स्पर्शरेखा विकास योग्य: Difference between revisions

From Vigyanwiki
No edit summary
Line 58: Line 58:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 19/05/2023]]
[[Category:Created On 19/05/2023]]
[[Category:Vigyan Ready]]

Revision as of 10:53, 26 May 2023

हेलिक्स की स्पर्शरेखा विकसित करने योग्य

सतहों के विभेदक ज्यामिति के गणित के अध्ययन में एक स्पर्शरेखा विकसित करने योग्य एक विशेष प्रकार की विकास योग्य सतह है जो यूक्लिडियन अंतरिक्ष में एक वक्र से प्राप्त होती है क्योंकि सतह स्पर्श रेखा से वक्र तक बह जाती है। ऐसी सतह वक्र के स्पर्शरेखा तलों का आवरण (गणित) भी है।

पैरामीटराइजेशन

चलो एक चिकनी अंतरिक्ष वक्र का पैरामीटरकरण हो। वह है एक दो बार अलग-अलग कार्य है जिसमें कहीं-लुप्त व्युत्पन्न नहीं है जो अंतरिक्ष में एक बिंदु पर अपने तर्क (एक वास्तविक संख्या) को मैप करता है वक्र की छवि है। तब एक द्वि-आयामी सतह के विकास योग्य स्पर्शरेखा को मानचित्र द्वारा परिचालित किया जा सकता है

[1]

मूल वक्र स्पर्शरेखा विकसित करने योग्य की एक सीमा बनाता है और इसे इसकी नियता या प्रतिगमन का किनारा कहा जाता है। यह वक्र पहले सतह को समतल में विकसित करके प्राप्त किया जाता है और फिर सतह पर शासित सतह के तल में छवि पर विचार किया जाता है। रेखाओं के इस वर्ग का आवरण एक समतल वक्र है जिसका विकास के अंतर्गत प्रतिलोम प्रतिगमन का किनारा है। सहज रूप से यह एक वक्र है जिसके साथ समतल में विकसित होने की प्रक्रिया के समय सतह को मोड़ने की आवश्यकता होती है।

गुण

शून्य मरोड़ के साथ एक वक्र का विकास योग्य स्पर्शरेखा।

स्पर्शरेखा विकासशील एक विकासशील सतह है; अर्थात् यह शून्य गाऊसी वक्रता वाली सतह है। यह विकास योग्य सतह के तीन मौलिक प्रकारों में से एक है अन्य दो सामान्यीकृत शंकु हैं (एक निश्चित बिंदु के माध्यम से रेखाओं के एक-आयामी वर्ग द्वारा खोजी गई सतह) और सिलेंडर (समानांतर रेखाओं के एक-आयामी वर्ग द्वारा खोजी गई सतहें)। (तल (ज्यामिति) को कभी-कभी चौथे प्रकार के रूप में दिया जाता है या इन दो प्रकारों में से किसी एक के विशेष स्थिति के रूप में देखा जा सकता है।) त्रि-आयामी अंतरिक्ष में प्रत्येक विकास योग्य सतह इन तीन प्रकारों के टुकड़ों को एक साथ जोड़कर बनाई जा सकती है; इससे यह निष्कर्ष निकलता है कि प्रत्येक विकास योग्य सतह एक शासित सतह है रेखाओं के एक-आयामी वर्ग का एक संघ है।[2] चूँकि प्रत्येक शासित सतह विकास योग्य नहीं होती है; घुमावदार एक प्रति उदाहरण प्रदान करता है।

वक्र के शून्य टोशन वाले बिंदु वाले वक्र के विकास योग्य स्पर्शरेखा में एक स्व-प्रतिच्छेदन होगा।

इतिहास

1772 में लियोनहार्ड यूलर द्वारा पहली बार स्पर्शरेखा के विकास का अध्ययन किया गया था।[3] उस समय तक केवल ज्ञात विकास योग्य सतहें सामान्यीकृत शंकु और सिलेंडर थे। यूलर ने दिखाया कि स्पर्शरेखा विकसित करने योग्य हैं और प्रत्येक विकास योग्य सतह इन प्रकारों में से एक है।[2]

टिप्पणियाँ

  1. Pressley, Andrew (2010), Elementary Differential Geometry, Springer, p. 129, ISBN 1-84882-890-X.
  2. 2.0 2.1 Lawrence, Snežana (2011), "Developable surfaces: their history and application", Nexus Network Journal, 13 (3): 701–714, doi:10.1007/s00004-011-0087-z.
  3. Euler, L. (1772), "De solidis quorum superficiem in planum explicare licet", Novi Commentarii academiae scientiarum Petropolitanae (in Latin), 16: 3–34{{citation}}: CS1 maint: unrecognized language (link).


संदर्भ


बाहरी संबंध