गणित की भाषा: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
|||
Line 51: | Line 51: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 18/05/2023]] | [[Category:Created On 18/05/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 13:55, 25 May 2023
गणित की भाषा या गणितीय भाषा, प्राकृतिक भाषा (उदाहरण के लिए अंग्रेजी भाषा) का एक विस्तार है जिसका उपयोग गणित और विज्ञान में परिणाम (वैज्ञानिक नियम, प्रमेय, प्रमाण (गणित), तर्कसंगत निगमन (कटौती), आदि) को संक्षिप्त रूप से व्यक्त करने के लिए, संक्षिप्तता, सटीकता और अस्पष्टता के साथ किया जाता है।
विशेषताएं
गणितीय भाषा की प्रमुख विशेषताएँ निम्नलिखित हैं।
- व्युत्पन्न अर्थ के साथ सामान्य शब्दों का प्रयोग, सामान्यतः अधिक विशिष्ट और अधिक सटीक होती है। उदाहरण के लिए, "या" (तर्क) का अर्थ "एक, दूसरा या दोनों" होता है, जबकि साधारण भाषा में दोनों को कभी-कभी सम्मिलित किया जाता है और कभी-कभी नहीं भी करते है। साथ ही, एक रेखा (गणित) सीधी होती है और उसकी चौड़ाई शून्य होती है।
- सामान्य शब्दों का ऐसे अर्थ के साथ प्रयोग करना जो उनके सामान्य अर्थ से बिल्कुल अलग हो। उदाहरण के लिए, एक गणितीय वलय (गणित), वलय के किसी अन्य अर्थ से संबंधित नहीं होता है। वास्तविक संख्याएँ और काल्पनिक संख्याएँ दो प्रकार की संख्याएँ हैं, कोई भी अन्य की तुलना में अधिक वास्तविक या अधिक काल्पनिक नहीं है।
- नवशब्द का उपयोग। उदाहरण के लिए बहुपद, समरूपता।
- प्रतीक (गणित) का उपयोग शब्दों या वाक्यांशों के रूप में। उदाहरण के लिए, और क्रमशः पढ़े जाते हैं के बराबर होती है और "for all ".
- वाक्यों के भाग के रूप में सूत्रों का प्रयोग करना। उदाहरण के लिए: मात्रात्मक रूप से द्रव्यमान-ऊर्जा तुल्यता का प्रतिनिधित्व करता है। एक सूत्र जो एक वाक्य में सम्मिलित नहीं है, सामान्यतः अर्थहीन होता है, क्योंकि प्रतीकों का अर्थ संदर्भ पर निर्भर हो सकता है: में " ", यह वह संदर्भ है जो इसे निर्दिष्ट करता है E भौतिक पिण्ड की ऊर्जा है, m इसका द्रव्यमान है, और c प्रकाश की गति है।
- गणितीय शब्दावली का उपयोग जिसमें ऐसे वाक्यांश सम्मिलित हैं जो अनौपचारिक स्पष्टीकरण या आशुलिपि के लिए उपयोग किए जाते हैं। उदाहरण के लिए, किलिंग (हत्या) को प्रायः शून्य के स्थान पर उपयोग किया जाता है, और इसके कारण तकनीकी शब्दों के रूप में संबंधित प्रधान और सर्वनाश (रिंग थ्योरी) का उपयोग किया जाता है।
गणितीय पाठ को समझना
इन विशेषताओं का परिणाम यह है कि एक गणितीय पाठ सामान्यतः कुछ पूर्वापेक्षित ज्ञान के बिना समझ में नहीं आता है। उदाहरण के लिए वाक्य एक "मुफ्त मॉड्यूल एक मॉड्यूल (गणित) है जिसका आधार (रैखिक बीजगणित) है", पूरी तरह से सही है, हालांकि यह केवल व्याकरणिक रूप से सही निरर्थक के रूप में प्रकट होता है, जब कोई आधार, मॉड्यूल और मुक्त मॉड्यूल की परिभाषा नहीं जानता हैl
होरेशियो बर्ट विलियम्स|एच. बी। विलियम्स, एक इलेक्ट्रोफिजियोलॉजिस्ट, ने 1927 में लिखा था:
अब गणित सत्य का एक पिण्ड और एक विशेष भाषा दोनों हैl एक ऐसी भाषा जो हमारे विचार और अभिव्यक्ति के सामान्य माध्यम की तुलना में अधिक सावधानी से परिभाषित और अधिक सारगर्भित है। साथ ही यह इस महत्वपूर्ण विशेष में सामान्य भाषाओं से भिन्न है: यह छल साधन के नियमों के अधीन है। एक बार किसी कथन को गणितीय रूप में ढालने के बाद इसे इन नियमों के अनुसार जोड़-तोड़ किया जा सकता है और प्रतीकों का प्रत्येक विन्यास उन तथ्यों के अनुरूप और उन पर निर्भर करेगा जो मूल कथन में निहित हैं। अब यह सामान्य भाषा के प्रतीकों के साथ बौद्धिक कार्य करने में होने वाली मस्तिष्क संरचनाओं की कार्रवाई के बहुत करीब आता है। एक मायने में, गणितज्ञ एक ऐसे उपकरण को पूर्ण करने में सक्षम है जिसके माध्यम से केंद्रीय तंत्रिका तंत्र के बाहर तार्किक विचार के श्रम का एक हिस्सा केवल उस पर्यवेक्षण के साथ किया जाता है जो नियमों के अनुसार प्रतीकों में छल साधन करने के लिए आवश्यक है। : 291 }}
यह भी देखें
- गणितीय सूत्र
- औपचारिक भाषा
- गणितीय अंकन का इतिहास
- गणितीय संकेतन
- गणितीय शब्दावली की सूची
संदर्भ
अग्रिम पठन
भाषाई दृष्टिकोण
- कीथ डिवालिन (2000) द लैंग्वेज ऑफ मैथमैटिक्स: मेकिंग द इनविजिबल विजिबल, होल्ट पब्लिशिंग।
- के ओ'हैलोरन (2004) गणितीय प्रवचन: भाषा, प्रतीकवाद और दृश्य छवियां, सातत्य।
- आर.एल.ई. श्वार्ज़ेनबर्गर (2000), द लैंग्वेज ऑफ़ ज्योमेट्री, इन ए मैथमैटिकल स्पेक्ट्रम मिसेलनी, एप्लाइड प्रोबेबिलिटी ट्रस्ट।
शिक्षा में
- एफ. ब्रून, जे.एम. डियाज़, और वी.जे. डाइक्स (2015) गणित की भाषा। बच्चों को गणित पढ़ाना, 21(9), 530-536।
- जे. ओ. बैल (1994) गणित की भाषा में साक्षरता। अमेरिकी गणितीय मासिक, 101(8), 735-743।
- एल बुशमैन (1995) गणित की भाषा में संचार। बच्चों को गणित पढ़ाना, 1(6), 324-329।
- बी.आर. जोन्स, पी.एफ. हॉपर, डी.पी. फ्रांज़, एल. नॉट, और टी. ए. इविट्स (2008) गणित: एक दूसरी भाषा। गणित शिक्षक, 102(4), 307–312। जेएसटीओआर।
- सी. मॉर्गन (1996) "द लैंग्वेज ऑफ मैथमेटिक्स": टूवर्ड्स ए क्रिटिकल एनालिसिस ऑफ मैथमैटिक्स टेक्स्ट्स। गणित सीखने के लिए, 16(3), 2-10।
- जे.के. मौलटन (1946) गणित की भाषा। गणित शिक्षक, 39(3), 131–133।