रासायनिक प्रतिक्रिया नेटवर्क सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
Line 111: Line 111:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/05/2023]]
[[Category:Created On 18/05/2023]]
[[Category:Vigyan Ready]]

Revision as of 09:52, 26 May 2023

रासायनिक प्रतिक्रिया नेटवर्क सिद्धांत व्यवहारिक गणित का एक क्षेत्र है। जो गणितीय मॉडल को वास्तविक विश्व रसायनिक प्रणालियों के व्यवहार को मॉडल करने का प्रयास करता है। 1960 के दशक में इसकी स्थापना के बाद से इसने बढ़ते शोध समूह को आकर्षित करने का कार्य किया है, इनमें मुख्य रूप से जैव रसायन और सैद्धांतिक रसायन विज्ञान में इसके अनुप्रयोगों के कारण सम्मिलित हैं। इसमें सम्मिलित गणितीय संरचनाओं से उत्पन्न होने वाली विशेष समस्याओं के कारण इसने शुद्ध गणितज्ञों की रुचि को आकर्षित करने का कार्य किया है।

इतिहास

बड़े मापदडं पर कार्रवाई के नियम के आविष्कार के बाद रसायन विज्ञान और भौतिकी में प्रतिक्रिया नेटवर्क के गतिशील गुणों का अध्ययन किया गया। इस अध्ययन में आवश्यक चरण रुडोल्फ वेगशाइडर (1901) द्वारा जटिल रासायनिक प्रतिक्रियाओं के लिए विस्तृत संतुलन का प्रारम्भ[1] निकोले शिमोनोव (1934) द्वारा रासायनिक श्रृंखला प्रतिक्रियाओं के मात्रात्मक सिद्धांत का विकास,[2] उत्प्रेरक के कैनेटीक्स का विकास सिरिल नॉर्मन हिंशेलवुड द्वारा[3] और कई अन्य परिणाम भी सम्मिलित हैं।

अनुसंधान और प्रकाशनों के प्रवाह में रासायनिक गतिकी के तीन युगों का सार्वजनिक विस्तार किया जा सकता है।[4] ये युग नेताओं से जुड़े हो सकते हैं: पहला जैकबस हेनरिकस वैन 'टी हॉफ युग है, दूसरे को निकोले सेमेनोव-सिरिल नॉर्मन हिंशेलवुड युग कहा जा सकता है और तीसरा निश्चित रूप से रदरफोर्ड एरिस युग है।

वैज्ञानिक नेताओं के मुख्य फोकस के आधार पर युगों को प्रतिष्ठित किया जा सकता है:

  • जेकोबस हेनरिकस वैन 'टी हॉफ विशिष्ट रासायनिक गुणों से संबंधित रासायनिक प्रतिक्रिया के सामान्य नियम की खोज कर रहे थे। यह रासायनिक गतिकी शब्द वांट हॉफ से संबंधित है।
  • सेमेनोव-हिंशेलवुड फोकस कई रासायनिक प्रणालियों में विशेष रूप से आग की लपटों में देखी गई महत्वपूर्ण घटनाओं की व्याख्या थी। इन शोधकर्ताओं द्वारा विकसित की गयी अवधारणा श्रृंखला प्रतिक्रियाओं ने कई विज्ञानों, विशेष रूप से परमाणु भौतिकी और इंजीनियरिंग को विशेष रूप से प्रभावित किया।
  • ऐरिस की गतिविधि गणितीय विचारों और दृष्टिकोणों के विस्तृत व्यवस्थितकरण पर केंद्रित थी।

गणितीय अनुशासन रासायनिक प्रतिक्रिया नेटवर्क सिद्धांत रदरफोर्ड एरिस द्वारा उत्पन्न किया गया था, जो केमिकल इंजीनियरिंग में एक प्रसिद्ध विशेषज्ञ, क्लिफर्ड ट्रूसडेल के समर्थन से, रेसनल यांत्रिकी और विश्लेषण के लिए पुरालेख के संस्थापक और प्रमुख संपादक थे। इस जर्नल में आर. एरिस का पेपर C. द्वारा जर्नल को सूचित किया गया था।[5] इसने अन्य लेखकों के पत्रों की श्रृंखला को विस्तारिक किया (जो पहले से ही आर एरिस द्वारा संप्रेषित किए गए थे)। 1970 के दशक में प्रकाशित फ्रेडरिक जे. क्राम्बेक[6] रॉय जैक्सन, फ्रेडरिक जोसेफ मारिया हॉर्न,[7] मार्टिन फ़िनबर्ग[8] और अन्य के कार्य इस श्रृंखला के प्रसिद्ध पत्र सम्मिलित किये गये हैं। अपने दूसरे प्रोलेगोमेना पेपर में,[9] आर. एरिस ने एन.जेड. के कार्यों का उल्लेख किया। शापिरो, एल.एस. शाप्ले (1965),[10] जहां उनके वैज्ञानिक कार्यक्रम का एक महत्वपूर्ण हिस्सा साकार हुआ।

उस समय के पश्चात से रासायनिक प्रतिक्रिया नेटवर्क सिद्धांत को अंतरराष्ट्रीय स्तर पर बड़ी संख्या में शोधकर्ताओं द्वारा विकसित किया गया है।[11][12][13][14][15][16][17][18][19][20]


अवलोकन

रासायनिक प्रतिक्रिया नेटवर्क (अधिकांशतः सीआरएन के लिए संक्षिप्त) में अभिकर्मक का एक समुच्चय (गणित), उत्पादों का समुच्चय (अधिकांशतः प्रतिच्छेदन (समुच्चय सिद्धांत) अभिकारकों का समुच्चय), और रासायनिक प्रतिक्रिया का एक समुच्चय सम्मिलित होता है। उदाहरण के लिए दहन प्रतिक्रियाओं का युग्म-

 

 

 

 

(reaction 1)

एक प्रतिक्रिया नेटवर्क का निर्माण करें। प्रतिक्रियाओं को तीरों के द्वारा प्रदर्शित किया जाता है। अभिकारक तीरों के बाईं ओर दिखाई देते हैं। इस उदाहरण में वे (हाइड्रोजन), (ऑक्सीजन) और C (कार्बन) तत्व सम्मिलित हैं। उत्पाद तीरों के दाईं ओर प्रदर्शिक किये गये हैं, यहाँ पर वे तत्व (जल और (कार्बन डाईऑक्साइड) हैं। इस उदाहरण में, चूँकि प्रतिक्रियाएँ उत्क्रमणीय प्रतिक्रियाएँ होती हैं और प्रतिक्रियाओं में किसी भी उत्पाद का उपयोग नहीं किया जाता है। अभिकारकों का समुच्चय और उत्पादों का समुच्चय दोनों ही पूर्णतयः अलग समुच्चय हैं।

रासायनिक प्रतिक्रिया नेटवर्क का गणितीय मॉडलिंग सामान्यतः समय व्यतीत होने के साथ सम्मिलित विभिन्न रसायनों की सांद्रता के साथ क्या होता है, इस विषय पर ध्यान केंद्रित करता है। ऊपर दिए गए उदाहरण का अनुसरण करते हुए, आइए पास की हवा में a की एकाग्रता का प्रतिनिधित्व करते हैं, की एकाग्रता का प्रतिनिधित्व b करते हैं , की एकाग्रता का प्रतिनिधित्व c करते हैं और इसी प्रकार। चूँकि ये सभी सांद्रताएँ सामान्य रूप से स्थिर नहीं रहेंगी, इसलिए इन्हें समय के फलन के रूप में लिखा जा सकता है, उदा. , आदि।

इन चरों को फिर एक वेक्टर में जोड़ा जा सकता है-

और समय के साथ उनका विकास लिखा जा सकता है

यह एक सतत स्वायत्त गतिशील प्रणाली का एक उदाहरण है, जिसे सामान्यतः के रूप में लिखा जाता है। प्रत्येक अभिकारक के अणुओं की संख्या जो प्रत्येक बार प्रतिक्रिया होने पर उपयोग की जाती है और स्थिर होती है। जैसा कि प्रत्येक उत्पाद के अणुओं की संख्या होती है। इन संख्याओं को प्रतिक्रिया के स्तुईचिओमेटरी के रूप में संदर्भित किया जाता है और दोनों के बीच का अंतर (अर्थात उपयोग किए गए या उत्पादित अणुओं की कुल संख्या) शुद्ध स्टोइकोमेट्री है। इसका अर्थ यह है कि रासायनिक प्रतिक्रिया नेटवर्क का प्रतिनिधित्व करने वाले समीकरण को पुनः लिखा जा सकता है

यहाँ स्थिरांक मैट्रिक्स (गणित) का प्रत्येक स्तंभ एक प्रतिक्रिया के शुद्ध स्टोइकोमेट्री का प्रतिनिधित्व करता है और इसी प्रकार स्टोइकोमेट्री मैट्रिक्स कहा जाता है। एक वेक्टर-वैल्यूबल फलन है। जहां प्रत्येक आउटपुट मान प्रतिक्रिया दर का प्रतिनिधित्व करता है, जिसे रासायनिक कैनेटीक्स कहा जाता है।

सामान्य धारणाएँ

भौतिक कारणों से, सामान्यतः यह माना जाता है कि प्रतिक्रियाशील सांद्रता श्रणात्मक नहीं हो सकती है और यह कि प्रत्येक प्रतिक्रिया तभी सम्भव हो सकती है, जब इसके सभी अभिकारक उपस्थित हों, अर्थात सभी में गैर-शून्य सांद्रता हो। गणितीय कारणों से, सामान्यतः यह माना जाता है कि है।

यह भी सामान्यतः माना जाता है कि कटैलिसीस भी प्रतिक्रिया में अभिकारक और उत्पाद दोनों के समान रसायन नहीं होते हैं (अर्थात कोई उत्प्रेरण या स्वतःउत्प्रेरण नहीं) और यह कि अभिकारक की सांद्रता बढ़ने से किसी भी प्रतिक्रिया की दर बढ़ जाती है जो इसका उपयोग करती है। यह दूसरी धारणा सामूहिक क्रिया, माइकलिस-मेंटेन और हिल समीकरण (जैव रसायन) सहित सभी शारीरिक रूप से उचित कैनेटीक्स के साथ संगत है। कभी-कभी प्रतिक्रिया दरों के बारे में और धारणाएँ बनाई जाती हैं, उदा कि सभी प्रतिक्रियाएँ सामूहिक क्रिया कैनेटीक्स का पालन करती हैं।

अन्य मान्यताओं में द्रव्यमान संतुलन, स्थिर तापमान, निरंतर दबाव, अभिकारकों की सजातीय (रसायन विज्ञान) सांद्रता और इसी प्रकार अन्य भी सम्मिलित हैं।

परिणाम के प्रकार

जैसा कि रासायनिक प्रतिक्रिया नेटवर्क सिद्धांत अनुसंधान का एक विविध और सुस्थापित क्षेत्र है और परिणामों की एक महत्वपूर्ण विविधता है। कुछ प्रमुख क्षेत्रों की रूपरेखा नीचे दी गई है।

स्थिर अवस्थाओं की संख्या

ये परिणाम इस विषय से संबंधित हैं कि क्या एक रासायनिक प्रतिक्रिया नेटवर्क अपने घटक अभिकारकों की प्रारंभिक सांद्रता के आधार पर महत्वपूर्ण रूप से भिन्न व्यवहार उत्पन्न कर सकता है। इसमें अनुप्रयोग सम्मिलित हैं। उदा मॉडलिंग जीव विज्ञान स्विच स्थिर अवस्था में एक प्रमुख रसायन की उच्च सांद्रता एक जैविक प्रक्रिया को प्रारम्भ करने का प्रतिनिधित्व कर सकती है, जबकि कम सांद्रता को विवृत किया जा रहा होगा।

उदाहरण के लिए, उत्प्रेरक ट्रिगर ऑटोकैटलिसिस के बिना सबसे सरल उत्प्रेरक प्रतिक्रिया है, जो स्थिर अवस्थाओं की बहुलता की स्वीकृति प्रदान करता है (1976):[21][22]

 

 

 

 

(reaction 2)

 

 

 

 

(reaction 3)

 

 

 

 

(reaction 4)

यह उत्प्रेरक ऑक्सीकरण का शास्त्रीय लैंगमुइर-हिंशेलवुड कैनेटीक्स है।

यहाँ और गैसें हैं (उदाहरण के लिए, , और ), ठोस उत्प्रेरक की सतह पर सोखना स्थान है (उदाहरण के लिए, ), और सतह पर मध्यवर्ती हैं (एडाटम, अधिशोषित अणु या मूलक)।

गैसीय घटकों की समान सांद्रता के लिए इस प्रणाली में सतह की दो स्थिर स्थिर अवस्थाएँ हो सकती हैं।

स्थिर अवस्थाओं की स्थिरता

स्थिरता यह निर्धारित करती है कि वास्तविक रूप में दिए गए स्थिर अवस्था समाधान को देखे जाने की संभावना है या नहीं। चूंकि वास्तविक प्रणालियां (नियतात्मक प्रणाली मॉडल के विपरीत) यादृच्छिक पृष्ठभूमि न्वाइस के अन्तर्गत होती हैं, एक अस्थिर स्थिर स्थिति समाधान व्यवहार में देखे जाने की संभावना नहीं है। उनके अतिरिक्त स्थिर दोलन या अन्य प्रकार के आकर्षण प्रतीत हो सकता है।

दृढ़ता

दृढ़ता की रूट्स जनसंख्या की गतिशीलता में स्थित होती हैं। जनसंख्या की गतिशीलता में एक गैर-निरंतर प्रजाति कुछ (या सभी) प्रारंभिक स्थितियों के लिए विलुप्त हो सकती है। इसी प्रकार के प्रश्न रसायनज्ञों और जैव रसायनज्ञों के लिए अत्यधिक रुचिकर हैं, अर्थात यदि कोई दिया गया अभिकारक प्रारंभ में उपस्थित था, तो क्या इसे कभी पूर्ण रूप से उपयोग किया जा सकता है?

स्थिर आवधिक समाधानों का अस्तित्व

स्थिर आवधिक समाधानों से संबंधित परिणाम असामान्य व्यवहार को बाहर करने का प्रयास करते हैं। यदि कोई दिया गया रासायनिक प्रतिक्रिया नेटवर्क एक स्थिर आवधिक समाधान को स्वीकार करता है, जिससे कुछ प्रारंभिक स्थितियां दोलनशील अभिकारक सांद्रता के एक अनंत चक्र में परिवर्तित हो जाएंगी। कुछ पैरामीटर मानों के लिए यह क्वासिपरियोडिक या अराजक व्यवहार भी प्रदर्शित कर सकता है। जबकि वास्तविक विश्व के रासायनिक प्रतिक्रिया नेटवर्क में स्थिर आवधिक समाधान असामान्य हैं, प्रसिद्ध उदाहरण उपस्थित होते हैं, जैसे कि बेलौसोव-झाबोटिन्स्की प्रतिक्रियाएं। सरलतम कैटेलिटिक ऑसिलेटर (बिना ऑटोकैटलिसिस के नॉनलाइनियर सेल्फ-ऑसिलेशन) को "बफर" स्टेप जोड़कर कैटेलिटिक ट्रिगर से उत्पादित किया जा सकता है।[23]

 

 

 

 

(reaction 5)

जहाँ (BZ) एक मध्यवर्ती है। जो मुख्य प्रतिक्रिया में भाग नहीं लेता है।

नेटवर्क संरचना और गतिशील गुण

रासायनिक प्रतिक्रिया नेटवर्क सिद्धांत की मुख्य समस्याओं में से नेटवर्क संरचना और गतिकी के गुणों के बीच संबंध है। यह कनेक्शन रैखिक प्रणालियों के लिए भी महत्वपूर्ण है, उदाहरण के लिए समान अंतःक्रियात्मक भार वाले सरल चक्र में समान स्थितियों के साथ सभी रैखिक प्रणालियों के बीच दोलनों का सबसे धीमा क्षय होता है।[24]

अरेखीय प्रणालियों के लिए, संरचना और गतिकी के बीच कई संबंध खोजे गए हैं। सबसे पहले, ये स्थिरता के बारे में परिणाम हैं।[25] नेटवर्क के कुछ वर्गों के लिए, दर स्थिरांक के बीच विशेष संबंधों के विषय में पूर्व धारणाओं के बिना लाइपुनोव फलनों का स्पष्ट निर्माण संभव है। इस प्रकार के दो परिणाम सर्वविदित हैं: कमी शून्य प्रमेय[26] और विभिन्न घटकों के बीच परस्पर क्रिया के बिना तन्त्र के विषय में प्रमेय।[27] कमी शून्य प्रमेय मौलिक हेल्महोल्ट्ज़ मुक्त ऊर्जा रूप में लायपुनोव फलन के अस्तित्व के लिए पर्याप्त स्थिति देता है। जहाँ i-वें घटक की एकाग्रता है। विभिन्न घटकों के बीच वार्तालाप के बिना तन्त्र के विषय में प्रमेय बताता है कि यदि नेटवर्क में फॉर्म की प्रतिक्रियाएं होती हैं ( के लिए, जहां r प्रतिक्रियाओं की संख्या है, वें घटक का प्रतीक है और गैर-श्रणात्मक पूर्णांक हैं) और स्टोइकियोमेट्रिक संरक्षण नियम है। (जहां ), फिर भारित L1 दूरी दो समाधानों के बीच उसी M(c) के साथ समय में मोनोटोनिक रूप से कमी को प्रदर्शित करती है।

मॉडल में कमी

बड़े प्रतिक्रिया नेटवर्क की मॉडलिंग विभिन्न कठिनाइयों को पूरा करती है। मॉडल में बहुत अधिक अज्ञात पैरामीटर सम्मिलित हैं और उच्च आयाम मॉडलिंग को कम्प्यूटेशनल रूप से अधिक मूल्य में निर्मित होता है। जटिल रासायनिक प्रतिक्रियाओं के पहले सिद्धांतों के साथ मॉडल में कमी के उपाय विकसित किए गए थे।[28] तीन सरल मूलभूत विचारों का आविष्कार किया गया है:

  • अर्ध-संतुलन (या छद्म-संतुलन या आंशिक संतुलन) सन्निकटन (प्रतिक्रियाओं का एक अंश उनके संतुलन को अधिक तेजी से आगे बढ़ाता है और उसके बाद, लगभग संतुलित रहता है)।
  • क्वैसी स्टेडी स्टेट सन्निकटन या क्यूएसएस (कुछ प्रजातियाँ, अधिकांशतः ये कुछ मध्यवर्ती या रेडिकल होते हैं, अपेक्षाकृत कम मात्रा में उपस्थित होते हैं। वे तीवर्ता के साथ अपने क्यूएसएस सांद्रता तक पहुँचते हैं और फिर निर्भर मात्रा के रूप में इन अन्य की गतिशीलता का अनुसरण करते हैं। क्यूएसएस के पास रहने वाली प्रजातियां)। क्यूएसएस को इस नियम के अनुसार स्थिर अवस्था के रूप में परिभाषित किया गया है कि अन्य प्रजातियों की सांद्रता में परिवर्तन नहीं होता है।
  • दर-निर्धारण चरण या बाधा प्रतिक्रिया नेटवर्क का अपेक्षाकृत छोटा भाग सम्मिलित होता है, सरलतम स्थितियों में यह एक प्रतिक्रिया है। जो दर सम्पूर्ण नेटवर्क की प्रतिक्रिया दर के लिए एक अच्छा अनुभव होता है।

अर्ध-संतुलन सन्निकटन और अर्ध स्थिर अवस्था विधियों को धीमी गति से अपरिवर्तनीय कई गुना और कम्प्यूटेशनल विलक्षण त्रुटि के उपायों में विकसित किया गया था। प्रतिक्रिया ग्राफ के विश्लेषण के चरणों को सीमित करने के उपायों ने कई उपायों को उत्पन्न किया है।[28]


संदर्भ

  1. Wegscheider, R. (1901) Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme, Monatshefte für Chemie / Chemical Monthly 32(8), 849--906.
  2. Semyonov's Nobel Lecture Some Problems Relating to Chain Reactions and to the Theory of Combustion
  3. Hinshelwood's Nobel Lecture Chemical Kinetics in the Past Few Decades
  4. A.N. Gorban, G.S. Yablonsky Three Waves of Chemical Dynamics, Mathematical Modelling of Natural Phenomena 10(5) (2015), 1–5.
  5. R. Aris, Prolegomena to the rational analysis of systems of chemical reactions, Archive for Rational Mechanics and Analysis, 1965, Volume 19, Issue 2, pp 81-99.
  6. F.J. Krambeck, The mathematical structure of chemical kinetics in homogeneous single-phase systems, Archive for Rational Mechanics and Analysis, 1970, Volume 38, Issue 5, pp 317-347,
  7. F. J. M. Horn and R. Jackson, "General Mass Action Kinetics", Archive Rational Mech., 47:81, 1972.
  8. M. Feinberg, "Complex balancing in general kinetic systems", Arch. Rational Mech. Anal., 49:187–194, 1972.
  9. R. Aris, Prolegomena to the rational analysis of systems of chemical reactions II. Some addenda, Archive for Rational Mechanics and Analysis, 1968, Volume 27, Issue 5, pp 356-364
  10. N.Z. Shapiro, L.S. Shapley, Mass action law and the Gibbs free energy function, SIAM J. Appl. Math. 16 (1965) 353–375.
  11. P. Érdi and J. Tóth, "Mathematical models of chemical reactions", Manchester University Press, 1989.
  12. H. Kunze and D. Siegel, "Monotonicity properties of chemical reactions with a single initial bimolecular step", J. Math. Chem., 31(4):339–344, 2002.
  13. M. Mincheva and D. Siegel, "Nonnegativity and positiveness of solutions to mass action reaction–diffusion systems", J. Math. Chem., 42:1135–1145, 2007.
  14. P. De Leenheer, D. Angeli and E. D. Sontag, "Monotone chemical reaction networks" Archived 2014-08-12 at the Wayback Machine, J. Math. Chem.', 41(3):295–314, 2007.
  15. M. Banaji, P. Donnell and S. Baigent, "P matrix properties, injectivity and stability in chemical reaction systems", SIAM J. Appl. Math., 67(6):1523–1547, 2007.
  16. G. Craciun and C. Pantea, "Identifiability of chemical reaction networks", J. Math. Chem., 44:1, 2008.
  17. M. Domijan and M. Kirkilionis, "Bistability and oscillations in chemical reaction networks", J. Math. Biol., 59(4):467–501, 2009.
  18. A. N. Gorban and G. S. Yablonsky, "Extended detailed balance for systems with irreversible reactions", Chemical Engineering Science, 66:5388–5399, 2011.
  19. E. Feliu, M. Knudsen and C. Wiuf., "Signaling cascades: Consequences of varying substrate and phosphatase levels", Adv. Exp. Med. Biol. (Adv Syst Biol), 736:81–94, 2012.
  20. I. Otero-Muras, J. R. Banga and A. A. Alonso, "Characterizing multistationarity regimes in biochemical reaction networks", PLoS ONE,7(7):e39194,2012.
  21. M.G. Slin'ko, V.I. Bykov, G.S. Yablonskii, T.A. Akramov, "Multiplicity of the Steady State in Heterogeneous Catalytic Reactions", Dokl. Akad. Nauk SSSR 226 (4) (1976), 876.
  22. V.I. Bykov, V.I. Elokhin, G.S. Yablonskii, "The simplest catalytic mechanism permitting several steady states of the surface", React. Kinet. Catal. Lett. 4 (2) (1976), 191–198.
  23. V.I. Bykov, G.S. Yablonskii, V.F. Kim, "On the simple model of kinetic self-oscillations in catalytic reaction of CO oxidation", Doklady AN USSR (Chemistry) 242 (3) (1978), 637–639.
  24. A.N. Gorban, N. Jarman, E. Steur, C. van Leeuwen, I.Yu. Tyukin, Leaders do not Look Back, or do They? Math. Model. Nat. Phenom. Vol. 10, No. 3, 2015, pp. 212–231.
  25. B.L. Clarke, Theorems on chemical network stability. The Journal of Chemical Physics. 1975, 62(3), 773-775.
  26. M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems. Chemical Engineering Science. 1987 31, 42(10), 2229-2268.
  27. A.N. Gorban, V.I. Bykov, G.S. Yablonskii, Thermodynamic function analogue for reactions proceeding without interaction of various substances, Chemical Engineering Science, 1986 41(11), 2739-2745.
  28. 28.0 28.1 A.N.Gorban, Model reduction in chemical dynamics: slow invariant manifolds, singular perturbations, thermodynamic estimates, and analysis of reaction graph. Current Opinion in Chemical Engineering 2018 21C, 48-59.


बाहरी संबंध