टेंसर व्युत्पन्न (सातत्य यांत्रिकी): Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 6: | Line 6: | ||
=== सदिशों के अदिश मान वाले कार्यों के व्युत्पन्न === | === सदिशों के अदिश मान वाले कार्यों के व्युत्पन्न === | ||
मान लीजिए कि | मान लीजिए कि ''f''(''''v'''<nowiki/>') सदिश '<nowiki/>'''v'''<nowiki/>' का वास्तविक मान फलन है। फिर ''''v'''' (या ''''v'''<nowiki/>' पर) के संबंध में ''f''(''''v'''<nowiki/>') का व्युत्पन्न 'सदिश' अपने [[डॉट उत्पाद|बिंदु उत्पाद]] के माध्यम से किसी भी सदिश '''u''' के साथ परिभाषित किया गया है। | ||
<math display="block">\frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = Df(\mathbf{v})[\mathbf{u}] = \left[\frac{d}{d\alpha}~f(\mathbf{v} + \alpha~\mathbf{u})\right]_{\alpha=0}</math> | <math display="block">\frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = Df(\mathbf{v})[\mathbf{u}] = \left[\frac{d}{d\alpha}~f(\mathbf{v} + \alpha~\mathbf{u})\right]_{\alpha=0}</math> | ||
सभी सदिश | सभी सदिश 'u' के लिए उपरोक्त बिंदु उत्पाद अदिश उत्पन्न करता है और यदि u इकाई सदिश होती है तब u दिशा में v पर''''' '<nowiki/>'''f''<nowiki/>' का दिशात्मक व्युत्पन्न देता है। | ||
गुण: | गुण: | ||
Line 16: | Line 16: | ||
# यदि <math>f(\mathbf{v}) = f_1(f_2(\mathbf{v}))</math> तब <math>\frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = \frac{\partial f_1}{\partial f_2}~\frac{\partial f_2}{\partial \mathbf{v}}\cdot\mathbf{u}</math> | # यदि <math>f(\mathbf{v}) = f_1(f_2(\mathbf{v}))</math> तब <math>\frac{\partial f}{\partial \mathbf{v}}\cdot\mathbf{u} = \frac{\partial f_1}{\partial f_2}~\frac{\partial f_2}{\partial \mathbf{v}}\cdot\mathbf{u}</math> | ||
=== सदिशों के सदिश मूल्यवान कार्यों के व्युत्पन्न === | === सदिशों के सदिश मूल्यवान कार्यों के व्युत्पन्न === | ||
चूँकि | चूँकि '''f'''('''v''') सदिश '''v''' का सदिश मान फलन होता है। फिर '''v''' (या '''v''' पर) के संबंध में '''f'''('''v''') का व्युत्पन्न दूसरा क्रम टेन्सर है जो इसके बिंदु उत्पाद के माध्यम से किसी भी सदिश '''u''' के साथ परिभाषित किया गया है। | ||
<math display="block"> \frac{\partial \mathbf{f}}{\partial \mathbf{v}}\cdot\mathbf{u} = D\mathbf{f}(\mathbf{v})[\mathbf{u}] = \left[\frac{d}{d\alpha}~\mathbf{f}(\mathbf{v} + \alpha~\mathbf{u} ) \right]_{\alpha = 0}</math> | <math display="block"> \frac{\partial \mathbf{f}}{\partial \mathbf{v}}\cdot\mathbf{u} = D\mathbf{f}(\mathbf{v})[\mathbf{u}] = \left[\frac{d}{d\alpha}~\mathbf{f}(\mathbf{v} + \alpha~\mathbf{u} ) \right]_{\alpha = 0}</math> | ||
सभी सदिश | सभी सदिश '''u''' के लिए उपरोक्त बिंदु उत्पाद सदिश उत्पन्न करता है और यदि '''u''' इकाई सदिश होता है, तब दिशात्मक '''u''' में, '''v''' पर '''f''' का व्युत्पन्न देता है। | ||
गुण: | गुण: | ||
Line 48: | Line 48: | ||
== टेंसर क्षेत्र की [[ ग्रेडियेंट |प्रवणता]] == | == टेंसर क्षेत्र की [[ ग्रेडियेंट |प्रवणता]] == | ||
प्रवणता, <math>\boldsymbol{\nabla}\boldsymbol{T}</math>, टेंसर क्षेत्र का <math>\boldsymbol{T}(\mathbf{x})</math> अनैतिक स्थिर सदिश सी की दिशा में इस प्रकार परिभाषित किया गया है। | प्रवणता, <math>\boldsymbol{\nabla}\boldsymbol{T}</math>, टेंसर क्षेत्र का <math>\boldsymbol{T}(\mathbf{x})</math> अनैतिक स्थिर सदिश सी की दिशा में इस प्रकार परिभाषित किया गया है। | ||
<math display="block"> \boldsymbol{\nabla}\boldsymbol{T}\cdot\mathbf{c} = \lim_{\alpha \rightarrow 0} \quad \cfrac{d}{d\alpha}~\boldsymbol{T}(\mathbf{x}+\alpha\mathbf{c})</math><br />अतः | <math display="block"> \boldsymbol{\nabla}\boldsymbol{T}\cdot\mathbf{c} = \lim_{\alpha \rightarrow 0} \quad \cfrac{d}{d\alpha}~\boldsymbol{T}(\mathbf{x}+\alpha\mathbf{c})</math><br />अतः ''n'' क्रम के टेंसर क्षेत्र की प्रवणता क्रम ''n''+1 का टेंसर क्षेत्र होता है। | ||
=== कार्तीय निर्देशांक === | === कार्तीय निर्देशांक === | ||
यदि <math>\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3</math> कार्तीय समन्वय प्रणाली में आधार सदिश होता हैं, जो बिंदुओं के निर्देशांक के साथ निरूपित होता है (<math>x_1, x_2, x_3</math>), फिर टेंसर क्षेत्र की प्रवणता <math>\boldsymbol{T}</math> द्वारा दिया गया है। | यदि <math>\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3</math> कार्तीय समन्वय प्रणाली में आधार सदिश होता हैं, जो बिंदुओं के निर्देशांक के साथ निरूपित होता है (<math>x_1, x_2, x_3</math>), फिर टेंसर क्षेत्र की प्रवणता <math>\boldsymbol{T}</math> द्वारा दिया गया है। | ||
<math display="block"> \boldsymbol{\nabla}\boldsymbol{T} = \cfrac{\partial{\boldsymbol{T}}}{\partial x_i} \otimes \mathbf{e}_i </math> | <math display="block"> \boldsymbol{\nabla}\boldsymbol{T} = \cfrac{\partial{\boldsymbol{T}}}{\partial x_i} \otimes \mathbf{e}_i </math> | ||
Line 66: | Line 64: | ||
= \left[\cfrac{\partial{\boldsymbol{T}}}{\partial x_i} \otimes \mathbf{e}_i\right]\cdot\mathbf{c} \qquad \square | = \left[\cfrac{\partial{\boldsymbol{T}}}{\partial x_i} \otimes \mathbf{e}_i\right]\cdot\mathbf{c} \qquad \square | ||
\end{align} </math>}} | \end{align} </math>}} | ||
चूंकि कार्तीय समन्वय प्रणाली में आधार सदिश भिन्न नहीं होते हैं, हमारे समीप अदिश क्षेत्र की प्रवणता के लिए निम्नलिखित संबंध होते हैं, <math>\phi</math>, सदिश क्षेत्र | चूंकि कार्तीय समन्वय प्रणाली में आधार सदिश भिन्न नहीं होते हैं, हमारे समीप अदिश क्षेत्र की प्रवणता के लिए निम्नलिखित संबंध होते हैं, <math>\phi</math>, सदिश क्षेत्र '''v''' और दूसरे क्रम का टेंसर क्षेत्र <math>\boldsymbol{S}</math> होता है। | ||
<math display="block"> \begin{align} | <math display="block"> \begin{align} | ||
\boldsymbol{\nabla}\phi & = \cfrac{\partial\phi}{\partial x_i}~\mathbf{e}_i = \phi_{,i} ~\mathbf{e}_i \\ | \boldsymbol{\nabla}\phi & = \cfrac{\partial\phi}{\partial x_i}~\mathbf{e}_i = \phi_{,i} ~\mathbf{e}_i \\ | ||
Line 74: | Line 72: | ||
</math> | </math> | ||
=== वक्रीय निर्देशांक === | === वक्रीय निर्देशांक === | ||
{{main|वक्रीय निर्देशांक में टेन्सर}} | {{main|वक्रीय निर्देशांक में टेन्सर}}यदि <math>\mathbf{g}^1,\mathbf{g}^2,\mathbf{g}^3</math> [[वक्रीय निर्देशांक]] प्रणाली में सदिशों के आधार वाले सदिशों के सहप्रसरण और विपरीतप्रसरण होते हैं, जिन्हें बिंदुओं के निर्देशांक द्वारा निरूपित किया जाता है (<math>\xi^1, \xi^2, \xi^3</math>), फिर टेंसर क्षेत्र का प्रवणता <math>\boldsymbol{T}</math> द्वारा दिया गया है। (देखें <ref>R. W. Ogden, 2000, ''Nonlinear Elastic Deformations'', Dover.</ref> प्रमाण के लिए) | ||
यदि <math>\mathbf{g}^1,\mathbf{g}^2,\mathbf{g}^3</math> [[वक्रीय निर्देशांक]] प्रणाली में सदिशों के आधार वाले सदिशों के सहप्रसरण और विपरीतप्रसरण होते हैं, जिन्हें बिंदुओं के निर्देशांक द्वारा निरूपित किया जाता है (<math>\xi^1, \xi^2, \xi^3</math>), फिर टेंसर क्षेत्र का प्रवणता <math>\boldsymbol{T}</math> द्वारा दिया गया है। (देखें <ref>R. W. Ogden, 2000, ''Nonlinear Elastic Deformations'', Dover.</ref> प्रमाण के लिए) | |||
<math display="block"> | <math display="block"> | ||
\boldsymbol{\nabla}\boldsymbol{T} = \frac{\partial{\boldsymbol{T}}}{\partial \xi^i}\otimes\mathbf{g}^i | \boldsymbol{\nabla}\boldsymbol{T} = \frac{\partial{\boldsymbol{T}}}{\partial \xi^i}\otimes\mathbf{g}^i | ||
</math> | </math> | ||
इस परिभाषा से हमारे समीप अदिश क्षेत्र के प्रवणता के लिए निम्नलिखित संबंध होते हैं <math>\phi</math>, सदिश क्षेत्र | इस परिभाषा से हमारे समीप अदिश क्षेत्र के प्रवणता के लिए निम्नलिखित संबंध होते हैं <math>\phi</math>, सदिश क्षेत्र '''v''' और दूसरे क्रम का टेंसर क्षेत्र <math>\boldsymbol{S}</math> होता है। | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\boldsymbol{\nabla}\phi & = \frac{\partial\phi}{\partial\xi^i}~\mathbf{g}^i \\ | \boldsymbol{\nabla}\phi & = \frac{\partial\phi}{\partial\xi^i}~\mathbf{g}^i \\ | ||
Line 150: | Line 145: | ||
\boldsymbol{\nabla}\cdot\mathbf{v} = \text{tr}(\boldsymbol{\nabla}\mathbf{v}) | \boldsymbol{\nabla}\cdot\mathbf{v} = \text{tr}(\boldsymbol{\nabla}\mathbf{v}) | ||
</math> | </math> | ||
जहाँ | जहाँ '''c''' स्वेच्छ अचर सदिश है और '''v''' सदिश क्षेत्र है। यदि <math>\boldsymbol{T}</math> क्रम ''n'' > 1 का टेन्सर क्षेत्र होता है तब क्षेत्र का विचलन क्रम ''n''− 1 का टेन्सर होता है। | ||
=== कार्तीय निर्देशांक === | === कार्तीय निर्देशांक === | ||
कार्तीय निर्देशांक प्रणाली में सदिश क्षेत्र '''v''' और दूसरे क्रम के टेंसर क्षेत्र <math>\boldsymbol{S}</math> के लिए हमारे समीप निम्नलिखित संबंध होते हैं। | |||
कार्तीय निर्देशांक प्रणाली में सदिश क्षेत्र | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\boldsymbol{\nabla}\cdot\mathbf{v} &= \frac{\partial v_i}{\partial x_i} = v_{i,i} \\ | \boldsymbol{\nabla}\cdot\mathbf{v} &= \frac{\partial v_i}{\partial x_i} = v_{i,i} \\ | ||
Line 194: | Line 188: | ||
=== वक्रीय निर्देशांक === | === वक्रीय निर्देशांक === | ||
{{main|वक्रीय निर्देशांक में टेन्सर}} | {{main|वक्रीय निर्देशांक में टेन्सर}} | ||
सामान्यतः घुमावदार निर्देशांक में, सदिश क्षेत्र '''v''' और दूसरे क्रम के टेंसर क्षेत्र का विचलन <math>\boldsymbol{S}</math> होता हैं। | |||
सामान्यतः घुमावदार निर्देशांक में, सदिश क्षेत्र | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\boldsymbol{\nabla}\cdot\mathbf{v} | \boldsymbol{\nabla}\cdot\mathbf{v} | ||
Line 233: | Line 226: | ||
\end{align}</math> | \end{align}</math> | ||
== टेंसर क्षेत्र का कर्ल == | == टेंसर क्षेत्र का कर्ल == | ||
ऑर्डर- | ऑर्डर-''n'' > 1 टेन्सर क्षेत्र का [[कर्ल (गणित)]] <math>\boldsymbol{T}(\mathbf{x})</math> पुनरावर्ती संबंध का उपयोग करके भी परिभाषित किया गया है। | ||
<math display="block">(\boldsymbol{\nabla}\times\boldsymbol{T})\cdot\mathbf{c} = \boldsymbol{\nabla}\times(\mathbf{c}\cdot\boldsymbol{T}) ~;\qquad (\boldsymbol{\nabla}\times\mathbf{v})\cdot\mathbf{c} = \boldsymbol{\nabla}\cdot(\mathbf{v}\times\mathbf{c})</math> | <math display="block">(\boldsymbol{\nabla}\times\boldsymbol{T})\cdot\mathbf{c} = \boldsymbol{\nabla}\times(\mathbf{c}\cdot\boldsymbol{T}) ~;\qquad (\boldsymbol{\nabla}\times\mathbf{v})\cdot\mathbf{c} = \boldsymbol{\nabla}\cdot(\mathbf{v}\times\mathbf{c})</math> | ||
जहाँ | जहाँ '''c''' स्वेच्छ अचर सदिश है और '''v''' सदिश क्षेत्र होता है। | ||
=== प्रथम-क्रम टेंसर (सदिश) क्षेत्र का कर्ल === | === प्रथम-क्रम टेंसर (सदिश) क्षेत्र का कर्ल === | ||
सदिश क्षेत्र | सदिश क्षेत्र '''v''' और स्वेच्छ अचर सदिश '''c''' पर विचार कर सकते है। इस प्रकार सूचकांक संकेतन में क्रॉस उत्पाद इसके द्वारा दिया जाता है। | ||
<math display="block"> \mathbf{v} \times \mathbf{c} = \varepsilon_{ijk}~v_j~c_k~\mathbf{e}_i </math> | <math display="block"> \mathbf{v} \times \mathbf{c} = \varepsilon_{ijk}~v_j~c_k~\mathbf{e}_i </math> | ||
जहाँ <math>\varepsilon_{ijk}</math> क्रमचय प्रतीक है, अर्थात् लेवी-सिविता प्रतीक के रूप में जाना जाता है। तब, | जहाँ <math>\varepsilon_{ijk}</math> क्रमचय प्रतीक है, अर्थात् लेवी-सिविता प्रतीक के रूप में जाना जाता है। तब, | ||
Line 556: | Line 549: | ||
== संदर्भ == | == संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Created On 16/05/2023]] | [[Category:Created On 16/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with broken file links]] | |||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:ठोस यांत्रिकी]] | |||
[[Category:यांत्रिकी]] |
Latest revision as of 16:09, 29 May 2023
दूसरे क्रम के टेंसरों के संबंध में अदिश (गणित), यूक्लिडियन सदिश और दूसरे क्रम के टेंसर के दिशात्मक व्युत्पन्न का सातत्य यांत्रिकी में अधिक उपयोग होता हैं। इन व्युत्पन्न का उपयोग अरेखीय लोच और प्लास्टिसिटी (भौतिकी) के सिद्धांतों में किया जाता है, विशेष रूप से संख्यात्मक अनुकरण के लिए एल्गोरिदम के डिजाइन में उपयोग किया जाता है।[1]
इस प्रकार दिशात्मक व्युत्पन्न इन व्युत्पन्नों को खोजने की व्यवस्थित विधि प्रदान करते है।[2]
सदिश और दूसरे क्रम के टेंसर के संबंध में व्युत्पन्न
विभिन्न स्थितियों के लिए दिशात्मक व्युत्पन्न की परिभाषाएँ नीचे दी गई हैं। अतः यह माना जाता है कि कार्य पर्याप्त रूप से सुचारू होते हैं कि व्युत्पन्न लिया जा सकता है।
सदिशों के अदिश मान वाले कार्यों के व्युत्पन्न
मान लीजिए कि f('v') सदिश 'v' का वास्तविक मान फलन है। फिर 'v' (या 'v' पर) के संबंध में f('v') का व्युत्पन्न 'सदिश' अपने बिंदु उत्पाद के माध्यम से किसी भी सदिश u के साथ परिभाषित किया गया है।
गुण:
- यदि तब
- यदि तब
- यदि तब
सदिशों के सदिश मूल्यवान कार्यों के व्युत्पन्न
चूँकि f(v) सदिश v का सदिश मान फलन होता है। फिर v (या v पर) के संबंध में f(v) का व्युत्पन्न दूसरा क्रम टेन्सर है जो इसके बिंदु उत्पाद के माध्यम से किसी भी सदिश u के साथ परिभाषित किया गया है।
गुण:
- यदि तब
- यदि तब
- यदि तब
दूसरे क्रम के टेंसरों के अदिश मान वाले कार्यों के व्युत्पन्न
इस प्रकार दूसरे क्रम के टेंसर का वास्तविक मूल्यवान कार्य होने देना है, फिर की व्युत्पत्ति होती है इसके संबंध में (या ) की दिशा में दूसरे क्रम के टेंसर के रूप में परिभाषित किया गया है।
गुण:
- यदि तब
- यदि तब
- यदि तब
दूसरे क्रम के टेंसर के टेन्सर मूल्यवान कार्यों के व्युत्पन्न
इस प्रकार दूसरे क्रम के टेंसर का दूसरे क्रम के टेन्सर मान फंक्शन होने देता है, फिर की व्युत्पत्ति होती है इसके संबंध में (या ) की दिशा में चौथे क्रम के टेन्सर के रूप में परिभाषित किया गया है।
गुण:
- यदि तब
- यदि तब
- यदि तब
- यदि तब
टेंसर क्षेत्र की प्रवणता
प्रवणता, , टेंसर क्षेत्र का अनैतिक स्थिर सदिश सी की दिशा में इस प्रकार परिभाषित किया गया है।
अतः n क्रम के टेंसर क्षेत्र की प्रवणता क्रम n+1 का टेंसर क्षेत्र होता है।
कार्तीय निर्देशांक
यदि कार्तीय समन्वय प्रणाली में आधार सदिश होता हैं, जो बिंदुओं के निर्देशांक के साथ निरूपित होता है (), फिर टेंसर क्षेत्र की प्रवणता द्वारा दिया गया है।
The vectors x and c can be written as and . Let y := x + αc. In that case the gradient is given by
चूंकि कार्तीय समन्वय प्रणाली में आधार सदिश भिन्न नहीं होते हैं, हमारे समीप अदिश क्षेत्र की प्रवणता के लिए निम्नलिखित संबंध होते हैं, , सदिश क्षेत्र v और दूसरे क्रम का टेंसर क्षेत्र होता है।
वक्रीय निर्देशांक
यदि वक्रीय निर्देशांक प्रणाली में सदिशों के आधार वाले सदिशों के सहप्रसरण और विपरीतप्रसरण होते हैं, जिन्हें बिंदुओं के निर्देशांक द्वारा निरूपित किया जाता है (), फिर टेंसर क्षेत्र का प्रवणता द्वारा दिया गया है। (देखें [3] प्रमाण के लिए)
बेलनाकार ध्रुवीय निर्देशांक
बेलनाकार निर्देशांक में, प्रवणता द्वारा दिया जाता है।