सशर्त संभाव्यता वितरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Probability theory and statistics concept}}
{{Short description|Probability theory and statistics concept}}
संभाव्यता सिद्धांत और सांख्यिकी में, दो [[संयुक्त संभाव्यता वितरण]] यादृच्छिक चर दिए गए हैं <math>X</math> और <math>Y</math>, का सशर्त संभाव्यता वितरण <math>Y</math> दिया गया <math>X</math> का संभाव्यता वितरण है <math>Y</math> कब <math>X</math> विशेष मूल्य के रूप में जाना जाता है; कुछ मामलों में सशर्त संभावनाओं को अनिर्दिष्ट मान वाले कार्यों के रूप में व्यक्त किया जा सकता है <math>x</math> का <math>X</math>  पैरामीटर के रूप में। कब दोनों <math>X</math> और <math>Y</math> श्रेणीबद्ध चर हैं, सशर्त संभावना तालिका सामान्यतः सशर्त संभावना का प्रतिनिधित्व करने के लिए उपयोग की जाती है। सशर्त वितरण यादृच्छिक चर के [[सीमांत वितरण]] के विपरीत है, जो कि अन्य चर के मान के संदर्भ के बिना इसका वितरण है।
संभाव्यता सिद्धांत एवं सांख्यिकी में, दो [[संयुक्त संभाव्यता वितरण]] यादृच्छिक चर दिए गए हैं <math>X</math> एवं <math>Y</math>, की सशर्त संभाव्यता वितरण <math>Y</math> दिया गया <math>X</math> का संभाव्यता वितरण है।  <math>Y</math> कब <math>X</math> विशेष मान के रूप में जाना जाता है, कुछ स्थितियों में सशर्त संभावनाओं को अनिर्दिष्ट मान वाले कार्यों के रूप में व्यक्त किया जा सकता है। कब दोनों <math>X</math> एवं <math>Y</math> श्रेणीबद्ध चर होते हैं, सशर्त संभावना सारणी सामान्यतः सशर्त संभावना का प्रतिनिधित्व करने के लिए उपयोग की जाती है। सशर्त वितरण यादृच्छिक चर के [[सीमांत वितरण]] के विपरीत है, जो कि अन्य चर के मान के संदर्भ के बिना इसका वितरण होता है।


यदि का सशर्त वितरण <math>Y</math> दिया गया <math>X</math>  सतत वितरण है, तो इसके संभाव्यता घनत्व समारोह को सशर्त घनत्व समारोह के रूप में जाना जाता है।<ref>{{cite book |first=Sheldon M. |last=Ross |authorlink=Sheldon M. Ross |title=संभाव्यता मॉडल का परिचय|location=San Diego |publisher=Academic Press |edition=Fifth |year=1993 |isbn=0-12-598455-3 |pages=88–91 }}</ref>  सशर्त वितरण के गुण, जैसे क्षण (गणित), अक्सर सशर्त माध्य और सशर्त भिन्नता जैसे संबंधित नामों से संदर्भित होते हैं।
यदि का सशर्त वितरण <math>Y</math> दिया गया <math>X</math>  सतत वितरण है, तो इसके संभाव्यता घनत्व समारोह को सशर्त घनत्व समारोह के रूप में जाना जाता है।<ref>{{cite book |first=Sheldon M. |last=Ross |authorlink=Sheldon M. Ross |title=संभाव्यता मॉडल का परिचय|location=San Diego |publisher=Academic Press |edition=Fifth |year=1993 |isbn=0-12-598455-3 |pages=88–91 }}</ref>  सशर्त वितरण के गुण, जैसे क्षण (गणित), अक्सर सशर्त माध्य एवं सशर्त भिन्नता जैसे संबंधित नामों से संदर्भित होते हैं।


अधिक सामान्यतः, दो से अधिक चर के सेट के उपसमुच्चय के सशर्त वितरण का उल्लेख कर सकते हैं; यह सशर्त वितरण शेष सभी चरों के मूल्यों पर आकस्मिक है, और यदि  से अधिक चर उपसमुच्चय में सम्मिलित हैं तो यह सशर्त वितरण सम्मिलित चरों का सशर्त [[संयुक्त वितरण]] है।
अधिक सामान्यतः, दो से अधिक चर के सेट के उपसमुच्चय के सशर्त वितरण का उल्लेख कर सकते हैं; यह सशर्त वितरण शेष सभी चरों के मूल्यों पर आकस्मिक है, एवं यदि  से अधिक चर उपसमुच्चय में सम्मिलित हैं तो यह सशर्त वितरण सम्मिलित चरों का सशर्त [[संयुक्त वितरण]] है।


== सशर्त असतत वितरण ==
== सशर्त असतत वितरण ==
Line 26: Line 26:


=== उदाहरण ===
=== उदाहरण ===
मेले के रोल पर विचार करें {{dice}} और जाने <math>X=1</math> अगर संख्या सम है (यानी, 2, 4, या 6) और <math>X=0</math> अन्यथा। इसके अतिरिक्त, चलो <math>Y=1</math> यदि संख्या अभाज्य है (यानी, 2, 3, या 5) और <math>Y=0</math> अन्यथा।
मेले के रोल पर विचार करें {{dice}} एवं जाने <math>X=1</math> अगर संख्या सम है (यानी, 2, 4, या 6) एवं <math>X=0</math> अन्यथा। इसके अतिरिक्त, चलो <math>Y=1</math> यदि संख्या अभाज्य है (यानी, 2, 3, या 5) एवं <math>Y=0</math> अन्यथा।
{| class="wikitable"
{| class="wikitable"
|-
|-
Line 35: Line 35:
| Y || 0 || 1 || 1 || 0 || 1 || 0
| Y || 0 || 1 || 1 || 0 || 1 || 0
|}
|}
फिर बिना शर्त संभावना है कि <math>X=1</math> 3/6 = 1/2 है (चूंकि पासा के छह संभावित रोल हैं, जिनमें से तीन सम हैं), जबकि संभावना है कि <math>X=1</math> सशर्त <math>Y=1</math> 1/3 है (चूँकि तीन संभावित अभाज्य संख्याएँ हैं - 2, 3, और 5 - जिनमें से  सम है)।
फिर बिना शर्त संभावना है कि <math>X=1</math> 3/6 = 1/2 है (चूंकि पासा के छह संभावित रोल हैं, जिनमें से तीन सम हैं), जबकि संभावना है कि <math>X=1</math> सशर्त <math>Y=1</math> 1/3 है (चूँकि तीन संभावित अभाज्य संख्याएँ हैं - 2, 3, एवं 5 - जिनमें से  सम है)।


== सशर्त निरंतर वितरण ==
== सशर्त निरंतर वितरण ==
Line 49: Line 49:
|background colour=#F5FFFA}}
|background colour=#F5FFFA}}


कहाँ <math>f_{X,Y}(x,y)</math> का संयुक्त वितरण देता है <math>X</math> और <math>Y</math>, जबकि <math>f_X(x)</math> के लिए [[सीमांत घनत्व]] देता है <math>X</math>. साथ ही इस मामले में यह जरूरी है <math>f_X(x)>0</math>.
कहाँ <math>f_{X,Y}(x,y)</math> का संयुक्त वितरण देता है <math>X</math> एवं <math>Y</math>, जबकि <math>f_X(x)</math> के लिए [[सीमांत घनत्व]] देता है <math>X</math>. साथ ही इस मामले में यह जरूरी है <math>f_X(x)>0</math>.


संभाव्यता वितरण के साथ संबंध <math>X</math> दिया गया <math>Y</math> द्वारा दिया गया है:
संभाव्यता वितरण के साथ संबंध <math>X</math> दिया गया <math>Y</math> द्वारा दिया गया है:
Line 56: Line 56:


=== उदाहरण ===
=== उदाहरण ===
[[File:Multivariate Gaussian.png|thumb|right|300px|द्विपक्षीय सामान्य संयुक्त संभाव्यता वितरण#घनत्व फलन या द्रव्यमान फलन]]ग्राफ यादृच्छिक चर के लिए द्विचर सामान्य वितरण दिखाता है <math>X</math> और <math>Y</math>. वितरण देखने के लिए <math>Y</math> सशर्त <math>X=70</math>, कोई पहले रेखा की कल्पना कर सकता है <math>X=70</math> में <math>X,Y</math> विमान (ज्यामिति), और फिर उस रेखा वाले विमान की कल्पना करें और इसके लंबवत <math>X,Y</math> विमान। संयुक्त सामान्य घनत्व के साथ उस विमान का चौराहा,  बार प्रतिच्छेदन के तहत इकाई क्षेत्र देने के लिए पुन: स्केल किया गया, प्रासंगिक सशर्त घनत्व है <math>Y</math>.
[[File:Multivariate Gaussian.png|thumb|right|300px|द्विपक्षीय सामान्य संयुक्त संभाव्यता वितरण#घनत्व फलन या द्रव्यमान फलन]]ग्राफ यादृच्छिक चर के लिए द्विचर सामान्य वितरण दिखाता है <math>X</math> एवं <math>Y</math>. वितरण देखने के लिए <math>Y</math> सशर्त <math>X=70</math>, कोई पहले रेखा की कल्पना कर सकता है <math>X=70</math> में <math>X,Y</math> विमान (ज्यामिति), एवं फिर उस रेखा वाले विमान की कल्पना करें एवं इसके लंबवत <math>X,Y</math> विमान। संयुक्त सामान्य घनत्व के साथ उस विमान का चौराहा,  बार प्रतिच्छेदन के तहत इकाई क्षेत्र देने के लिए पुन: स्केल किया गया, प्रासंगिक सशर्त घनत्व है <math>Y</math>.


<math>Y\mid X=70 \ \sim\ \mathcal{N}\left(\mu_1+\frac{\sigma_1}{\sigma_2}\rho( 70 - \mu_2),\, (1-\rho^2)\sigma_1^2\right).</math>
<math>Y\mid X=70 \ \sim\ \mathcal{N}\left(\mu_1+\frac{\sigma_1}{\sigma_2}\rho( 70 - \mu_2),\, (1-\rho^2)\sigma_1^2\right).</math>
Line 62: Line 62:


== स्वतंत्रता से संबंध ==
== स्वतंत्रता से संबंध ==
यादृच्छिक चर <math>X</math>, <math>Y</math> [[सांख्यिकीय स्वतंत्रता]] हैं यदि और केवल यदि का सशर्त वितरण <math>Y</math> दिया गया <math>X</math> है, के सभी संभव प्राप्तियों के लिए <math>X</math>, के बिना शर्त वितरण के बराबर <math>Y</math>. असतत यादृच्छिक चर के लिए इसका मतलब है <math>P(Y=y|X=x) = P(Y=y)</math> हर संभव के लिए <math>y</math> और <math>x</math> साथ <math>P(X=x)>0</math>. निरंतर यादृच्छिक चर के लिए <math>X</math> और <math>Y</math>,  [[संयुक्त घनत्व समारोह]] होने का मतलब है <math>f_Y(y|X=x) = f_Y(y)</math> हर संभव के लिए <math>y</math> और <math>x</math> साथ <math>f_X(x)>0</math>.
यादृच्छिक चर <math>X</math>, <math>Y</math> [[सांख्यिकीय स्वतंत्रता]] हैं यदि एवं केवल यदि का सशर्त वितरण <math>Y</math> दिया गया <math>X</math> है, के सभी संभव प्राप्तियों के लिए <math>X</math>, के बिना शर्त वितरण के बराबर <math>Y</math>. असतत यादृच्छिक चर के लिए इसका मतलब है <math>P(Y=y|X=x) = P(Y=y)</math> हर संभव के लिए <math>y</math> एवं <math>x</math> साथ <math>P(X=x)>0</math>. निरंतर यादृच्छिक चर के लिए <math>X</math> एवं <math>Y</math>,  [[संयुक्त घनत्व समारोह]] होने का मतलब है <math>f_Y(y|X=x) = f_Y(y)</math> हर संभव के लिए <math>y</math> एवं <math>x</math> साथ <math>f_X(x)>0</math>.


== गुण ==
== गुण ==
के कार्य के रूप में देखा जाता है <math>y</math> माफ़ कर दिया <math>x</math>, <math>P(Y=y|X=x)</math>  प्रायिकता द्रव्यमान फलन है और इसलिए सभी का योग है <math>y</math> (या अभिन्न अगर यह  सशर्त संभाव्यता घनत्व है) 1 है। के कार्य के रूप में देखा गया <math>x</math> माफ़ कर दिया <math>y</math>, यह  संभावना कार्य है, ताकि सभी का योग हो <math>x</math> 1 नहीं होना चाहिए।
के कार्य के रूप में देखा जाता है <math>y</math> माफ़ कर दिया <math>x</math>, <math>P(Y=y|X=x)</math>  प्रायिकता द्रव्यमान फलन है एवं इसलिए सभी का योग है <math>y</math> (या अभिन्न अगर यह  सशर्त संभाव्यता घनत्व है) 1 है। के कार्य के रूप में देखा गया <math>x</math> माफ़ कर दिया <math>y</math>, यह  संभावना कार्य है, ताकि सभी का योग हो <math>x</math> 1 नहीं होना चाहिए।


इसके अतिरिक्त,  संयुक्त वितरण के सीमांत को संबंधित सशर्त वितरण की अपेक्षा के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, <math> p_X(x) = E_{Y}[p_{X|Y}(X \ |\ Y)] </math>.
इसके अतिरिक्त,  संयुक्त वितरण के सीमांत को संबंधित सशर्त वितरण की अपेक्षा के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, <math> p_X(x) = E_{Y}[p_{X|Y}(X \ |\ Y)] </math>.


== माप-सैद्धांतिक सूत्रीकरण ==
== माप-सैद्धांतिक सूत्रीकरण ==
होने देना <math>(\Omega, \mathcal{F}, P)</math>  संभाव्यता स्थान हो, <math>\mathcal{G} \subseteq \mathcal{F}</math> a <math>\sigma</math>-फ़ील्ड इन <math>\mathcal{F}</math>. दिया गया <math>A\in \mathcal{F}</math>, [[रैडॉन-निकोडिम प्रमेय]] का तात्पर्य है कि वहाँ है<ref>[[#billingsley95|Billingsley (1995)]], p. 430</ref> a  <math>\mathcal{G}</math>- मापने योग्य यादृच्छिक चर <math>P(A\mid\mathcal{G}):\Omega\to \mathbb{R}</math>, सशर्त संभाव्यता कहा जाता है, जैसे कि<math display="block">\int_G P(A\mid\mathcal{G})(\omega) dP(\omega)=P(A\cap G)</math>हर के लिए <math>G\in \mathcal{G}</math>, और इस तरह के  यादृच्छिक चर को प्रायिकता शून्य के सेट तक विशिष्ट रूप से परिभाषित किया गया है। सशर्त संभाव्यता को नियमित सशर्त संभावना कहा जाता है यदि  <math> \operatorname{P}(\cdot\mid\mathcal{G})(\omega) </math> पर  संभावना उपाय है <math>(\Omega, \mathcal{F})</math> सभी के लिए <math>\omega \in \Omega</math> ए.ई.
होने देना <math>(\Omega, \mathcal{F}, P)</math>  संभाव्यता स्थान हो, <math>\mathcal{G} \subseteq \mathcal{F}</math> a <math>\sigma</math>-फ़ील्ड इन <math>\mathcal{F}</math>. दिया गया <math>A\in \mathcal{F}</math>, [[रैडॉन-निकोडिम प्रमेय]] का तात्पर्य है कि वहाँ है<ref>[[#billingsley95|Billingsley (1995)]], p. 430</ref> a  <math>\mathcal{G}</math>- मापने योग्य यादृच्छिक चर <math>P(A\mid\mathcal{G}):\Omega\to \mathbb{R}</math>, सशर्त संभाव्यता कहा जाता है, जैसे कि<math display="block">\int_G P(A\mid\mathcal{G})(\omega) dP(\omega)=P(A\cap G)</math>हर के लिए <math>G\in \mathcal{G}</math>, एवं इस तरह के  यादृच्छिक चर को प्रायिकता शून्य के सेट तक विशिष्ट रूप से परिभाषित किया गया है। सशर्त संभाव्यता को नियमित सशर्त संभावना कहा जाता है यदि  <math> \operatorname{P}(\cdot\mid\mathcal{G})(\omega) </math> पर  संभावना उपाय है <math>(\Omega, \mathcal{F})</math> सभी के लिए <math>\omega \in \Omega</math> ए.ई.


विशेष स्थितियां:
विशेष स्थितियां:

Revision as of 12:09, 16 May 2023

संभाव्यता सिद्धांत एवं सांख्यिकी में, दो संयुक्त संभाव्यता वितरण यादृच्छिक चर दिए गए हैं एवं , की सशर्त संभाव्यता वितरण दिया गया का संभाव्यता वितरण है। कब विशेष मान के रूप में जाना जाता है, कुछ स्थितियों में सशर्त संभावनाओं को अनिर्दिष्ट मान वाले कार्यों के रूप में व्यक्त किया जा सकता है। कब दोनों एवं श्रेणीबद्ध चर होते हैं, सशर्त संभावना सारणी सामान्यतः सशर्त संभावना का प्रतिनिधित्व करने के लिए उपयोग की जाती है। सशर्त वितरण यादृच्छिक चर के सीमांत वितरण के विपरीत है, जो कि अन्य चर के मान के संदर्भ के बिना इसका वितरण होता है।

यदि का सशर्त वितरण दिया गया सतत वितरण है, तो इसके संभाव्यता घनत्व समारोह को सशर्त घनत्व समारोह के रूप में जाना जाता है।[1] सशर्त वितरण के गुण, जैसे क्षण (गणित), अक्सर सशर्त माध्य एवं सशर्त भिन्नता जैसे संबंधित नामों से संदर्भित होते हैं।

अधिक सामान्यतः, दो से अधिक चर के सेट के उपसमुच्चय के सशर्त वितरण का उल्लेख कर सकते हैं; यह सशर्त वितरण शेष सभी चरों के मूल्यों पर आकस्मिक है, एवं यदि से अधिक चर उपसमुच्चय में सम्मिलित हैं तो यह सशर्त वितरण सम्मिलित चरों का सशर्त संयुक्त वितरण है।

सशर्त असतत वितरण

असतत यादृच्छिक चर के लिए, सशर्त संभाव्यता द्रव्यमान समारोह दिया गया इसकी परिभाषा के अनुसार लिखा जा सकता है:

होने के कारण भाजक में, यह केवल गैर-शून्य के लिए परिभाषित किया गया है (इसलिए सख्ती से सकारात्मक)

संभाव्यता वितरण के साथ संबंध दिया गया है:


उदाहरण

मेले के रोल पर विचार करें die एवं जाने अगर संख्या सम है (यानी, 2, 4, या 6) एवं अन्यथा। इसके अतिरिक्त, चलो यदि संख्या अभाज्य है (यानी, 2, 3, या 5) एवं अन्यथा।

D 1 2 3 4 5 6
X 0 1 0 1 0 1
Y 0 1 1 0 1 0

फिर बिना शर्त संभावना है कि 3/6 = 1/2 है (चूंकि पासा के छह संभावित रोल हैं, जिनमें से तीन सम हैं), जबकि संभावना है कि सशर्त 1/3 है (चूँकि तीन संभावित अभाज्य संख्याएँ हैं - 2, 3, एवं 5 - जिनमें से सम है)।

सशर्त निरंतर वितरण

इसी तरह निरंतर यादृच्छिक चर के लिए, सशर्त प्रायिकता घनत्व समारोह मूल्य की घटना को देखते हुए का रूप में लिखा जा सकता है[2]: p. 99 

कहाँ का संयुक्त वितरण देता है एवं , जबकि के लिए सीमांत घनत्व देता है . साथ ही इस मामले में यह जरूरी है .

संभाव्यता वितरण के साथ संबंध दिया गया द्वारा दिया गया है:

सतत यादृच्छिक चर के सशर्त वितरण की अवधारणा उतनी सहज नहीं है जितनी यह लग सकती है: बोरेल का विरोधाभास दर्शाता है कि सशर्त संभाव्यता घनत्व कार्यों को समन्वय परिवर्तनों के तहत अपरिवर्तनीय नहीं होना चाहिए।

उदाहरण

द्विपक्षीय सामान्य संयुक्त संभाव्यता वितरण#घनत्व फलन या द्रव्यमान फलन

ग्राफ यादृच्छिक चर के लिए द्विचर सामान्य वितरण दिखाता है एवं . वितरण देखने के लिए सशर्त , कोई पहले रेखा की कल्पना कर सकता है में विमान (ज्यामिति), एवं फिर उस रेखा वाले विमान की कल्पना करें एवं इसके लंबवत विमान। संयुक्त सामान्य घनत्व के साथ उस विमान का चौराहा, बार प्रतिच्छेदन के तहत इकाई क्षेत्र देने के लिए पुन: स्केल किया गया, प्रासंगिक सशर्त घनत्व है .


स्वतंत्रता से संबंध

यादृच्छिक चर , सांख्यिकीय स्वतंत्रता हैं यदि एवं केवल यदि का सशर्त वितरण दिया गया है, के सभी संभव प्राप्तियों के लिए , के बिना शर्त वितरण के बराबर . असतत यादृच्छिक चर के लिए इसका मतलब है हर संभव के लिए एवं साथ . निरंतर यादृच्छिक चर के लिए एवं , संयुक्त घनत्व समारोह होने का मतलब है हर संभव के लिए एवं साथ .

गुण

के कार्य के रूप में देखा जाता है माफ़ कर दिया , प्रायिकता द्रव्यमान फलन है एवं इसलिए सभी का योग है (या अभिन्न अगर यह सशर्त संभाव्यता घनत्व है) 1 है। के कार्य के रूप में देखा गया माफ़ कर दिया , यह संभावना कार्य है, ताकि सभी का योग हो 1 नहीं होना चाहिए।

इसके अतिरिक्त, संयुक्त वितरण के सीमांत को संबंधित सशर्त वितरण की अपेक्षा के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, .

माप-सैद्धांतिक सूत्रीकरण

होने देना संभाव्यता स्थान हो, a -फ़ील्ड इन . दिया गया , रैडॉन-निकोडिम प्रमेय का तात्पर्य है कि वहाँ है[3] a - मापने योग्य यादृच्छिक चर , सशर्त संभाव्यता कहा जाता है, जैसे कि

हर के लिए , एवं इस तरह के यादृच्छिक चर को प्रायिकता शून्य के सेट तक विशिष्ट रूप से परिभाषित किया गया है। सशर्त संभाव्यता को नियमित सशर्त संभावना कहा जाता है यदि पर संभावना उपाय है सभी के लिए ए.ई.

विशेष स्थितियां:

  • तुच्छ सिग्मा बीजगणित के लिए , सशर्त संभावना स्थिर कार्य है
  • अगर , तब , संकेतक फ़ंक्शन (नीचे परिभाषित)।

होने देना हो -मूल्यवान यादृच्छिक चर। प्रत्येक के लिए , परिभाषित करना

किसी के लिए , कार्यक्रम सशर्त अपेक्षा कहा जाता है # की सशर्त संभाव्यता वितरण की परिभाषा दिया गया . यदि यह संभाव्यता माप है , तो इसे नियमित सशर्त संभाव्यता कहा जाता है।

वास्तविक-मूल्यवान यादृच्छिक चर के लिए (बोरेल के संबंध में -मैदान पर ), प्रत्येक सशर्त संभाव्यता वितरण नियमित है।[4] इस मामले में, लगभग निश्चित रूप से।

सशर्त अपेक्षा से संबंध

किसी भी घटना के लिए , सूचक समारोह को परिभाषित करें:

जो यादृच्छिक चर है। ध्यान दें कि इस यादृच्छिक चर की अपेक्षा स्वयं A की प्रायिकता के बराबर है:

ए दिया -मैदान , सशर्त संभावना के लिए संकेतक फ़ंक्शन की सशर्त अपेक्षा का संस्करण है :

नियमित सशर्त संभाव्यता के संबंध में यादृच्छिक चर की अपेक्षा इसकी सशर्त अपेक्षा के बराबर है।

यह भी देखें

संदर्भ

उद्धरण

  1. Ross, Sheldon M. (1993). संभाव्यता मॉडल का परिचय (Fifth ed.). San Diego: Academic Press. pp. 88–91. ISBN 0-12-598455-3.
  2. Park,Kun Il (2018). संचार के लिए अनुप्रयोगों के साथ संभाव्यता और स्टोकास्टिक प्रक्रियाओं की बुनियादी बातों. Springer. ISBN 978-3-319-68074-3.
  3. Billingsley (1995), p. 430
  4. Billingsley (1995), p. 439


स्रोत

श्रेणी:संभाव्यता वितरण का सिद्धांत श्रेणी: सशर्त संभावना