान बीजगणितीय कार्य हैं, हरमन ब्लैक (श्वार्ज़ की सूची) द्वारा पाए गए।
हाइपरज्यामितीय श्रृंखला
हाइपर ज्यामितीय फलन के लिए परिभाषित किया गया है |z| < 1 शक्ति श्रृंखला द्वारा
जैसा c → −m, कहाँ m एक गैर-ऋणात्मक पूर्णांक है, एक के पास है 2F1(z) → ∞. मूल्य से विभाजित करना Γ(c) गामा समारोह की, हमारे पास सीमा है:
2F1(z) सामान्यीकृत हाइपरज्यामितीय श्रृंखला का सबसे सामान्य प्रकार है pFq, और अधिकांशतः सरल रूप से निर्दिष्ट किया जाता है F(z).
विभेद सूत्र
पहचान का उपयोग करना , यह दिखाया गया है
विशेष मामले
कई सामान्य गणितीय कार्यों को हाइपर ज्यामितीय फलन के संदर्भ में या इसके सीमित स्थितियों के रूप में व्यक्त किया जा सकता है। कुछ विशिष्ट उदाहरण हैं
संगम हाइपरज्यामितीय समारोह (या कुमेर का फलन ) को हाइपर ज्यामितीय फलन की सीमा के रूप में दिया जा सकता है
लेजेंड्रे समारोह 3 नियमित एकवचन बिंदुओं के साथ दूसरे क्रम के अंतर समीकरण के समाधान हैं, इसलिए इसे हाइपर ज्यामितीय फलन के संदर्भ में कई विधियों से व्यक्त किया जा सकता है, उदाहरण के लिए
n और उनके विशेष मामले लीजेंड्रे बहुपद, चेबिशेव बहुपद, गेगेनबॉयर बहुपद को हाइपरज्यामितीय कार्यों के संदर्भ में लिखा जा सकता है
दिया गया , होने देना
j-invariant, एक मॉड्यूलर फॉर्म # मॉड्यूलर फलन , एक तर्कसंगत फलन है .
अपूर्ण बीटा कार्य Bx(पी, क्यू) से संबंधित हैं
हाइपरज्यामेट्रिक अंतर समीकरण
हाइपर ज्यामितीय फलन यूलर के हाइपर ज्यामितीय डिफरेंशियल इक्वेशन का एक समाधान है
एकवचन बिंदुओं पर समाधान
हाइपरज्यामितीय अंतर समीकरण के समाधान हाइपरज्यामितीय श्रृंखला से निर्मित होते हैं 2F1(ए, बी; सी; जेड)। समीकरण के दो रैखिक रूप से स्वतंत्र समाधान हैं। तीन एकवचन बिंदुओं 0, 1, ∞ में से प्रत्येक पर, सामान्यतः x के रूप के दो विशेष समाधान होते हैंs x का एक होलोमॉर्फिक फलन है, जहां s इंडिकियल समीकरण की दो जड़ों में से एक है और x एक स्थानीय चर है जो एक नियमित विलक्षण बिंदु पर गायब हो जाता है। यह इस प्रकार 3 × 2 = 6 विशेष समाधान देता है।
बिंदु z = 0 के आसपास, दो स्वतंत्र समाधान हैं, यदि c एक गैर-सकारात्मक पूर्णांक नहीं है,
z = 1 के आसपास, यदि c − a − b एक पूर्णांक नहीं है, तो इसके दो स्वतंत्र समाधान होते हैं
उपरोक्त 6 समाधानों में से कोई भी 3 एक रैखिक संबंध को संतुष्ट करता है क्योंकि समाधानों का स्थान 2-आयामी है, (6
3) = उनके बीच 20 रैखिक संबंध जिन्हें कनेक्शन सूत्र कहा जाता है।
कुमेर के 24 उपाय
एन एकवचन बिंदुओं के साथ एक दूसरे क्रम के फ्यूचियन समीकरण में समरूपता का एक समूह है जो इसके समाधान पर कार्य करता है (प्रोजेक्टिवली), कॉक्सेटर समूह डब्ल्यू (डी) के लिए आइसोमोर्फिकn) आदेश 2n−1n!. हाइपरज्यामितीय समीकरण केस एन = 3 है, ऑर्डर 24 आइसोमोर्फिक के समूह के साथ 4 बिंदुओं पर सममित समूह के लिए, जैसा कि पहले वर्णित है गंभीर दु:ख सममित समूह की उपस्थिति आकस्मिक है और 3 से अधिक एकवचन बिंदुओं के लिए कोई एनालॉग नहीं है, और कभी-कभी समूह को 3 बिंदुओं पर सममित समूह के विस्तार के रूप में सोचना बेहतर होता है (3 एकवचन बिंदुओं के क्रमपरिवर्तन के रूप में कार्य करना) एक क्लेन 4-समूह (जिसके तत्व समान संख्या में एकवचन बिंदुओं पर घातांक के अंतर के संकेतों को बदलते हैं)। Kummer के 24 रूपांतरणों का समूह तीन परिवर्तनों द्वारा एक समाधान F(a,b;c;z) से एक में उत्पन्न होता है
कुमार के 24 = 6 × 4 परिवर्तनों को हाइपरजोमेट्रिक फलन में लागू करने से ऊपर दिए गए 6 = 2 × 3 समाधान 3 एकवचन बिंदुओं में से प्रत्येक पर 2 संभावित घातांकों में से प्रत्येक के अनुरूप होते हैं, जिनमें से प्रत्येक पहचान के कारण 4 बार प्रकट होता है
क्यू-फॉर्म
हाइपरज्यामितीय अंतर समीकरण को क्यू-फॉर्म में लाया जा सकता है
श्वार्ज त्रिकोण के नक्शे
श्वार्ज़ त्रिभुज मानचित्र या श्वार्ज़ एस-फलन समाधान के जोड़े के अनुपात हैं।
ध्यान दें कि प्रत्येक त्रिभुज मानचित्र नियमित एकवचन बिंदु z ∈ {0, 1, ∞} पर क्रमशः है, साथ में
इसके अतिरिक्त , λ=1/p, μ=1/q और ν=1/r पूर्णांकों p, q, 'के मामले में 'r, फिर त्रिभुज गोले, जटिल तल या ऊपरी आधे तल को टाइल करता है, चाहे λ + μ + ν - 1 धनात्मक, शून्य या ऋणात्मक हो; और त्रिकोण समूह 〈p, q, r〉 = Δ(p, q, ' 'आर)।
मोनोड्रोमी समूह
एक हाइपरज्यामितीय समीकरण का मोनोड्रोमी वर्णन करता है कि कैसे मौलिक समाधान बदल जाते हैं जब विश्लेषणात्मक रूप से जेड विमान में पथ के चारों ओर जारी रहता है जो उसी बिंदु पर लौटते हैं। यही है, जब पथ एक विलक्षणता के चारों ओर घूमता है 2F1, समापन बिंदु पर समाधानों का मान प्रारंभिक बिंदु से भिन्न होगा।
हाइपरज्यामितीय समीकरण के दो मौलिक समाधान एक रैखिक परिवर्तन द्वारा एक दूसरे से संबंधित हैं; इस प्रकार मोनोड्रोमी एक मैपिंग (समूह समरूपतावाद) है:
अभिन्न सूत्र
यूलर प्रकार
यदि बी बीटा समारोह है तो
अन्य अभ्यावेदन, अन्य प्रमुख शाखा के अनुरूप, समान इंटीग्रैंड लेकर दिए गए हैं, लेकिन विभिन्न आदेशों में एकवचन को बंद करने के लिए एक बंद पोचममेर चक्र होने के लिए एकीकरण का मार्ग ले रहे हैं। इस तरह के रास्ते मोनोड्रोमी एक्शन के अनुरूप हैं।
बार्न्स अभिन्न
बार्न्स इंटीग्रल का मूल्यांकन करने के लिए बार्न्स ने अवशेष के सिद्धांत (जटिल विश्लेषण) का उपयोग किया
जॉन ट्रांसफॉर्म
गॉस हाइपर ज्यामितीय फलन को जॉन ट्रांसफ़ॉर्म के रूप में लिखा जा सकता है (Gelfand, Gindikin & Graev 2003, 2.1.2).
गॉस के सन्निहित संबंध
छह कार्य
गॉस का निरंतर अंश
गॉस ने एक सतत अंश के रूप में दो हाइपरज्यामितीय कार्यों के भागफल को लिखने के कई विधि े देने के लिए सन्निहित संबंधों का उपयोग किया, उदाहरण के लिए:
परिवर्तन सूत्र
परिवर्तन सूत्र तर्क z के विभिन्न मूल्यों पर दो हाइपरज्यामितीय कार्यों से संबंधित हैं।
आंशिक रैखिक परिवर्तन
यूलर का परिवर्तन है
द्विघात परिवर्तन
यदि दो संख्याएँ 1 − c, c − 1, a − b, b − a, a + b − c, c − a − b बराबर हैं या उनमें से एक 1/2 है तो एक 'द्विघात परिवर्तन' होता है हाइपर ज्यामितीय फलन का, इसे द्विघात समीकरण से संबंधित z के एक अलग मान से जोड़ना। द्वारा पहला उदाहरण दिया गया था Kummer (1836), और द्वारा एक पूरी सूची दी गई थी Goursat (1881). एक विशिष्ट उदाहरण है
उच्च क्रम परिवर्तन
यदि 1−c, a−b, a+b−c संकेतों से भिन्न है या उनमें से दो 1/3 या −1/3 हैं तो हाइपरज्यामितीय फलन का एक 'घन परिवर्तन' होता है, जो इसे एक अलग मान से जोड़ता है z एक घन समीकरण से संबंधित है। द्वारा पहला उदाहरण दिया गया था Goursat (1881). एक विशिष्ट उदाहरण है
विशेष बिंदुओं पर मान z
देखना Slater (1966, Appendix III) विशेष बिंदुओं पर सारांश सूत्रों की सूची के लिए, जिनमें से अधिकांश भी दिखाई देते हैं Bailey (1935). Gessel & Stanton (1982) अधिक बिंदुओं पर और मूल्यांकन दें। Koepf (1995) दिखाता है कि इनमें से अधिकांश पहचानों को कंप्यूटर एल्गोरिदम द्वारा कैसे सत्यापित किया जा सकता है।
=== z = 1=== पर विशेष मान गॉस का योग प्रमेय, कार्ल फ्रेडरिक गॉस के नाम पर, पहचान है
विशेष मामले के लिए जहां ,
द्विपक्षीय हाइपरज्यामितीय श्रृंखला|डगल का सूत्र z = 1 पर द्विपक्षीय अतिज्यामितीय श्रृंखला के लिए इसे सामान्यीकृत करता है।
कुमेर प्रमेय (z = −1)
ऐसे कई मामले हैं जहां z = −1 पर z = −1 पर z = −1 को z = 1 में बदलने के लिए और फिर परिणाम का मूल्यांकन करने के लिए गॉस के प्रमेय का उपयोग करके हाइपरज्यामितीय कार्यों का मूल्यांकन किया जा सकता है . एक विशिष्ट उदाहरण कुमेर का प्रमेय है, जिसका नाम अर्न्स्ट कुमेर के नाम पर रखा गया है:
=== z = 1/2=== पर मान गॉस का दूसरा योग प्रमेय है
अन्य बिंदु
मापदंडों के विशेष तर्कसंगत मूल्यों पर एक बीजगणितीय संख्या के रूप में हाइपर ज्यामितीय फलन देने वाले कई अन्य सूत्र हैं, जिनमें से कुछ में सूचीबद्ध हैं Gessel & Stanton (1982) और Koepf (1995). द्वारा कुछ विशिष्ट उदाहरण दिए गए हैं
यह भी देखें
- अपेल श्रृंखला, हाइपरज्यामितीय श्रृंखला का 2-चर सामान्यीकरण
- मौलिक हाइपर ज्यामितीय श्रृंखला जहां शब्दों का अनुपात सूचकांक का एक आवधिक कार्य है
- द्विपक्षीय हाइपरज्यामितीय श्रृंखला pHp सामान्यीकृत हाइपरज्यामितीय श्रृंखला के समान हैं, लेकिन सभी पूर्णांकों पर अभिव्यक्त हैं
- द्विपद श्रृंखला 1F0
- संगम अतिज्यामितीय श्रृंखला 1F1(ए; सी; जेड)
- अण्डाकार हाइपर ज्यामितीय श्रृंखला जहां शब्दों का अनुपात सूचकांक का एक अण्डाकार कार्य है
- यूलर हाइपर ज्यामितीय इंटीग्रल, का इंटीग्रल रिप्रेजेंटेशन 2F1
- फॉक्स एच-फलन , मीजर जी-फंक्शन का विस्तार
- फॉक्स-राइट फलन, सामान्यीकृत अतिज्यामितीय फलन का एक सामान्यीकरण
- हाइपरज्यामितीय समीकरण का फ्रोबेनियस समाधान
- इज़राइल गेलफैंड द्वारा प्रस्तुत किया गया [[सामान्य सामान्यीकृत हाइपरजोमेट्रिक फलन ]]|I. एम। गेलफैंड।
- सामान्यीकृत हाइपरज्यामितीय श्रृंखला pFq जहां शब्दों का अनुपात सूचकांक का तर्कसंगत कार्य है
- ज्यामितीय श्रृंखला, जहां शब्दों का अनुपात स्थिर है
- अरे समारोह , चार नियमित एकवचन बिंदुओं के साथ दूसरे क्रम के ODE का समाधान
- हॉर्न समारोह , दो वेरिएबल्स में 34 विशिष्ट अभिसरण हाइपरज्यामितीय श्रृंखला
- हम्बर्ट श्रृंखला 2 चर के 7 हाइपरज्यामितीय कार्य
- हाइपरज्यामितीय वितरण, एक असतत संभाव्यता वितरण
- एक मैट्रिक्स तर्क का हाइपर ज्यामितीय फलन , हाइपर ज्यामितीय श्रृंखला का बहुभिन्नरूपी सामान्यीकरण
- काम्पे डे फेरिएट फलन , दो चरों की हाइपरज्यामितीय श्रृंखला
- लॉरिसेला हाइपरज्यामितीय श्रृंखला, तीन चरों की अतिज्यामितीय श्रृंखला
- मैक्रोबर्ट ई-फंक्शन, सामान्यीकृत हाइपरज्यामितीय श्रृंखला का एक विस्तार pFq मामले में पी> क्यू + 1।
- मेजर जी-फलन , सामान्यीकृत हाइपरज्यामितीय श्रृंखला का एक विस्तार pFq मामले में पी> क्यू + 1।
- मॉड्यूलर हाइपरज्यामितीय श्रृंखला, दीर्घवृत्तीय अतिज्यामितीय श्रृंखला का एक समाप्ति रूप
- थीटा हाइपरज्यामितीय श्रृंखला, एक विशेष प्रकार की दीर्घवृत्तीय अतिज्यामितीय श्रृंखला।
- विरासोरो अनुरूप ब्लॉक, द्वि-आयामी अनुरूप क्षेत्र सिद्धांत में विशेष कार्य जो कुछ स्थितियों में हाइपर ज्यामितीय कार्यों को कम करते हैं।
संदर्भ
- Andrews, George E.; Askey, Richard & Roy, Ranjan (1999). Special functions. Encyclopedia of Mathematics and its Applications. Vol. 71. Cambridge University Press. ISBN 978-0-521-62321-6. MR 1688958.
- Bailey, W.N. (1935). Generalized Hypergeometric Series (PDF). Cambridge University Press. Archived from the original (PDF) on 2017-06-24. Retrieved 2016-07-23.
- Beukers, Frits (2002), Gauss' hypergeometric function. (lecture notes reviewing basics, as well as triangle maps and monodromy)
- Olde Daalhuis, Adri B. (2010), "हाइपरज्यामेट्रिक फ़ंक्शन", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
- Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz & Tricomi, Francesco G. (1953). Higher transcendental functions (PDF). Vol. I. New York – Toronto – London: McGraw–Hill Book Company, Inc. ISBN 978-0-89874-206-0. MR 0058756.
- Gasper, George & Rahman, Mizan (2004). Basic Hypergeometric Series, 2nd Edition, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge. ISBN 0-521-83357-4.
- Gauss, Carl Friedrich (1813). "Disquisitiones generales circa seriem infinitam ". Commentationes Societatis Regiae Scientarum Gottingensis Recentiores (in Latina). Göttingen. 2.
- Gelfand, I. M.; Gindikin, S.G. & Graev, M.I. (2003) [2000]. Selected topics in integral geometry. Translations of Mathematical Monographs. Vol. 220. Providence, R.I.: American Mathematical Society. ISBN 978-0-8218-2932-5. MR 2000133.
- Gessel, Ira & Stanton, Dennis (1982). "Strange evaluations of hypergeometric series". SIAM Journal on Mathematical Analysis. 13 (2): 295–308. doi:10.1137/0513021. ISSN 0036-1410. MR 0647127.
- Goursat, Édouard (1881). "Sur l'équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique". Annales Scientifiques de l'École Normale Supérieure (in français). 10: 3–142. doi:10.24033/asens.207. Retrieved 2008-10-16.
- Heckman, Gerrit & Schlichtkrull, Henrik (1994). Harmonic Analysis and Special Functions on Symmetric Spaces. San Diego: Academic Press. ISBN 0-12-336170-2. (part 1 treats hypergeometric functions on Lie groups)
- Hille, Einar (1976). Ordinary differential equations in the complex domain. Dover. ISBN 0-486-69620-0.
- Ince, E. L. (1944). Ordinary Differential Equations. Dover Publications.
- Klein, Felix (1981). Vorlesungen über die hypergeometrische Funktion. Grundlehren der Mathematischen Wissenschaften (in Deutsch). Vol. 39. Berlin, New York: Springer-Verlag. ISBN 978-3-540-10455-1. MR 0668700.
- Koepf, Wolfram (1995). "Algorithms for m-fold hypergeometric summation". Journal of Symbolic Computation. 20 (4): 399–417. doi:10.1006/jsco.1995.1056. ISSN 0747-7171. MR 1384455.
- Kummer, Ernst Eduard (1836). "Über die hypergeometrische Reihe ". Journal für die reine und angewandte Mathematik (in Deutsch). 15: 39–83, 127–172. ISSN 0075-4102.
- Lavoie, J. L.; Grondin, F.; Rathie, A.K. (1996). "Generalizations of Whipple's theorem on the sum of a 3F2". J. Comput. Appl. Math. 72 (2): 293–300. doi:10.1016/0377-0427(95)00279-0.
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T. & Flannery, B.P. (2007). "Section 6.13. Hypergeometric Functions". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
- Rakha, M.A.; Rathie, Arjun K. (2011). "Extensions of Euler's type-II transformation and Saalschutz's theorem". Bull. Korean Math. Soc. 48 (1): 151–156. doi:10.4134/BKMS.2011.48.1.151.
- Rathie, Arjun K.; Paris, R.B. (2007). "An extension of the Euler's-type transformation for the 3F2 series". Far East J. Math. Sci. 27 (1): 43–48.
- Riemann, Bernhard (1857). "Beiträge zur Theorie der durch die Gauss'sche Reihe F(α, β, γ, x) darstellbaren Functionen". Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Göttingen (in Deutsch). Göttingen: Verlag der Dieterichschen Buchhandlung. 7: 3–22. (a reprint of this paper can be found in "All publications of Riemann" (PDF).)
- Slater, Lucy Joan (1960). Confluent hypergeometric functions. Cambridge, UK: Cambridge University Press. MR 0107026.
- Slater, Lucy Joan (1966). Generalized hypergeometric functions. Cambridge, UK: Cambridge University Press. ISBN 0-521-06483-X. MR 0201688. (there is a 2008 paperback with ISBN 978-0-521-09061-2)
- Vidunas, Raimundas (2005). "Transformations of some Gauss hypergeometric functions". Journal of Symbolic Computation. 178 (1–2): 473–487. arXiv:math/0310436. Bibcode:2005JCoAM.178..473V. doi:10.1016/j.cam.2004.09.053. S2CID 119596800.
- Wall, H.S. (1948). Analytic Theory of Continued Fractions. D. Van Nostrand Company, Inc.
- Whittaker, E.T. & Watson, G.N. (1927). A Course of Modern Analysis. Cambridge, UK: Cambridge University Press.
- Yoshida, Masaaki (1997). Hypergeometric Functions, My Love: Modular Interpretations of Configuration Spaces. Braunschweig – Wiesbaden: Friedr. Vieweg & Sohn. ISBN 3-528-06925-2. MR 1453580.
बाहरी संबंध
- "Hypergeometric function", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- John Pearson, Computation of Hypergeometric Functions (University of Oxford, MSc Thesis)
- Marko Petkovsek, Herbert Wilf and Doron Zeilberger, The book "A = B" (freely downloadable)
- Weisstein, Eric W. "Hypergeometric Function". MathWorld.