होलोमोर्फिक कार्यों की विश्लेषणात्मकता: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 51: Line 51:
== बाहरी संबंध ==
== बाहरी संबंध ==
* {{planetmath reference|urlname=ExistenceOfPowerSeries|title=Existence of power series}}
* {{planetmath reference|urlname=ExistenceOfPowerSeries|title=Existence of power series}}
[[Category: विश्लेषणात्मक कार्य | होलोमोर्फिक कार्य]] [[Category: जटिल विश्लेषण में प्रमेय]] [[Category: लेख प्रमाण]]


[[Category: Machine Translated Page]]
[[Category:Created On 20/05/2023]]
[[Category:Created On 20/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:जटिल विश्लेषण में प्रमेय]]
[[Category:लेख प्रमाण]]
[[Category:विश्लेषणात्मक कार्य| होलोमोर्फिक कार्य]]

Latest revision as of 16:19, 29 May 2023

सम्मिश्र विश्लेषण में, सम्मिश्र चर का एक संमिश्र मान फलन f:

सम्मिश्र विश्लेषण के सबसे महत्वपूर्ण प्रमेयों में से एक यह है कि होलोमार्फिक फलन वैश्लेषिक और विपर्येण (वाइस वर्स) हैं। इस प्रमेय के परिणाम हैं

  • आइडेंटिटी प्रमेय के दो होलोमोर्फिक फलन जो अपने प्रक्षेत्र (डोमेन) के सर्वनिष्ठ के अंदर एक संचय बिंदु के साथ अनंत समुच्चय S के प्रत्येक बिंदु पर निर्धारित होते हैं, उनके प्रक्षेत्र के हर जुड़े हुए खुले उपसमुच्चय में हर जगह निर्धारित होते हैं जिसमें समुच्चय S होता है, और
  • तथ्य यह है कि, चूंकि घात श्रेणी अनंततः अवकलनीय होती है, इसलिए होलोमोर्फिक फलन भी होते हैं (यह वास्तविक अवकलनीय फलनों की स्थिति के विपरीत है), और
  • तथ्य यह है कि अभिसरण की त्रिज्या हमेशा केंद्र से दूरी होती है, निकटतम गैर-हटाने योग्य सिंगयुलैरीटी के लिए; यदि कोई सिंगयुलैरीटी नहीं है (अर्थात, यदि एक पूर्ण फलन है), तो अभिसरण की त्रिज्या अनंत है। वास्तव में, यह प्रमेय का परिणाम नहीं है, बल्कि प्रमाण का बाइप्राडक्ट है।
  • सम्मिश्र समतल पर कोई बम्प फलन पूर्ण नहीं हो सकता। विशेष रूप से, सम्मिश्र समतल के किसी भी जुड़े हुए खुले उपसमुच्चय पर,उस समुच्चय पर परिभाषित कोई बम्प फलन नहीं हो सकता है जो समुच्चय पर होलोमोर्फिक हो। यह सम्मिश्र मैनिफोल्ड के अध्ययन के लिए महत्वपूर्ण प्रभाव डालता हैं, क्योंकि यह एकांक के विभाजन के उपयोग को रोकता है। इसके विपरीत एकांक का विभाजन एक टूल है जिसका उपयोग किसी वास्तविक मैनिफोल्ड पर किया जा सकता है।

प्रमाण

तर्क, पहले कॉची द्वारा दिया गया, कॉची के समाकल सूत्र और व्यंजक की घात श्रेणी प्रसार पर निर्भर करता है

को पर केंद्रित एक खुली डिस्क होने दें और मान लें के बंद होने वाले खुले प्रतिवैस के अंदर f हर जगह अलग-अलग होता है। को धनात्मक रूप से उन्मुख (यानी, वामावर्त) वृत्त होने दें जो की सीमा है और को एक बिंदु होने दें। कॉची के समाकलन सूत्र से प्रारंभ करके, हमारे पास है

समाकल और अनंत योग का इंटरचेंज यह देखते हुए उचित है कि पर कुछ धनात्मक संख्या से परिबद्ध है, जबकि C में सभी के लिए

कुछ धनात्मक के लिए भी। इसलिए हमारे पास है

पर, और जैसा कि वीयरस्ट्रैस M-टेस्ट से पता चलता है कि श्रेणी पर समान रूप से अभिसरण करती है, योग और समाकल को आपस में बदला जा सकता है।

जैसा कि गुणक समाकलन के चर पर निर्भर नहीं करता है, यह प्रतिफल (यील्ड) के लिए फैक्टर्ड हो सकता है

जिसमें एक घात श्रेणी का वांछित रूप है

गुणांक के साथ


टिप्पणियाँ

  • चूँकि घात श्रेणी को पद-वार (टर्म-वाइज़) अवकलित किया जा सकता है, उपरोक्त तर्क को विपरीत दिशा में लागू करने और
    के लिए घात श्रेणी व्यंजक
    देती है। यह अवकलज के लिए कॉची का समाकल सूत्र है। अतः ऊपर प्राप्त घात श्रेणी की टेलर श्रेणी है।
  • तर्क काम करता है, यदि कोई भी बिंदु है जो केंद्र के पास है, की तुलना में कोई सिंगयुलैरीटी है। इसलिए, टेलरश्रेणी के अभिसरण की त्रिज्या से निकटतम सिंगयुलैरीटी की दूरी से छोटी नहीं हो सकती है (न ही यह बड़ी हो सकती है, क्योंकि घात श्रेणी में अभिसरण के अपने वृत्तों के आंतरिक भाग में कोई सिंगयुलैरीटी नहीं है)।
  • आइडेंटिटी प्रमेय की एक विशेष स्थिति पूर्ववर्ती टिप्पणी से अनुसरण करती है। यदि दो होलोमॉर्फिक फलन खुले प्रतिवेश (संभवतः काफी छोटे) पर मान लेते हैं का , तो वे खुली डिस्क पर सम्पाती होते हैं, जहां , से निकटतम सिंगयुलैरीटी की दूरी है।

बाहरी संबंध

  • "Existence of power series". PlanetMath.