रोटर मशीन: Difference between revisions
No edit summary |
|||
(7 intermediate revisions by 3 users not shown) | |||
Line 6: | Line 6: | ||
== पृष्ठभूमि == | == पृष्ठभूमि == | ||
[[Image:Tatjavanvark-rotors.jpg|thumbnail|तात्जना वैन वार्क द्वारा बनाई गई मशीन से 40-पॉइंट रोटार]][[शास्त्रीय क्रिप्टोग्राफी|शास्त्रीय कूटलेखन]] में, सबसे | [[Image:Tatjavanvark-rotors.jpg|thumbnail|तात्जना वैन वार्क द्वारा बनाई गई मशीन से 40-पॉइंट रोटार]][[शास्त्रीय क्रिप्टोग्राफी|शास्त्रीय कूटलेखन]] में, सबसे पूर्वतर एन्क्रिप्शन विधियों में से एक सरल प्रतिस्थापन [[सिफर|संकेताक्षर]] था, जहां एक संदेश में अक्षरों को कुछ गुप्त योजना का उपयोग करके व्यवस्थित रूप से बदल दिया गया था। मोनोअल्फाबेटिक प्रतिस्थापन संकेताक्षर केवल एक प्रतिस्थापन योजना का उपयोग करते थे - कभी-कभी " [[वर्णमाला]] " कहा जाता था; इसे आसानी से तोड़ा जा सकता है, उदाहरण के लिए, [[आवृत्ति विश्लेषण]] का उपयोग करके। कुछ अधिक सुरक्षित योजनाएँ थीं जिनमें कई अक्षर, बहुवर्णक संकेताक्षर उपस्थित थे। क्योंकि इस तरह की योजनाओं को हाथ से लागू किया गया था, केवल मुट्ठी भर अलग-अलग अक्षर ही उपयोग किए जा सकते थे; कुछ और जटिल अव्यवहारिक होगा। फिर भी, केवल कुछ अक्षरों का उपयोग करने से संकेताक्षर हमले के लिए असुरक्षित हो गए। रोटर मशीनों के आविष्कार ने बहु वर्णी एन्क्रिप्शन को यंत्रीकृत किया, जिससे बहुत अधिक संख्या में वर्णों का उपयोग करने का एक व्यावहारिक तरीका प्रदान किया गया। | ||
प्रारंभिक क्रिप्ट एनालिटिक तकनीक आवृत्ति विश्लेषण थी, जिसमें प्रत्येक भाषा के लिए अद्वितीय अक्षर | प्रारंभिक क्रिप्ट एनालिटिक तकनीक आवृत्ति विश्लेषण थी, जिसमें प्रत्येक भाषा के लिए अद्वितीय अक्षर पतिरूप का उपयोग एक मोनो-अल्फाबेटिक प्रतिस्थापन संकेताक्षर में उपयोग किए जाने वाले प्रतिस्थापन वर्णमाला(ओं) के बारे में जानकारी खोजने के लिए किया जा सकता था। उदाहरण के लिए, अंग्रेजी में, [[सादे पाठ]] अक्षर E, T, A, O, I, N और S, आमतौर पर संकेताक्षर पाठ्य भाग में इस आधार पर पहचानना आसान होते हैं कि चूंकि वे बहुत बार-बार उपयोग होते हैं ([[ETAOIN SHRDLU]] देखें), उनके संबंधित संकेताक्षरपाठ्य भाग अक्षर भी अक्सर उपयोग होते हैं। इसके अतिरिक्त, NG, ST और अन्य जैसे [[बाइग्राम]] संयोजन भी बहुत बार उपयोग होते हैं, जबकि अन्य वास्तव में दुर्लभ होते हैं (उदाहरण के लिए Q के बाद U के अलावा कुछ भी)। सरलतम आवृत्ति विश्लेषण एक संकेताक्षरपाठ्य भाग अक्षर पर निर्भर करता है जिसे हमेशा संकेताक्षर में एक सादे पाठ्य भाग के अक्षर के लिए प्रतिस्थापित किया जाता है: यदि ऐसा नहीं है, तो संदेश को समझना अधिक कठिन होता है। कई वर्षों तक, बीजलेखक ने सामान्य अक्षरों के लिए कई अलग-अलग प्रतिस्थापनों का उपयोग करके टेल्टेल (स्पष्ट संकेत देने वाला) आवृत्तियों को छिपाने का प्रयास किया, लेकिन यह तकनीक सादे पाठ्य भाग अक्षरों के प्रतिस्थापनों में पतिरूप को पूरी तरह से छिपाने में असमर्थ थी। 16वीं शताब्दी तक ऐसी योजनाओं को व्यापक रूप से तोड़ा जा रहा था। | ||
15वीं शताब्दी के मध्य में, [[लियो बतिस्ता अल्बर्टी]] द्वारा एक नई तकनीक का आविष्कार किया गया था, जिसे अब आम तौर पर | 15वीं शताब्दी के मध्य में, [[लियो बतिस्ता अल्बर्टी]] द्वारा एक नई तकनीक का आविष्कार किया गया था, जिसे अब आम तौर पर बहु वर्णी संकेताक्षर के रूप में जाना जाता है, जिसने एक से अधिक प्रतिस्थापन वर्णमाला का उपयोग करने के गुण को मान्यता दी; उन्होंने एक संदेश में उपयोग के लिए बहुत सारे प्रतिस्थापन पतिरूप बनाने के लिए एक सरल तकनीक का भी आविष्कार किया। दो पक्षों ने सूचनाओं की छोटी मात्रा आदान-प्रदान किया ([[क्रिप्टोग्राफिक कुंजी]] के रूप में संदर्भित) और इसका उपयोग कई प्रतिस्थापन अक्षर बनाने के लिए किया, और एक सादे पाठ के दौरान प्रत्येक सादे पाठ पत्र के लिए कई अलग-अलग प्रतिस्थापन बनाए गए। विचार सरल और प्रभावी है, लेकिन इसका उपयोग करना अपेक्षा से अधिक कठिन साबित हुआ। कई संकेताक्षर अलबर्टी के केवल आंशिक कार्यान्वयन थे, और इसलिए उन्हें तोड़ने इसकी तुलना में आसान था (उदाहरण के लिए विगेनियर संकेताक्षर)। | ||
1840 के दशक तक (बैबेज) कोई भी ऐसी तकनीक ज्ञात नहीं थी जो किसी भी [[बहु अक्षरीय सिफर|बहु अक्षरीय संकेताक्षर]] को | 1840 के दशक तक (बैबेज) कोई भी ऐसी तकनीक ज्ञात नहीं थी जो किसी भी [[बहु अक्षरीय सिफर|बहु अक्षरीय संकेताक्षर]] को सबलता से तोड़ सके। उनकी तकनीक ने संकेताक्षरपाठ्य भाग में दोहराए जाने वाले पतिरूप की भी खोज की, जो कुंजी की लंबाई के बारे में सुराग प्रदान करते हैं। एक बार यह ज्ञात हो जाने के बाद, संदेश अनिवार्य रूप से संदेशों की एक श्रृंखला बन जाता है, प्रत्येक कुंजी की लंबाई जितनी लंबी होती है, जिस पर सामान्य आवृत्ति विश्लेषण लागू किया जा सकता है। [[चार्ल्स बैबेज]], [[फ्रेडरिक कासिस्की]] और विलियम एफ. फ्रीडमैन उन लोगों में से हैं जिन्होंने इन तकनीकों को विकसित करने के लिए सबसे अधिक प्रयास किया। | ||
संकेताक्षर | संकेताक्षर रूपकारों ने उपयोगकर्ताओं को प्रत्येक अक्षर के लिए एक अलग प्रतिस्थापन का उपयोग करने की कोशिश की, लेकिन इसका अर्थ आमतौर पर एक बहुत लंबी कुंजी थी, जो कई मायनों में एक समस्या थी। एक लंबी कुंजी को उन पक्षों को (सुरक्षित रूप से) संप्रेषित करने में अधिक समय लगता है, जिन्हें इसकी आवश्यकता होती है, और इसलिए कुंजी वितरण में गलतियों की संभावना अधिक होती है। साथ ही, कई उपयोगकर्ताओं के पास लंबा, अक्षर-पूर्ण विकास करने के लिए धैर्य नहीं है, और निश्चित रूप से समय के दबाव या युद्ध के तनाव के तहत नहीं। इस प्रकार का 'अंतिम' संकेताक्षर वह होगा जिसमें एक सरल पतिरूप (आदर्श स्वचालित रूप से) से ऐसी 'लंबी' कुंजी उत्पन्न की जा सकती है, जिसमें एक संकेताक्षर उत्पन्न होता है जिसमें इतने सारे प्रतिस्थापन अक्षर होते हैं कि आवृत्ति गिनती और सांख्यिकीय हमले प्रभावी रूप से असंभव होंगे। एनिग्मा, और रोटर मशीनें आम तौर पर केवल वही थीं जिनकी आवश्यकता थी क्योंकि वे गंभीर रूप से बहुवर्णी थे, सादे पाठ के प्रत्येक अक्षर के लिए एक अलग प्रतिस्थापन वर्णमाला का उपयोग करते हुए, और स्वचालित, अपने उपयोगकर्ताओं से कोई असाधारण क्षमता की आवश्यकता नहीं थी। उनके संदेश, आम तौर पर, पिछले किसी भी संकेताक्षर की तुलना में तोड़ने में बहुत कठिन थे। | ||
== मशीनीकरण == | == मशीनीकरण == | ||
Line 33: | Line 33: | ||
रोटर मशीन की अवधारणा एक ही समय में स्वतंत्र रूप से कई अन्वेषकों के सामने आई। | रोटर मशीन की अवधारणा एक ही समय में स्वतंत्र रूप से कई अन्वेषकों के सामने आई। | ||
2003 में, यह सामने आया कि पहले आविष्कारक दो [[रॉयल नीदरलैंड नौसेना]], थियो ए वैन हेंगेल (1875-1939) और | 2003 में, यह सामने आया कि पहले आविष्कारक दो [[रॉयल नीदरलैंड नौसेना]], 1915 में (डी लीव, 2003) थियो ए वैन हेंगेल (1875-1939) और आर.पी.सी. स्पेंगलर (1875-1955) थे। इससे पहले, आविष्कार के लिए स्वतंत्र रूप से और एक ही समय में काम करने वाले चार अन्वेषकों को जिम्मेदार ठहराया गया था: [[ एडवर्ड हेबरन | एडवर्ड हेबरन]], अरविद डैम, [[ह्यूगो कोच]] और [[आर्थर शेरबियस]]। | ||
[[संयुक्त राज्य अमेरिका]] में [[एडवर्ड ह्यूग हेबरन]] ने 1917 में एक एकल रोटर का उपयोग करके एक रोटर मशीन का निर्माण किया। उन्हें विश्वास हो गया कि वह इस तरह की प्रणाली | [[संयुक्त राज्य अमेरिका]] में [[एडवर्ड ह्यूग हेबरन]] ने 1917 में एक एकल रोटर का उपयोग करके एक रोटर मशीन का निर्माण किया। उन्हें विश्वास हो गया कि वह इस तरह की प्रणाली, [[हेबरन रोटर मशीन]] को को सेना बेचकर अमीर बन जाएंगे, और एक से पांच रोटर के साथ विभिन्न मशीनों की एक श्रृंखला का उत्पादन किया। फिर भी, उनकी सफलता सीमित थी, और वे 1920 के दशक में [[दिवालिया]] हो गए। उन्होंने 1931 में [[अमेरिकी नौसेना]] को बहुत कम संख्या में मशीनें बेचीं। | ||
हेबरन की मशीनों में रोटर्स को खोला जा सकता था और कुछ ही मिनटों में तारों को | हेबरन की मशीनों में रोटर्स को खोला जा सकता था और कुछ ही मिनटों में तारों को बदला जा सकता था, इसलिए एक बड़े पैमाने पर उत्पादित प्रणाली को कई उपयोगकर्ताओं को बेचा जा सकता था जो तब अपनी रोटर कुंजीयन का उत्पादन कर सकते थे। विकोडन में रोटर (ओं) को बाहर निकालना और परिपथिकी को उलटने के लिए उन्हें घुमाना उपस्थित था। हेबरन के लिए अज्ञात, अमेरिकी सेना के [[सिग्नल इंटेलिजेंस सर्विस]] के विलियम एफ. फ्रीडमैन ने तुरंत प्रणाली में एक दोष का प्रदर्शन किया जिसने संकेताक्षर को इससे और समान डिजाइन सुविधाओं वाली किसी भी मशीन से, पर्याप्त काम के साथ क्रैक करने की अनुमति दी। | ||
एक और | एक और प्रारंभकर्ता रोटर मशीन आविष्कारक डचमैन ह्यूगो कोच थे, जिन्होंने 1919 में एक रोटर मशीन पर [[पेटेंट]] (किसी आविष्कार का पूर्ण अधिकार) दायर किया था। लगभग उसी समय [[स्वीडन]] में, [[अरविद गेरहार्ड डैम]] ने एक और रोटर प्रारुपण का आविष्कार किया और पेटेंट कराया। फिर भी, रोटर मशीन को अंततः आर्थर शेरबियस द्वारा प्रसिद्ध किया गया, जिन्होंने 1918 में रोटर मशीन पेटेंट दायर किया। बाद में शेरबियस ने एनिग्मा मशीन का डिजाइन और विपणन किया। | ||
=== | === द इनिग्मा मशीन === | ||
[[File:EnigmaMachineLabeled.jpg|thumbnail|right|जर्मन एनिग्मा मशीन]]सबसे व्यापक रूप से ज्ञात रोटर संकेताक्षर उपकरण द्वितीय विश्व युद्ध के दौरान उपयोग की जाने वाली जर्मन एनिग्मा मशीन है, जिसके कई प्रकार थे। | |||
[[File:EnigmaMachineLabeled.jpg|thumbnail|right|जर्मन एनिग्मा मशीन]]सबसे व्यापक रूप से ज्ञात रोटर संकेताक्षर उपकरण द्वितीय विश्व युद्ध के दौरान | |||
मानक | मानक एनिग्मा मॉडल, एनिग्मा I, में तीन रोटार का उपयोग किया गया था। रोटर्स के ढेर के अंत में एक अतिरिक्त, गैर-घूर्णन डिस्क, परावर्तक," इस तरह तारित किया गया था कि इनपुट विद्युत रूप से वापस उसी तरफ दूसरे संपर्क से जुड़ा हुआ था और इस प्रकार उत्पादन करने के लिए तीन-रोटर स्टैक के माध्यम से वापस परिलक्षित होता था संकेताक्षरपाठ्य भाग। | ||
जब अधिकांश अन्य रोटर संकेताक्षर मशीनों में करंट भेजा जाता था, तो यह रोटरों के माध्यम से और दूसरी तरफ लैंप तक जाता था। हालांकि, एनिग्मा में, यह लैंप में जाने से पहले डिस्क के माध्यम से वापस परिलक्षित होता था। इसका लाभ यह था कि किसी संदेश को समझने के लिए | जब अधिकांश अन्य रोटर संकेताक्षर मशीनों में करंट भेजा जाता था, तो यह रोटरों के माध्यम से और दूसरी तरफ लैंप तक जाता था। हालांकि, एनिग्मा में, यह लैंप में जाने से पहले डिस्क के माध्यम से वापस परिलक्षित होता था। इसका लाभ यह था कि किसी संदेश को समझने के लिए व्यवस्थापन में कुछ भी नहीं करना पड़ता था; मशीन सममित थी। | ||
एनिग्मा के परावर्तक ने गारंटी दी कि कोई भी अक्षर स्वयं के रूप में एन्क्रिप्ट नहीं किया जा सकता है, इसलिए ए कभी भी ए में वापस नहीं आ सकता है। इससे पोलिश और बाद में, संकेताक्षर को तोड़ने के ब्रिटिश प्रयासों में मदद मिली। (पहेली का क्रिप्ट विश्लेषण देखें।) | एनिग्मा के परावर्तक ने गारंटी दी कि कोई भी अक्षर स्वयं के रूप में एन्क्रिप्ट नहीं किया जा सकता है, इसलिए ए कभी भी ए में वापस नहीं आ सकता है। इससे पोलिश और बाद में, संकेताक्षर को तोड़ने के ब्रिटिश प्रयासों में मदद मिली। (पहेली का क्रिप्ट विश्लेषण देखें।) | ||
1923 में [[बर्न]] में जनता के लिए एनिग्मा का प्रदर्शन करने से पहले, और फिर 1924 में [[स्टॉकहोम]] में वर्ल्ड पोस्टल कांग्रेस में शेरबियस ने रिटर नाम के एक मैकेनिकल इंजीनियर के साथ सेना में | 1923 में [[बर्न]] में जनता के लिए एनिग्मा का प्रदर्शन करने से पहले, और फिर 1924 में [[स्टॉकहोम]] में वर्ल्ड पोस्टल कांग्रेस में शेरबियस ने रिटर नाम के एक मैकेनिकल इंजीनियर के साथ सेना में उपस्थित हो गए और [[बर्लिन]] में शिफ्रिएर्मस्चिनन एजी का गठन किया। 1927 में शेरबियस ने कोच के पेटेंट खरीदे, और 1928 में उन्होंने मशीन के सामने एक प्लगबोर्ड जोड़ा, अनिवार्य रूप से एक गैर-घूर्णन मैन्युअल रूप से फिर से तार करने योग्य चौथा रोटर। 1929 में शेरबियस की मृत्यु के बाद, [[विली कॉर्न]] एनिग्मा के आगे के तकनीकी विकास के प्रभारी थे। | ||
अन्य | अन्य प्रारंभकर्ता रोटर मशीन प्रयासों के साथ, शेरबियस को व्यावसायिक सफलता सीमित थी। हालांकि, जर्मन सशस्त्र बलों ने, प्रथम विश्व युद्ध के दौरान उनके कोड को तोड़े जाने के रहस्योद्घाटन का आंशिक रूप से जवाब देते हुए, अपने संचार को सुरक्षित करने के लिए एनिग्मा को अपनाया। रैशमरीन ने 1926 में एनिग्मा को अपनाया और 1928 के आसपास रैशवेहर ने एक अलग संस्करण का उपयोग करना प्रारंभ किया। | ||
एनिग्मा (कई रूपों में) रोटर मशीन थी जिसे शेरबियस की कंपनी और उसके उत्तराधिकारी, हेमसोथ एंड रिंके ने जर्मन सेना और नाजी पार्टी सुरक्षा संगठन, [[सुरक्षा सेवा]] जैसी एजेंसियों को आपूर्ति की थी। | एनिग्मा (कई रूपों में) रोटर मशीन थी जिसे शेरबियस की कंपनी और उसके उत्तराधिकारी, हेमसोथ एंड रिंके ने जर्मन सेना और नाजी पार्टी सुरक्षा संगठन, [[सुरक्षा सेवा]] जैसी एजेंसियों को आपूर्ति की थी। | ||
[[पोलैंड]] ने दिसंबर 1932 में | [[पोलैंड]] ने दिसंबर 1932 में प्रारंभ हुई जर्मन सेना की पहेली को तोड़ दिया, इसके सेवा में आने के कुछ ही समय बाद। 25 जुलाई, 1939 को, पोलैंड पर हिटलर के आक्रमण से ठीक पांच सप्ताह पहले, [[पोलिश जनरल स्टाफ]] के [[पोलिश सिफर ब्यूरो|पोलिश संकेताक्षर ब्यूरो]] ने नाजी जर्मनी के खिलाफ आम रक्षा में पोल्स के योगदान के रूप में फ्रेंच और ब्रिटिश के साथ अपनी पहेली-विकोडन विधियों और उपकरणों को साझा किया। [[डिली नॉक्स]] ने पहले ही 1937 में स्पेनिश गृहयुद्ध के दौरान एक वाणिज्यिक एनिग्मा मशीन पर स्पेनिश राष्ट्रवादी संदेशों को तोड़ दिया था। | ||
कुछ महीने बाद, पोलिश तकनीकों का उपयोग करते हुए, अंग्रेजों ने पोलिश संकेताक्षर ब्यूरो क्रिप्टोलॉजिस्ट के सहयोग से एनिग्मा संकेताक्षर पढ़ना | कुछ महीने बाद, पोलिश तकनीकों का उपयोग करते हुए, अंग्रेजों ने पोलिश संकेताक्षर ब्यूरो क्रिप्टोलॉजिस्ट के सहयोग से एनिग्मा संकेताक्षर पढ़ना प्रारंभ किया, जो [[पेरिस]] पहुंचने के लिए जर्मनों द्वारा पोलैंड से भाग गए थे। मई-जून 1940 में जर्मन आक्रमण द्वारा फ़्रांस में स्टेशन [[पीसी ब्रूनो]] पर काम बंद होने तक पोल्स ने जर्मन आर्मी एनिग्मा-लूफ़्टवाफ एनिग्मा ट्रैफिक के साथ-साथ तोड़ना जारी रखा। | ||
ब्रिटिश ने एनिग्मा को तोड़ना जारी रखा और अंततः संयुक्त राज्य अमेरिका द्वारा सहायता प्रदान की, जर्मन नेवल एनिग्मा ट्रैफिक (जिसे डंडे युद्ध से पहले पढ़ रहे थे) तक काम बढ़ाया, विशेष रूप से [[अटलांटिक की लड़ाई]] के दौरान और यू-बोट से। | ब्रिटिश ने एनिग्मा को तोड़ना जारी रखा और अंततः संयुक्त राज्य अमेरिका द्वारा सहायता प्रदान की, जर्मन नेवल एनिग्मा ट्रैफिक (जिसे डंडे युद्ध से पहले पढ़ रहे थे) तक काम बढ़ाया, विशेष रूप से [[अटलांटिक की लड़ाई]] के दौरान और यू-बोट से। | ||
=== विभिन्न मशीनें === | === विभिन्न मशीनें === | ||
[[File:Enigma rotor.jpg|thumb|right|एनिग्मा रोटर मशीन से रोटर स्टैक। इस मशीन के रोटर्स में 26 संपर्क होते हैं।]][[द्वितीय विश्व युद्ध]] (द्वितीय विश्व युद्ध) के दौरान, जर्मन और सहयोगी दोनों ने अतिरिक्त रोटर मशीनें विकसित कीं। जर्मनों ने लॉरेंज SZ 40/42 और | [[File:Enigma rotor.jpg|thumb|right|एनिग्मा रोटर मशीन से रोटर स्टैक। इस मशीन के रोटर्स में 26 संपर्क होते हैं।]][[द्वितीय विश्व युद्ध]] (द्वितीय विश्व युद्ध) के दौरान, जर्मन और सहयोगी दोनों ने अतिरिक्त रोटर मशीनें विकसित कीं। जर्मनों ने लॉरेंज SZ 40/42 और सीमेंस और हल्स्के T52 मशीनों का उपयोग दूरमुद्रक ट्रैफ़िक (आदान प्रदान) को समझने के लिए किया, जिसमें [[बॉडॉट कोड]] का उपयोग किया गया था; इस आदान प्रदान को मित्र राष्ट्रों के लिए [[मछली (क्रिप्टोग्राफी)|फ़िश (कूटलेखन)]] के रूप में जाना जाता था। मित्र राष्ट्रों ने [[टाइपेक्स]] (ब्रिटिश) और [[ अनुभाग |सिगाबा]] (अमेरिकी) का विकास किया। युद्ध के दौरान [[स्विट्ज़रलैंड]] ने एनिग्मा सुधार पर विकास प्रारंभ किया जो एन.ई.एम.ए मशीन बन गया जिसे द्वितीय विश्व युद्ध के बाद सेवा में रखा गया था। एनिग्मा का एक जापानी विकसित संस्करण भी था जिसमें रोटर क्षैतिज रूप से बैठे थे; यह स्पष्ट रूप से सेवा में कभी नहीं डाला गया था। जापानी [[PURPLE]] मशीन एक रोटर मशीन नहीं थी, जिसे बिजली के [[ कदम स्विच |सोपानी स्विच]] के आसपास बनाया जा रहा था, लेकिन वैचारिक रूप से समान थी। | ||
कंप्यूटर युग में भी रोटर मशीनों का उपयोग जारी रहा। [[KL-7]] (ADONIS), 8 रोटार वाली एक एन्क्रिप्शन मशीन है, जिसका उपयोग अमेरिका और उसके सहयोगियों द्वारा 1950 से 1980 के दशक तक व्यापक रूप से किया गया था। KL-7 के साथ एन्क्रिप्ट किया गया आखिरी [[कनाडा]] संदेश 30 जून, 1983 को भेजा गया था। सोवियत संघ और उसके सहयोगियों ने 1970 के दशक में [[ बैंगनी ]] नामक 10-रोटर मशीन का | कंप्यूटर युग में भी रोटर मशीनों का उपयोग जारी रहा। [[KL-7]] (ADONIS), 8 रोटार वाली एक एन्क्रिप्शन ( कूट लेखन) मशीन है, जिसका उपयोग अमेरिका और उसके सहयोगियों द्वारा 1950 से 1980 के दशक तक व्यापक रूप से किया गया था। KL-7 के साथ एन्क्रिप्ट किया गया आखिरी [[कनाडा]] संदेश 30 जून, 1983 को भेजा गया था। सोवियत संघ और उसके सहयोगियों ने 1970 के दशक में [[ बैंगनी |फ़िल्का]] नामक 10-रोटर मशीन का उपयोग किया था। | ||
[[Image:Typex nocase.jpg|thumbnail|right|टाइपेक्स यूनाइटेड किंगडम और उसके राष्ट्रमंडल द्वारा उपयोग की जाने वाली एक प्रिंटिंग रोटर मशीन थी, और यह एनिग्मा पेटेंट पर आधारित थी।]] | [[Image:Typex nocase.jpg|thumbnail|right|टाइपेक्स यूनाइटेड किंगडम और उसके राष्ट्रमंडल द्वारा उपयोग की जाने वाली एक प्रिंटिंग रोटर मशीन थी, और यह एनिग्मा पेटेंट पर आधारित थी।]] | ||
[[File:SIGCUM.jpg|thumb|U.S. SIGCUM एक पाँच रोटर प्रणाली थी जिसका उपयोग टेलेटाइप ट्रैफ़िक को एन्क्रिप्ट करने के लिए किया जाता था।]]क्रिप्टोग्राफ़ नामक एक अद्वितीय रोटर मशीन का निर्माण 2002 में [[नीदरलैंड]] स्थित तत्जाना वैन वर्क द्वारा किया गया था। यह असामान्य उपकरण एनिग्मा से प्रेरित है, लेकिन अक्षरों, संख्याओं और कुछ विराम चिह्नों की अनुमति देते हुए 40-बिंदु रोटार का उपयोग करता है; प्रत्येक रोटर में 509 भाग होते हैं। | [[File:SIGCUM.jpg|thumb|U.S. SIGCUM एक पाँच रोटर प्रणाली थी जिसका उपयोग टेलेटाइप ट्रैफ़िक को एन्क्रिप्ट करने के लिए किया जाता था।]]क्रिप्टोग्राफ़ (गूढ़लेखन) नामक एक अद्वितीय रोटर मशीन का निर्माण 2002 में [[नीदरलैंड]] स्थित तत्जाना वैन वर्क द्वारा किया गया था। यह असामान्य उपकरण एनिग्मा से प्रेरित है, लेकिन अक्षरों, संख्याओं और कुछ विराम चिह्नों की अनुमति देते हुए 40-बिंदु रोटार का उपयोग करता है; प्रत्येक रोटर में 509 भाग होते हैं। | ||
कूटलेख ([[यूनिक्स]]) कमांड (आदेश) में रोटर मशीन के एक सॉफ्टवेयर कार्यान्वयन का उपयोग किया गया था जो प्रारंभिक यूनिक्स संचालन प्रणाली का हिस्सा था। यह यू.एस. निर्यात नियमों का उल्लंघन करने वाले पहले सॉफ्टवेयर प्रोग्रामों में से एक था, जिसने गूढ़लेखन कार्यान्वयन को युद्ध सामग्री के रूप में वर्गीकृत किया था। | |||
== रोटर मशीनों की सूची == | == रोटर मशीनों की सूची == | ||
Line 111: | Line 110: | ||
{{Cryptography navbox | machines}} | {{Cryptography navbox | machines}} | ||
{{DEFAULTSORT:Rotor Machine}} | {{DEFAULTSORT:Rotor Machine}} | ||
[[Category:All articles with unsourced statements|Rotor Machine]] | |||
[[Category:Articles with unsourced statements from February 2017|Rotor Machine]] | |||
[[Category: Machine | [[Category:Collapse templates|Rotor Machine]] | ||
[[Category:Created On 11/05/2023]] | [[Category:Created On 11/05/2023|Rotor Machine]] | ||
[[Category:Machine Translated Page|Rotor Machine]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Rotor Machine]] | |||
[[Category:Pages with script errors|Rotor Machine]] | |||
[[Category:Sidebars with styles needing conversion|Rotor Machine]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Rotor Machine]] | |||
[[Category:Templates generating microformats|Rotor Machine]] | |||
[[Category:Templates that are not mobile friendly|Rotor Machine]] | |||
[[Category:Templates using TemplateData|Rotor Machine]] | |||
[[Category:Webarchive template wayback links|Rotor Machine]] | |||
[[Category:Wikipedia metatemplates|Rotor Machine]] | |||
[[Category:रोटर मशीन|*]] |
Latest revision as of 10:55, 29 May 2023
कूटलेखन में, रोटर मशीन एक विद्युत् यांत्रिक स्ट्रीम सिफर (संकेताक्षर) उपकरण है जिसका उपयोग संदेशों को एन्क्रिप्ट और डिक्रिप्ट करने के लिए किया जाता है। रोटर मशीनें 20वीं सदी के अधिकांश समय के लिए गूढ़लेखन अत्याधुनिक थीं; वे 1920-1970 के दशक में व्यापक उपयोग में थे। सबसे प्रसिद्ध उदाहरण जर्मन एनिग्मा मशीन है, जिसका निष्पाद द्वितीय विश्व युद्ध के दौरान मित्र राष्ट्रों द्वारा डिक्रिपर्ड (गूढ़लिपि पढ़ना) किया गया था, जो 'अत्यंत' नामक गुप्त कोड का उत्पादन करता था।
विवरण
रोटर मशीन का प्राथमिक घटक रोटरों का एक समूह है, जिसे पहिए या ड्रम भी कहा जाता है, जो दोनों तरफ विद्युत संपर्कों की एक सरणी के साथ घूर्णन डिस्क हैं। संपर्कों के बीच वायरिंग अक्षरों के एक निश्चित प्रतिस्थापन वर्णमाला को लागू करती है, उन्हें कुछ जटिल शोभाचार में बदल देती है। यह अपने आप में थोड़ी सुरक्षा प्रदान करेगा; फिर भी, प्रत्येक अक्षर को एन्क्रिप्ट करने से पहले या बाद में, रोटर्स अग्रिम स्थिति, प्रतिस्थापन को बदलते हैं। इस माध्यम से, रोटर मशीन एक जटिल बहु वर्णी प्रतिस्थापन संकेताक्षर का उत्पादन करती है, जो प्रत्येक कुंजी दबाने पर बदलती है।
पृष्ठभूमि
शास्त्रीय कूटलेखन में, सबसे पूर्वतर एन्क्रिप्शन विधियों में से एक सरल प्रतिस्थापन संकेताक्षर था, जहां एक संदेश में अक्षरों को कुछ गुप्त योजना का उपयोग करके व्यवस्थित रूप से बदल दिया गया था। मोनोअल्फाबेटिक प्रतिस्थापन संकेताक्षर केवल एक प्रतिस्थापन योजना का उपयोग करते थे - कभी-कभी " वर्णमाला " कहा जाता था; इसे आसानी से तोड़ा जा सकता है, उदाहरण के लिए, आवृत्ति विश्लेषण का उपयोग करके। कुछ अधिक सुरक्षित योजनाएँ थीं जिनमें कई अक्षर, बहुवर्णक संकेताक्षर उपस्थित थे। क्योंकि इस तरह की योजनाओं को हाथ से लागू किया गया था, केवल मुट्ठी भर अलग-अलग अक्षर ही उपयोग किए जा सकते थे; कुछ और जटिल अव्यवहारिक होगा। फिर भी, केवल कुछ अक्षरों का उपयोग करने से संकेताक्षर हमले के लिए असुरक्षित हो गए। रोटर मशीनों के आविष्कार ने बहु वर्णी एन्क्रिप्शन को यंत्रीकृत किया, जिससे बहुत अधिक संख्या में वर्णों का उपयोग करने का एक व्यावहारिक तरीका प्रदान किया गया।
प्रारंभिक क्रिप्ट एनालिटिक तकनीक आवृत्ति विश्लेषण थी, जिसमें प्रत्येक भाषा के लिए अद्वितीय अक्षर पतिरूप का उपयोग एक मोनो-अल्फाबेटिक प्रतिस्थापन संकेताक्षर में उपयोग किए जाने वाले प्रतिस्थापन वर्णमाला(ओं) के बारे में जानकारी खोजने के लिए किया जा सकता था। उदाहरण के लिए, अंग्रेजी में, सादे पाठ अक्षर E, T, A, O, I, N और S, आमतौर पर संकेताक्षर पाठ्य भाग में इस आधार पर पहचानना आसान होते हैं कि चूंकि वे बहुत बार-बार उपयोग होते हैं (ETAOIN SHRDLU देखें), उनके संबंधित संकेताक्षरपाठ्य भाग अक्षर भी अक्सर उपयोग होते हैं। इसके अतिरिक्त, NG, ST और अन्य जैसे बाइग्राम संयोजन भी बहुत बार उपयोग होते हैं, जबकि अन्य वास्तव में दुर्लभ होते हैं (उदाहरण के लिए Q के बाद U के अलावा कुछ भी)। सरलतम आवृत्ति विश्लेषण एक संकेताक्षरपाठ्य भाग अक्षर पर निर्भर करता है जिसे हमेशा संकेताक्षर में एक सादे पाठ्य भाग के अक्षर के लिए प्रतिस्थापित किया जाता है: यदि ऐसा नहीं है, तो संदेश को समझना अधिक कठिन होता है। कई वर्षों तक, बीजलेखक ने सामान्य अक्षरों के लिए कई अलग-अलग प्रतिस्थापनों का उपयोग करके टेल्टेल (स्पष्ट संकेत देने वाला) आवृत्तियों को छिपाने का प्रयास किया, लेकिन यह तकनीक सादे पाठ्य भाग अक्षरों के प्रतिस्थापनों में पतिरूप को पूरी तरह से छिपाने में असमर्थ थी। 16वीं शताब्दी तक ऐसी योजनाओं को व्यापक रूप से तोड़ा जा रहा था।
15वीं शताब्दी के मध्य में, लियो बतिस्ता अल्बर्टी द्वारा एक नई तकनीक का आविष्कार किया गया था, जिसे अब आम तौर पर बहु वर्णी संकेताक्षर के रूप में जाना जाता है, जिसने एक से अधिक प्रतिस्थापन वर्णमाला का उपयोग करने के गुण को मान्यता दी; उन्होंने एक संदेश में उपयोग के लिए बहुत सारे प्रतिस्थापन पतिरूप बनाने के लिए एक सरल तकनीक का भी आविष्कार किया। दो पक्षों ने सूचनाओं की छोटी मात्रा आदान-प्रदान किया (क्रिप्टोग्राफिक कुंजी के रूप में संदर्भित) और इसका उपयोग कई प्रतिस्थापन अक्षर बनाने के लिए किया, और एक सादे पाठ के दौरान प्रत्येक सादे पाठ पत्र के लिए कई अलग-अलग प्रतिस्थापन बनाए गए। विचार सरल और प्रभावी है, लेकिन इसका उपयोग करना अपेक्षा से अधिक कठिन साबित हुआ। कई संकेताक्षर अलबर्टी के केवल आंशिक कार्यान्वयन थे, और इसलिए उन्हें तोड़ने इसकी तुलना में आसान था (उदाहरण के लिए विगेनियर संकेताक्षर)।
1840 के दशक तक (बैबेज) कोई भी ऐसी तकनीक ज्ञात नहीं थी जो किसी भी बहु अक्षरीय संकेताक्षर को सबलता से तोड़ सके। उनकी तकनीक ने संकेताक्षरपाठ्य भाग में दोहराए जाने वाले पतिरूप की भी खोज की, जो कुंजी की लंबाई के बारे में सुराग प्रदान करते हैं। एक बार यह ज्ञात हो जाने के बाद, संदेश अनिवार्य रूप से संदेशों की एक श्रृंखला बन जाता है, प्रत्येक कुंजी की लंबाई जितनी लंबी होती है, जिस पर सामान्य आवृत्ति विश्लेषण लागू किया जा सकता है। चार्ल्स बैबेज, फ्रेडरिक कासिस्की और विलियम एफ. फ्रीडमैन उन लोगों में से हैं जिन्होंने इन तकनीकों को विकसित करने के लिए सबसे अधिक प्रयास किया।
संकेताक्षर रूपकारों ने उपयोगकर्ताओं को प्रत्येक अक्षर के लिए एक अलग प्रतिस्थापन का उपयोग करने की कोशिश की, लेकिन इसका अर्थ आमतौर पर एक बहुत लंबी कुंजी थी, जो कई मायनों में एक समस्या थी। एक लंबी कुंजी को उन पक्षों को (सुरक्षित रूप से) संप्रेषित करने में अधिक समय लगता है, जिन्हें इसकी आवश्यकता होती है, और इसलिए कुंजी वितरण में गलतियों की संभावना अधिक होती है। साथ ही, कई उपयोगकर्ताओं के पास लंबा, अक्षर-पूर्ण विकास करने के लिए धैर्य नहीं है, और निश्चित रूप से समय के दबाव या युद्ध के तनाव के तहत नहीं। इस प्रकार का 'अंतिम' संकेताक्षर वह होगा जिसमें एक सरल पतिरूप (आदर्श स्वचालित रूप से) से ऐसी 'लंबी' कुंजी उत्पन्न की जा सकती है, जिसमें एक संकेताक्षर उत्पन्न होता है जिसमें इतने सारे प्रतिस्थापन अक्षर होते हैं कि आवृत्ति गिनती और सांख्यिकीय हमले प्रभावी रूप से असंभव होंगे। एनिग्मा, और रोटर मशीनें आम तौर पर केवल वही थीं जिनकी आवश्यकता थी क्योंकि वे गंभीर रूप से बहुवर्णी थे, सादे पाठ के प्रत्येक अक्षर के लिए एक अलग प्रतिस्थापन वर्णमाला का उपयोग करते हुए, और स्वचालित, अपने उपयोगकर्ताओं से कोई असाधारण क्षमता की आवश्यकता नहीं थी। उनके संदेश, आम तौर पर, पिछले किसी भी संकेताक्षर की तुलना में तोड़ने में बहुत कठिन थे।
मशीनीकरण
साधारण प्रतिस्थापन करने के लिए मशीन बनाना सीधा है। 26 प्रकाश बल्बों से जुड़ी 26 स्विच वाली विद्युत प्रणाली में, कोई भी स्विच किसी एक बल्ब को रोशन करेगा। यदि प्रत्येक स्विच एक टाइपराइटर पर एक कुंजी द्वारा संचालित होता है, और बल्बों को अक्षरों के साथ वर्गीकरण किया जाता है, तो कुंजी और बल्ब के बीच तारों को चुनकर एन्क्रिप्शन के लिए ऐसी प्रणाली का उपयोग किया जा सकता है: उदाहरण के लिए, अक्षर A टाइप करने से Q नाम वाला बल्ब जल जाएगा। फिर भी, थोड़ी सुरक्षा प्रदान करते हुए वायरिंग को ठीक कर दिया गया है।
रोटर मशीनें प्रत्येक कुंजी आघात के साथ परस्पर संबंध वायरिंग (तार स्थापन) को बदल देती हैं। तारों को एक रोटर के अंदर रखा जाता है, और फिर हर बार एक अक्षर दबाए जाने पर गियर के साथ घुमाया जाता है। इसलिए पहली बार A दबाते समय Q उत्पन्न हो सकता है, अगली बार यह J उत्पन्न कर सकता है। कीबोर्ड पर दबाया गया प्रत्येक अक्षर रोटर की स्थिति को बढ़ाता है और एक बहु वर्णी प्रतिस्थापन संकेताक्षर लागू कर के, नया प्रतिस्थापन प्राप्त करता है।
रोटर के आकार के आधार पर, यह हैंड संकेताक्षर की तुलना में अधिक सुरक्षित हो भी सकता है और नहीं भी। यदि रोटर पर केवल 26 स्थान हैं, प्रत्येक अक्षर के लिए एक, तो सभी संदेशों में 26 अक्षरों की एक (दोहराई जाने वाली) कुंजी होगी। यद्यपि कुंजी स्वयं (ज्यादातर रोटर के तारों में छिपी हुई) ज्ञात नहीं हो सकती है, इस प्रकार के संकेताक्षर पर हमला करने के तरीकों के लिए उस जानकारी की आवश्यकता नहीं होती है। तो जबकि ऐसी एकल रोटर मशीन का उपयोग करना निश्चित रूप से आसान है, यह किसी भी अन्य आंशिक बहुवर्णी संकेताक्षर प्रणाली की तुलना में अधिक सुरक्षित नहीं है।
लेकिन इसे ठीक करना आसान है। बस एक दूसरे के बगल में अधिक रोटरों को ढेर करें, और उन्हें एक साथ जोड़ दें। पहले रोटर के सभी तरह से घूमने के बाद, इसके बगल में स्थित रोटर को एक स्थिति में घुमाएँ। अब आपको कुंजी दोहराने से पहले 26 × 26 = 676 अक्षर (लैटिन वर्णमाला के लिए) टाइप करना होगा, और फिर भी आपको चीजों को निर्धारित करने के लिए केवल दो अक्षरों/संख्याओं की कुंजी संवाद करने की आवश्यकता होगी। यदि 676 लंबाई की कुंजी पर्याप्त लंबी नहीं है, तो एक और रोटर जोड़ा जा सकता है, जिसके परिणामस्वरूप 17,576 अक्षरों की अवधि होती है।
कूटलेखन के रूप में समझने में आसान होने के लिए, कुछ रोटर मशीनें, विशेष रूप से एनिग्मा मशीन, एक सममित-कुंजी कलन विधि को सन्निहित करती हैं, यानी, एक ही समायोजना के साथ दो बार एन्क्रिप्ट करने से मूल संदेश ठीक हो जाता है (प्रत्यावर्तन (गणित) देखें)।
इतिहास
आविष्कार
रोटर मशीन की अवधारणा एक ही समय में स्वतंत्र रूप से कई अन्वेषकों के सामने आई।
2003 में, यह सामने आया कि पहले आविष्कारक दो रॉयल नीदरलैंड नौसेना, 1915 में (डी लीव, 2003) थियो ए वैन हेंगेल (1875-1939) और आर.पी.सी. स्पेंगलर (1875-1955) थे। इससे पहले, आविष्कार के लिए स्वतंत्र रूप से और एक ही समय में काम करने वाले चार अन्वेषकों को जिम्मेदार ठहराया गया था: एडवर्ड हेबरन, अरविद डैम, ह्यूगो कोच और आर्थर शेरबियस।
संयुक्त राज्य अमेरिका में एडवर्ड ह्यूग हेबरन ने 1917 में एक एकल रोटर का उपयोग करके एक रोटर मशीन का निर्माण किया। उन्हें विश्वास हो गया कि वह इस तरह की प्रणाली, हेबरन रोटर मशीन को को सेना बेचकर अमीर बन जाएंगे, और एक से पांच रोटर के साथ विभिन्न मशीनों की एक श्रृंखला का उत्पादन किया। फिर भी, उनकी सफलता सीमित थी, और वे 1920 के दशक में दिवालिया हो गए। उन्होंने 1931 में अमेरिकी नौसेना को बहुत कम संख्या में मशीनें बेचीं।
हेबरन की मशीनों में रोटर्स को खोला जा सकता था और कुछ ही मिनटों में तारों को बदला जा सकता था, इसलिए एक बड़े पैमाने पर उत्पादित प्रणाली को कई उपयोगकर्ताओं को बेचा जा सकता था जो तब अपनी रोटर कुंजीयन का उत्पादन कर सकते थे। विकोडन में रोटर (ओं) को बाहर निकालना और परिपथिकी को उलटने के लिए उन्हें घुमाना उपस्थित था। हेबरन के लिए अज्ञात, अमेरिकी सेना के सिग्नल इंटेलिजेंस सर्विस के विलियम एफ. फ्रीडमैन ने तुरंत प्रणाली में एक दोष का प्रदर्शन किया जिसने संकेताक्षर को इससे और समान डिजाइन सुविधाओं वाली किसी भी मशीन से, पर्याप्त काम के साथ क्रैक करने की अनुमति दी।
एक और प्रारंभकर्ता रोटर मशीन आविष्कारक डचमैन ह्यूगो कोच थे, जिन्होंने 1919 में एक रोटर मशीन पर पेटेंट (किसी आविष्कार का पूर्ण अधिकार) दायर किया था। लगभग उसी समय स्वीडन में, अरविद गेरहार्ड डैम ने एक और रोटर प्रारुपण का आविष्कार किया और पेटेंट कराया। फिर भी, रोटर मशीन को अंततः आर्थर शेरबियस द्वारा प्रसिद्ध किया गया, जिन्होंने 1918 में रोटर मशीन पेटेंट दायर किया। बाद में शेरबियस ने एनिग्मा मशीन का डिजाइन और विपणन किया।
द इनिग्मा मशीन
सबसे व्यापक रूप से ज्ञात रोटर संकेताक्षर उपकरण द्वितीय विश्व युद्ध के दौरान उपयोग की जाने वाली जर्मन एनिग्मा मशीन है, जिसके कई प्रकार थे।
मानक एनिग्मा मॉडल, एनिग्मा I, में तीन रोटार का उपयोग किया गया था। रोटर्स के ढेर के अंत में एक अतिरिक्त, गैर-घूर्णन डिस्क, परावर्तक," इस तरह तारित किया गया था कि इनपुट विद्युत रूप से वापस उसी तरफ दूसरे संपर्क से जुड़ा हुआ था और इस प्रकार उत्पादन करने के लिए तीन-रोटर स्टैक के माध्यम से वापस परिलक्षित होता था संकेताक्षरपाठ्य भाग।
जब अधिकांश अन्य रोटर संकेताक्षर मशीनों में करंट भेजा जाता था, तो यह रोटरों के माध्यम से और दूसरी तरफ लैंप तक जाता था। हालांकि, एनिग्मा में, यह लैंप में जाने से पहले डिस्क के माध्यम से वापस परिलक्षित होता था। इसका लाभ यह था कि किसी संदेश को समझने के लिए व्यवस्थापन में कुछ भी नहीं करना पड़ता था; मशीन सममित थी।
एनिग्मा के परावर्तक ने गारंटी दी कि कोई भी अक्षर स्वयं के रूप में एन्क्रिप्ट नहीं किया जा सकता है, इसलिए ए कभी भी ए में वापस नहीं आ सकता है। इससे पोलिश और बाद में, संकेताक्षर को तोड़ने के ब्रिटिश प्रयासों में मदद मिली। (पहेली का क्रिप्ट विश्लेषण देखें।)
1923 में बर्न में जनता के लिए एनिग्मा का प्रदर्शन करने से पहले, और फिर 1924 में स्टॉकहोम में वर्ल्ड पोस्टल कांग्रेस में शेरबियस ने रिटर नाम के एक मैकेनिकल इंजीनियर के साथ सेना में उपस्थित हो गए और बर्लिन में शिफ्रिएर्मस्चिनन एजी का गठन किया। 1927 में शेरबियस ने कोच के पेटेंट खरीदे, और 1928 में उन्होंने मशीन के सामने एक प्लगबोर्ड जोड़ा, अनिवार्य रूप से एक गैर-घूर्णन मैन्युअल रूप से फिर से तार करने योग्य चौथा रोटर। 1929 में शेरबियस की मृत्यु के बाद, विली कॉर्न एनिग्मा के आगे के तकनीकी विकास के प्रभारी थे।
अन्य प्रारंभकर्ता रोटर मशीन प्रयासों के साथ, शेरबियस को व्यावसायिक सफलता सीमित थी। हालांकि, जर्मन सशस्त्र बलों ने, प्रथम विश्व युद्ध के दौरान उनके कोड को तोड़े जाने के रहस्योद्घाटन का आंशिक रूप से जवाब देते हुए, अपने संचार को सुरक्षित करने के लिए एनिग्मा को अपनाया। रैशमरीन ने 1926 में एनिग्मा को अपनाया और 1928 के आसपास रैशवेहर ने एक अलग संस्करण का उपयोग करना प्रारंभ किया।
एनिग्मा (कई रूपों में) रोटर मशीन थी जिसे शेरबियस की कंपनी और उसके उत्तराधिकारी, हेमसोथ एंड रिंके ने जर्मन सेना और नाजी पार्टी सुरक्षा संगठन, सुरक्षा सेवा जैसी एजेंसियों को आपूर्ति की थी।
पोलैंड ने दिसंबर 1932 में प्रारंभ हुई जर्मन सेना की पहेली को तोड़ दिया, इसके सेवा में आने के कुछ ही समय बाद। 25 जुलाई, 1939 को, पोलैंड पर हिटलर के आक्रमण से ठीक पांच सप्ताह पहले, पोलिश जनरल स्टाफ के पोलिश संकेताक्षर ब्यूरो ने नाजी जर्मनी के खिलाफ आम रक्षा में पोल्स के योगदान के रूप में फ्रेंच और ब्रिटिश के साथ अपनी पहेली-विकोडन विधियों और उपकरणों को साझा किया। डिली नॉक्स ने पहले ही 1937 में स्पेनिश गृहयुद्ध के दौरान एक वाणिज्यिक एनिग्मा मशीन पर स्पेनिश राष्ट्रवादी संदेशों को तोड़ दिया था।
कुछ महीने बाद, पोलिश तकनीकों का उपयोग करते हुए, अंग्रेजों ने पोलिश संकेताक्षर ब्यूरो क्रिप्टोलॉजिस्ट के सहयोग से एनिग्मा संकेताक्षर पढ़ना प्रारंभ किया, जो पेरिस पहुंचने के लिए जर्मनों द्वारा पोलैंड से भाग गए थे। मई-जून 1940 में जर्मन आक्रमण द्वारा फ़्रांस में स्टेशन पीसी ब्रूनो पर काम बंद होने तक पोल्स ने जर्मन आर्मी एनिग्मा-लूफ़्टवाफ एनिग्मा ट्रैफिक के साथ-साथ तोड़ना जारी रखा।
ब्रिटिश ने एनिग्मा को तोड़ना जारी रखा और अंततः संयुक्त राज्य अमेरिका द्वारा सहायता प्रदान की, जर्मन नेवल एनिग्मा ट्रैफिक (जिसे डंडे युद्ध से पहले पढ़ रहे थे) तक काम बढ़ाया, विशेष रूप से अटलांटिक की लड़ाई के दौरान और यू-बोट से।
विभिन्न मशीनें
द्वितीय विश्व युद्ध (द्वितीय विश्व युद्ध) के दौरान, जर्मन और सहयोगी दोनों ने अतिरिक्त रोटर मशीनें विकसित कीं। जर्मनों ने लॉरेंज SZ 40/42 और सीमेंस और हल्स्के T52 मशीनों का उपयोग दूरमुद्रक ट्रैफ़िक (आदान प्रदान) को समझने के लिए किया, जिसमें बॉडॉट कोड का उपयोग किया गया था; इस आदान प्रदान को मित्र राष्ट्रों के लिए फ़िश (कूटलेखन) के रूप में जाना जाता था। मित्र राष्ट्रों ने टाइपेक्स (ब्रिटिश) और सिगाबा (अमेरिकी) का विकास किया। युद्ध के दौरान स्विट्ज़रलैंड ने एनिग्मा सुधार पर विकास प्रारंभ किया जो एन.ई.एम.ए मशीन बन गया जिसे द्वितीय विश्व युद्ध के बाद सेवा में रखा गया था। एनिग्मा का एक जापानी विकसित संस्करण भी था जिसमें रोटर क्षैतिज रूप से बैठे थे; यह स्पष्ट रूप से सेवा में कभी नहीं डाला गया था। जापानी PURPLE मशीन एक रोटर मशीन नहीं थी, जिसे बिजली के सोपानी स्विच के आसपास बनाया जा रहा था, लेकिन वैचारिक रूप से समान थी।
कंप्यूटर युग में भी रोटर मशीनों का उपयोग जारी रहा। KL-7 (ADONIS), 8 रोटार वाली एक एन्क्रिप्शन ( कूट लेखन) मशीन है, जिसका उपयोग अमेरिका और उसके सहयोगियों द्वारा 1950 से 1980 के दशक तक व्यापक रूप से किया गया था। KL-7 के साथ एन्क्रिप्ट किया गया आखिरी कनाडा संदेश 30 जून, 1983 को भेजा गया था। सोवियत संघ और उसके सहयोगियों ने 1970 के दशक में फ़िल्का नामक 10-रोटर मशीन का उपयोग किया था।
क्रिप्टोग्राफ़ (गूढ़लेखन) नामक एक अद्वितीय रोटर मशीन का निर्माण 2002 में नीदरलैंड स्थित तत्जाना वैन वर्क द्वारा किया गया था। यह असामान्य उपकरण एनिग्मा से प्रेरित है, लेकिन अक्षरों, संख्याओं और कुछ विराम चिह्नों की अनुमति देते हुए 40-बिंदु रोटार का उपयोग करता है; प्रत्येक रोटर में 509 भाग होते हैं।
कूटलेख (यूनिक्स) कमांड (आदेश) में रोटर मशीन के एक सॉफ्टवेयर कार्यान्वयन का उपयोग किया गया था जो प्रारंभिक यूनिक्स संचालन प्रणाली का हिस्सा था। यह यू.एस. निर्यात नियमों का उल्लंघन करने वाले पहले सॉफ्टवेयर प्रोग्रामों में से एक था, जिसने गूढ़लेखन कार्यान्वयन को युद्ध सामग्री के रूप में वर्गीकृत किया था।
रोटर मशीनों की सूची
- बोली/60 (एकल)
- संयुक्त संकेताक्षर मशीन
- पहेली मशीन
- फियाल्का
- बोरिस हैगेलिन | हैगेलिन की मशीनों सहित
- सी-36 (संकेताक्षर मशीन)|सी-36,
- सी-52 (संकेताक्षर मशीन)|सी-52
- सीडी-57
- एम-209
- हेबर्न रोटर मशीन
- एचएक्स-63
- केएल-7
- लसीडा
- लॉरेंज संकेताक्षर | लॉरेंज एसजेड 40/42
- एम-325
- पारा (संकेताक्षर मशीन)
- नेमा (मशीन)
- ओएमआई क्रिप्टोग्राफ
- लाल (संकेताक्षर मशीन)
- सीमेंस और Halske T52
- सिगाबा
- सिगकम
- टाइपेक्स
संदर्भ
- Friedrich L. Bauer, "An error in the history of rotor encryption devices", Cryptologia 23(3), July 1999, page 206.
- Cipher A. Deavours, Louis Kruh, "Machine Cryptography and Modern Cryptanalysis", Artech House, 1985. ISBN 0-89006-161-0.
- Karl de Leeuw, "The Dutch invention of the rotor machine, 1915 - 1923." Cryptologia 27(1), January 2003, pp73–94.