पहचान प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 101: Line 101:
| year=1997
| year=1997
| isbn=0-521-48058-2}}
| isbn=0-521-48058-2}}
[[Category: प्रमेय_में_वास्तविक_विश्लेषण]] [[Category: जटिल विश्लेषण में प्रमेय]] [[Category: प्रमाण युक्त लेख]]


 
[[Category:CS1 Deutsch-language sources (de)]]
 
[[Category:CS1 English-language sources (en)]]
[[Category: Machine Translated Page]]
[[Category:Created On 20/05/2023]]
[[Category:Created On 20/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:जटिल विश्लेषण में प्रमेय]]
[[Category:प्रमाण युक्त लेख]]
[[Category:प्रमेय में वास्तविक विश्लेषण]]

Latest revision as of 17:02, 29 May 2023

वास्तविक विश्लेषण और जटिल विश्लेषण में, गणित की शाखाएँ, विश्लेषणात्मक फलनों के लिए सर्वसमिका प्रमेय दर्शाती हैं: दिए गए फलन f और g विश्लेषणात्मक एक प्रक्षेत्र (गणितीय विश्लेषण) D पर ( के विवृत और जुड़े हुए उपसमुच्चय या ), यदि कुछ पर f = g है,जहां का संचयन बिंदु है, तो D पर f = g है।

इस प्रकार एक विश्लेषणात्मक फलन पूरी तरह से में एक विवृत प्रतिवेश, या यहां तक ​​​​कि D के एक गणनीय उपसमुच्चय पर इसके मानो द्वारा निर्धारित किया जाता है परंतु इसमें एक अभिसरण अनुक्रम सम्मिलित हो। यह सामान्य रूप से वास्तविक-अवकल फलनों के लिए सही नहीं है, यहां तक कि अनंत रूप से वास्तविक-अवकल फलनों के लिए भी सही नहीं है। इसकी तुलना में, विश्लेषणात्मक फलन बहुत अधिक कठिन धारणा हैं। अनौपचारिक रूप से, कभी-कभी यह कहकर प्रमेय को सारांशित करता है कि विश्लेषणात्मक फलन कठिन हैं जैसा कि कहते हैं, सतत फलन जो अस्पष्ट हैं।

जिस आधारभूत तथ्य से प्रमेय स्थापित किया गया है वह टेलर श्रृंखला में एक पूर्णसममितिक फलन की विस्तार क्षमता है।

प्रक्षेत्र D पर संबद्धता की धारणा आवश्यक है। उदाहरण के लिए, यदि D में दो असंयुक्त विकृत समुच्चय होते हैं, और विकृत समुच्चय पर और दूसरे पर हो सकता है, जबकि पर और दूसरे पर 2 हो सकता है।

लेम्मा

यदि प्रक्षेत्र पर दो पूर्णसममितिक फलन और एक समुच्चय पर सहमत होते हैं जिसमें में एक संचय बिंदु होता है, तो में एक चक्र पर पर केंद्रित होता है।

इसे प्रमाणित करने के लिए सभी के लिए दिखाना अधिकतम है।

यदि यह स्थिति नहीं है, तो को के साथ सबसे छोटा गैर-ऋणात्मक पूर्णांक मान ले। समरूपता द्वारा, हमारे पास के कुछ विवृत प्रतिवेश U में निम्नलिखित टेलर श्रृंखला प्रतिनिधित्व है::

निरंतरता से के आसपास कुछ छोटी विवृत चक्र में शून्य नहीं है। परन्तु फिर विद्ध समुच्चय पर होता है। यह इस धारणा का खंडन करता है कि का संचयन बिन्दु है।

यह लेम्मा दिखाता है कि एक सम्मिश्र संख्या के लिए सूत्र (गणित) एक असतत (और इसलिए गणनीय) समुच्चय है, जब तक होता है।

प्रमाण

उस समुच्चय को परिभाषित करें जिस पर और समान टेलर विस्तार है:

हम दिखाएंगे कि गैर-रिक्त, विवृत और संवृत है। फिर के जुड़ाव से, को सभी का होना चाहिए, जिसका अर्थ पर है।

लेम्मा द्वारा, पर केंद्रित चक्र में में , उनके पास समान टेलर श्रृंखला है, इसलिए , रिक्त नहीं है।

चूँकि और मे और पर पूर्णसममितिक हैं, w पर f और g की टेलर श्रृंखला में गैर-शून्य अभिसरण त्रिज्या है। इसलिए, विवृत चक्र भी कुछ r के लिए S में स्थित है। तो S विवृत है।

और के समरूपता द्वारा, उनके पास पूर्णसममितिक अवकलन हैं, इसलिए सभी निरंतर हैं। इसका तात्पर्य है कि सभी के लिए संवृत है। संवृत समुच्चय का प्रतिच्छेदन है, इसलिए यह संवृत है।

पूर्ण लक्षण वर्णन

चूंकि सर्वसमिका प्रमेय दो पूर्णसममितिक फलन की समानता से संबंधित है, इसलिए हम केवल अंतर पर विचार कर सकते हैं जो पूर्णसममितिक रहता है और जब एक पूर्णसममितिक फलन समान रूप से होता है तो केवल इसकी विशेषता हो सकती है। निम्नलिखित परिणाम में पाया जा सकता है।[1]


अनुरोध

मान लीजिए सम्मिश्र तल के एक गैर-रिक्त, सम्बद्ध वाले विवृत उपसमुच्चय को निरूपित करें। के लिए निम्नलिखित समतुल्य हैं।

  1. पर ;
  2. समुच्चय एक समुच्चय का एक सीमा बिंदु होता है
  3. समुच्चय रिक्त नहीं है, जहाँ होता है।

प्रमाण

निर्देश (1 2) और (1 3) सामान्य रूप से प्रग्रहण करती है।

(3 1) के लिए, की संयोजकता से यह प्रमाणित करने के लिए पर्याप्त है कि गैर-रिक्त उपसमुच्चय, , क्लोपेन है चूंकि सांस्थितिक समष्टि जुड़ा हुआ है यदि और केवल यदि उसके पास कोई उपयुक्त क्लोपेन उपसमुच्चय नहीं है। चूँकि होलोमॉर्फिक (पूर्ण-सममितिक) फलन अनंत रूप से भिन्न होते हैं, अर्थात यह स्पष्ट है कि संवृत है। स्पष्टता दिखाने के लिए कुछ पर पर विचार करें। एक विवृत गोलक युक्त पर विचार करें, जिसमें पर केंद्रित एक अभिसरण टेलर-श्रृंखला विस्तार है अतः के आधार पर, इस श्रृंखला के सभी गुणांक होते है, जहाँ से पर होता है। यह इस प्रकार है कि के सभी -वें अवकल पर होता है, जहाँ है। अतः प्रत्येक के आंतरिक भाग में स्थित है।

(2 3) की ओर, एक संचयन बिंदु ठीक करें। अब हम प्रेरण द्वारा प्रत्यक्ष प्रमाणित करते हैं कि प्रत्येक के लिए समान होता है। इसके लिए को के आसपास के घात शृंखला विस्तार के अभिसरण त्रिज्या से प्रबलता से छोटा होना चाहिए, द्वारा दिए गए अभी को सही करे और मान लो सभी के लिए समान होता है। फिर के लिए घात श्रृंखला विस्तार लब्धि का प्रकलन

 

 

 

 

(1)

ध्यान दें कि, चूंकि घात श्रृंखला की त्रिज्या से छोटा है, कोई भी उस शक्ति श्रृंखला को आसानी से प्राप्त कर सकता है और सतत है और इस प्रकार से परिबद्ध है।

अब, चूंकि में संचयन बिन्दु है जो बिंदुओं का एक क्रम है जिसके लिए अभिसरण होता है।

तब से पर और प्रत्येक के बाद से, व्यंजक (1) मे लब्धि

 

 

 

 

(2)

पर की सीमा से प्राप्त होता है। यह इस प्रकार है कि , जहाँ से प्राप्त है। प्रेरण के माध्यम से अपेक्षा धारण करता है।

क्यू ई डी

यह भी देखें

संदर्भ

  1. Guido Walz, ed. (2017). Lexikon der Mathematik (in Deutsch). Vol. 2. Mannheim: Springer Spektrum Verlag. p. 476. ISBN 978-3-662-53503-5.
  • Ablowitz, Mark J.; Fokas A. S. (1997). Complex variables: Introduction and applications (in English). Cambridge, UK: Cambridge University Press. p. 122. ISBN 0-521-48058-2.