अप्रत्यास्थ प्रकीर्णन: Difference between revisions
(Created page with "रसायन विज्ञान, परमाणु भौतिकी और कण भौतिकी में, अप्रत्यास्थ प्...") |
(text) |
||
Line 1: | Line 1: | ||
[[रसायन विज्ञान]], [[परमाणु भौतिकी]] और [[कण भौतिकी]] में, अप्रत्यास्थ प्रकीर्णन एक मौलिक प्रकीर्णन प्रक्रिया है जिसमें एक घटना कण की गतिज ऊर्जा संरक्षित नहीं होती है (लोचदार प्रकीर्णन के विपरीत)। अप्रत्यास्थ प्रकीर्णन प्रक्रिया में, आपतित कण की कुछ ऊर्जा खो जाती है या बढ़ जाती है। यद्यपि यह शब्द ऐतिहासिक रूप से [[गतिकी (भौतिकी)]] में अप्रत्यास्थ टक्कर की अवधारणा से संबंधित है, दोनों अवधारणाएं काफी भिन्न हैं; | [[रसायन विज्ञान]], [[परमाणु भौतिकी]] और [[कण भौतिकी]] में, अप्रत्यास्थ प्रकीर्णन एक मौलिक प्रकीर्णन प्रक्रिया है जिसमें एक घटना कण की गतिज ऊर्जा संरक्षित नहीं होती है (लोचदार प्रकीर्णन के विपरीत)। अप्रत्यास्थ प्रकीर्णन प्रक्रिया में, आपतित कण की कुछ ऊर्जा खो जाती है या बढ़ जाती है। यद्यपि यह शब्द ऐतिहासिक रूप से [[गतिकी (भौतिकी)]] में अप्रत्यास्थ टक्कर की अवधारणा से संबंधित है, दोनों अवधारणाएं काफी भिन्न हैं; गतिकी में अप्रत्यस्थ टकराव उन प्रक्रियाओं को संदर्भित करता है जिनमें कुल स्थूलदर्शित गतिज ऊर्जा संरक्षित नहीं होती है। सामान्यतः, अप्रत्यास्थ टक्करों के कारण प्रकीर्णन अप्रत्यास्थ होगा, लेकिन, चूंकि प्रत्यास्थ संघट्ट प्रायः कणों के बीच गतिज ऊर्जा को स्थानांतरित करते हैं, प्रत्यास्थ संघट्टों के कारण प्रकीर्णन भी ''इन''' लोचदार हो सकता है, जैसा कि कॉम्प्टन प्रकीर्णन में टकराव में दो कणों का अर्थ है एक कण में ऊर्जा की हानि के कारण ऊर्जा का स्थानांतरण है। <ref>“Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization,” B.J. Inkson, “Materials Characterization Using Nondestructive Evaluation (NDE) Methods,” 2016. https://www.sciencedirect.com/topics/chemistry/elastic-scattering </ref> | ||
== [[इलेक्ट्रॉन]] == | == [[इलेक्ट्रॉन|अतिसूक्ष्म परमाणु]] == | ||
जब एक | जब एक अतिसूक्ष्म परमाणु आपतित कण होता है, तो आपतित अतिसूक्ष्म परमाणु की ऊर्जा के आधार पर, अप्रत्यास्थ प्रकीर्णन की प्रायिकता प्रत्यास्थ प्रकीर्णन की प्रायिकता से कम होती है। इस प्रकार [[गैस इलेक्ट्रॉन विवर्तन|गैस अतिसूक्ष्म परमाणु विवर्तन]] (GED), [[प्रतिबिंब उच्च-ऊर्जा इलेक्ट्रॉन विवर्तन|प्रतिबिंब उच्च-ऊर्जा अतिसूक्ष्म परमाणु विवर्तन]] (रीड), और संचरण अतिसूक्ष्म परमाणु विवर्तन की स्तिथि में, क्योंकि घटना अतिसूक्ष्म परमाणु की ऊर्जा अधिक होती है, अकुशल अतिसूक्ष्म परमाणु बिखरने के योगदान को अनदेखा किया जा सकता है। प्रोटॉन से इलेक्ट्रॉनों के गहरे अप्रत्यास्थ प्रकीर्णन ने [[क्वार्क]] के अस्तित्व के लिए पहला प्रत्यक्ष प्रमाण प्रदान किया। | ||
== फोटॉन == | == फोटॉन == | ||
{{main| | {{main|रमन प्रकीर्णन}} | ||
एक | जब एक फोटॉन आपतित कण होता है, तो एक अप्रत्यास्थ प्रकीर्णन प्रक्रिया होती है जिसे रमन प्रकीर्णन कहते हैं। इस प्रकीर्णन प्रक्रिया में, घटना फोटॉन पदार्थ (गैस, तरल और ठोस) के साथ परस्पर क्रिया करता है और फोटॉन की आवृत्ति लाल या नीले रंग की ओर स्थानांतरित हो जाती है। एक अभिरक्त विस्थापन देखा जा सकता है जब फोटॉन की ऊर्जा का हिस्सा परस्पर क्रिया करने वाले पदार्थ में स्थानांतरित हो जाता है, जहां यह स्टोक्स[[ रमन बिखरना | रमन प्रकीर्णन]] नामक प्रक्रिया में अपनी आंतरिक ऊर्जा में जोड़ता है। जब पदार्थ की आंतरिक ऊर्जा को फोटॉन में स्थानांतरित किया जाता है तो नीली पारी देखी जा सकती है; इस प्रक्रिया को प्रति-स्टोक्स रमन प्रकीर्णन कहा जाता है। | ||
एक अतिसूक्ष्म परमाणु और एक फोटॉन के बीच परस्पर क्रिया में अप्रत्यस्थ प्रकीर्णन देखा जाता है। जब एक उच्च-ऊर्जा फोटॉन एक मुक्त अतिसूक्ष्म परमाणु से टकराता है (अधिक सटीक रूप से, कमजोर रूप से बंधा होता है क्योंकि एक मुक्त अतिसूक्ष्म परमाणु फोटॉन के साथ अप्रत्यास्थ बिखरने में भाग नहीं ले सकता है) और ऊर्जा स्थानांतरित करता है, इस प्रक्रिया [[उलटा कॉम्पटन बिखरने|व्युत्क्रमण कॉम्पटन प्रकीर्णन]] कहा जाता है। इसके अतिरिक्त, जब आपेक्षिक ऊर्जा वाला एक अतिसूक्ष्म परमाणु एक अवरक्त या दृश्यमान फोटॉन से टकराता है, तो अतिसूक्ष्म परमाणु फोटॉन को ऊर्जा देता है। इस प्रक्रिया को प्रतिलोम कॉम्पटन प्रकीर्णन कहते हैं। | |||
== न्यूट्रॉन == | == न्यूट्रॉन == | ||
{{main| | {{main|लोचहीन न्यूट्रॉन प्रकीर्णन}} | ||
न्यूट्रॉन कई प्रकार के प्रकीर्णन से | |||
न्यूट्रॉन कई प्रकार के प्रकीर्णन से पारित होते हैं, जिनमें प्रत्यास्थ और अप्रत्यास्थ प्रकीर्णन दोनों सम्मिलित हैं। प्रत्यास्थ या अप्रत्यास्थ बिखराव होता है या नहीं, यह न्यूट्रॉन की गति पर निर्भर करता है, चाहे तीव्र हो या तापीय, या कहीं बीच में हो। यह उस नाभिक और उसके [[न्यूट्रॉन क्रॉस सेक्शन|न्यूट्रॉन अनुप्रस्थ परिच्छेद]] पर भी निर्भर करता है जिस पर वह हमला करता है। अप्रत्यास्थ प्रकीर्णन में, न्यूट्रॉन नाभिक के साथ परस्पर क्रिया करता है और तंत्र की गतिज ऊर्जा बदल जाती है। यह प्रायः नाभिक को सक्रिय करता है, इसे एक उत्तेजित, अस्थिर, अल्पकालिक ऊर्जा अवस्था में डाल देता है, जिसके कारण यह जल्दी से किसी प्रकार के विकिरण को स्थिर या मूल अवस्था में वापस लाने का कारण बनता है। अल्फा, बीटा, गामा और प्रोटॉन उत्सर्जित हो सकते हैं। इस प्रकार की नाभिकीय अभिक्रिया में बिखरे कणों के कारण नाभिक दूसरी दिशा में पीछे हट सकता है। | |||
== आणविक टकराव == | == आणविक टकराव == | ||
आणविक टक्करों में | आणविक टक्करों में अप्रत्यस्थ प्रकीर्णन सामान्य है। कोई भी टक्कर जो [[रासायनिक प्रतिक्रिया]] की ओर ले जाती है, वह अकुशल होगी, लेकिन अप्रत्यास्थ प्रकीर्णन शब्द उन टकरावों के लिए आरक्षित है, जिनके परिणामस्वरूप प्रतिक्रियाएँ नहीं होती हैं।<ref>{{GoldBookRef|title=inelastic scattering|file=I03025}}</ref> स्थानांतरीय वृत्ति (गतिज ऊर्जा) और घूर्णी और कंपन वृत्ति के बीच ऊर्जा का स्थानांतरण होता है। | ||
यदि स्थानांतरित ऊर्जा बिखरे हुए कण की घटना ऊर्जा की तुलना में छोटी है, तो कोई क्वैसिलैस्टिक | यदि स्थानांतरित ऊर्जा बिखरे हुए कण की घटना ऊर्जा की तुलना में छोटी है, तो कोई क्वैसिलैस्टिक प्रकीर्णन की बात करता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[बिखराव सिद्धांत]] | * [[बिखराव सिद्धांत|प्रकीर्णन सिद्धांत]] | ||
* लोचदार | * लोचदार प्रकीर्णन | ||
== संदर्भ == | == संदर्भ == |
Revision as of 18:16, 25 May 2023
रसायन विज्ञान, परमाणु भौतिकी और कण भौतिकी में, अप्रत्यास्थ प्रकीर्णन एक मौलिक प्रकीर्णन प्रक्रिया है जिसमें एक घटना कण की गतिज ऊर्जा संरक्षित नहीं होती है (लोचदार प्रकीर्णन के विपरीत)। अप्रत्यास्थ प्रकीर्णन प्रक्रिया में, आपतित कण की कुछ ऊर्जा खो जाती है या बढ़ जाती है। यद्यपि यह शब्द ऐतिहासिक रूप से गतिकी (भौतिकी) में अप्रत्यास्थ टक्कर की अवधारणा से संबंधित है, दोनों अवधारणाएं काफी भिन्न हैं; गतिकी में अप्रत्यस्थ टकराव उन प्रक्रियाओं को संदर्भित करता है जिनमें कुल स्थूलदर्शित गतिज ऊर्जा संरक्षित नहीं होती है। सामान्यतः, अप्रत्यास्थ टक्करों के कारण प्रकीर्णन अप्रत्यास्थ होगा, लेकिन, चूंकि प्रत्यास्थ संघट्ट प्रायः कणों के बीच गतिज ऊर्जा को स्थानांतरित करते हैं, प्रत्यास्थ संघट्टों के कारण प्रकीर्णन भी इन' लोचदार हो सकता है, जैसा कि कॉम्प्टन प्रकीर्णन में टकराव में दो कणों का अर्थ है एक कण में ऊर्जा की हानि के कारण ऊर्जा का स्थानांतरण है। [1]
अतिसूक्ष्म परमाणु
जब एक अतिसूक्ष्म परमाणु आपतित कण होता है, तो आपतित अतिसूक्ष्म परमाणु की ऊर्जा के आधार पर, अप्रत्यास्थ प्रकीर्णन की प्रायिकता प्रत्यास्थ प्रकीर्णन की प्रायिकता से कम होती है। इस प्रकार गैस अतिसूक्ष्म परमाणु विवर्तन (GED), प्रतिबिंब उच्च-ऊर्जा अतिसूक्ष्म परमाणु विवर्तन (रीड), और संचरण अतिसूक्ष्म परमाणु विवर्तन की स्तिथि में, क्योंकि घटना अतिसूक्ष्म परमाणु की ऊर्जा अधिक होती है, अकुशल अतिसूक्ष्म परमाणु बिखरने के योगदान को अनदेखा किया जा सकता है। प्रोटॉन से इलेक्ट्रॉनों के गहरे अप्रत्यास्थ प्रकीर्णन ने क्वार्क के अस्तित्व के लिए पहला प्रत्यक्ष प्रमाण प्रदान किया।
फोटॉन
जब एक फोटॉन आपतित कण होता है, तो एक अप्रत्यास्थ प्रकीर्णन प्रक्रिया होती है जिसे रमन प्रकीर्णन कहते हैं। इस प्रकीर्णन प्रक्रिया में, घटना फोटॉन पदार्थ (गैस, तरल और ठोस) के साथ परस्पर क्रिया करता है और फोटॉन की आवृत्ति लाल या नीले रंग की ओर स्थानांतरित हो जाती है। एक अभिरक्त विस्थापन देखा जा सकता है जब फोटॉन की ऊर्जा का हिस्सा परस्पर क्रिया करने वाले पदार्थ में स्थानांतरित हो जाता है, जहां यह स्टोक्स रमन प्रकीर्णन नामक प्रक्रिया में अपनी आंतरिक ऊर्जा में जोड़ता है। जब पदार्थ की आंतरिक ऊर्जा को फोटॉन में स्थानांतरित किया जाता है तो नीली पारी देखी जा सकती है; इस प्रक्रिया को प्रति-स्टोक्स रमन प्रकीर्णन कहा जाता है।
एक अतिसूक्ष्म परमाणु और एक फोटॉन के बीच परस्पर क्रिया में अप्रत्यस्थ प्रकीर्णन देखा जाता है। जब एक उच्च-ऊर्जा फोटॉन एक मुक्त अतिसूक्ष्म परमाणु से टकराता है (अधिक सटीक रूप से, कमजोर रूप से बंधा होता है क्योंकि एक मुक्त अतिसूक्ष्म परमाणु फोटॉन के साथ अप्रत्यास्थ बिखरने में भाग नहीं ले सकता है) और ऊर्जा स्थानांतरित करता है, इस प्रक्रिया व्युत्क्रमण कॉम्पटन प्रकीर्णन कहा जाता है। इसके अतिरिक्त, जब आपेक्षिक ऊर्जा वाला एक अतिसूक्ष्म परमाणु एक अवरक्त या दृश्यमान फोटॉन से टकराता है, तो अतिसूक्ष्म परमाणु फोटॉन को ऊर्जा देता है। इस प्रक्रिया को प्रतिलोम कॉम्पटन प्रकीर्णन कहते हैं।
न्यूट्रॉन
न्यूट्रॉन कई प्रकार के प्रकीर्णन से पारित होते हैं, जिनमें प्रत्यास्थ और अप्रत्यास्थ प्रकीर्णन दोनों सम्मिलित हैं। प्रत्यास्थ या अप्रत्यास्थ बिखराव होता है या नहीं, यह न्यूट्रॉन की गति पर निर्भर करता है, चाहे तीव्र हो या तापीय, या कहीं बीच में हो। यह उस नाभिक और उसके न्यूट्रॉन अनुप्रस्थ परिच्छेद पर भी निर्भर करता है जिस पर वह हमला करता है। अप्रत्यास्थ प्रकीर्णन में, न्यूट्रॉन नाभिक के साथ परस्पर क्रिया करता है और तंत्र की गतिज ऊर्जा बदल जाती है। यह प्रायः नाभिक को सक्रिय करता है, इसे एक उत्तेजित, अस्थिर, अल्पकालिक ऊर्जा अवस्था में डाल देता है, जिसके कारण यह जल्दी से किसी प्रकार के विकिरण को स्थिर या मूल अवस्था में वापस लाने का कारण बनता है। अल्फा, बीटा, गामा और प्रोटॉन उत्सर्जित हो सकते हैं। इस प्रकार की नाभिकीय अभिक्रिया में बिखरे कणों के कारण नाभिक दूसरी दिशा में पीछे हट सकता है।
आणविक टकराव
आणविक टक्करों में अप्रत्यस्थ प्रकीर्णन सामान्य है। कोई भी टक्कर जो रासायनिक प्रतिक्रिया की ओर ले जाती है, वह अकुशल होगी, लेकिन अप्रत्यास्थ प्रकीर्णन शब्द उन टकरावों के लिए आरक्षित है, जिनके परिणामस्वरूप प्रतिक्रियाएँ नहीं होती हैं।[2] स्थानांतरीय वृत्ति (गतिज ऊर्जा) और घूर्णी और कंपन वृत्ति के बीच ऊर्जा का स्थानांतरण होता है।
यदि स्थानांतरित ऊर्जा बिखरे हुए कण की घटना ऊर्जा की तुलना में छोटी है, तो कोई क्वैसिलैस्टिक प्रकीर्णन की बात करता है।
यह भी देखें
- प्रकीर्णन सिद्धांत
- लोचदार प्रकीर्णन
संदर्भ
- ↑ “Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization,” B.J. Inkson, “Materials Characterization Using Nondestructive Evaluation (NDE) Methods,” 2016. https://www.sciencedirect.com/topics/chemistry/elastic-scattering
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "inelastic scattering". doi:10.1351/goldbook.I03025