एकरूपता (सेट सिद्धांत): Difference between revisions

From Vigyanwiki
(text)
Line 22: Line 22:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/05/2023]]
[[Category:Created On 25/05/2023]]
[[Category:Vigyan Ready]]

Revision as of 15:16, 2 June 2023

समुच्चय सिद्धान्त में, गणित की एक शाखा, एकरूपता का स्वयंसिद्ध पसंद के स्वयंसिद्ध का एक शक्तिहीन रूप है। इसमें कहा गया है कि अगर का उपसमुच्चय है, जहाँ और पोलिश स्थान हैं, तब का एक उपसमुच्चय होता है जो से तक का एक आंशिक फलन होता है, और जिसका प्रांत (सभी का समुच्चय जिससे कि उपस्थित हो) के बराबर होता है

इस तरह के एक फलन को का एकरूपता फलन कहा जाता है, या का एकरूपीकरण कहा जाता है।

फलन f (लाल) द्वारा संबंध R (हल्का नीला) का एकरूपीकरण।

पसंद के स्वयंसिद्ध के साथ संबंध देखने के लिए, ध्यान दें कि R को X के प्रत्येक अवयव, Y के एक उपसमुच्चय से संबद्ध करने के बारे में सोचा जा सकता है। का एकरूपीकरण फिर ऐसे प्रत्येक उपसमुच्चय से ठीक एक तत्व चुनता है, जब भी उपसमुच्चय खाली सम्मुच्चय हो। इस प्रकार, स्वेच्छाचारी सम्मुच्चय X और Y (सिर्फ पोलिश रिक्त स्थान के स्थान पर) की अनुमति देने से एकरूपता के स्वयंसिद्ध को पसंद के स्वयंसिद्ध के बराबर बना दिया जाएगा।

एक बिंदु वर्ग को एकरूपता गुण कहा जाता है यदि में प्रत्येक संबंध को में आंशिक फलन द्वारा बनाया जा सकता है। कम से कम एक निश्चित रूप के पर्याप्त बिंदु वर्गों के लिए, एकरूपता संपत्ति को मापक्रम विशेषता द्वारा निहित किया गया है।

यह केवल ZFC से आता है कि और में एकरूपता गुण है। यह पर्याप्त बड़े कार्डिनल्स के अस्तित्व से अनुसरण करता है

  • और प्रत्येक प्राकृतिक संख्या के लिए एकरूपता गुण है।
  • इसलिए, प्रक्षेपी सम्मुच्चयों के संग्रह में एकरूपता गुण होता है।
  • L(R) में हर संबंध को एकरूप किया जा सकता है, लेकिन जरूरी नहीं कि L(R) में कोई फलन हो। वास्तव में, L (R) में एकरूपता गुण नहीं है (समकक्ष रूप से, L (R) एकरूपता के स्वयंसिद्ध को संतुष्ट नहीं करता है)।
    • (ध्यान दें: यह तुच्छ है कि L(R) में हर संबंध V में एकरूप हो सकता है, यह मानते हुए कि V पसंद के स्वयंसिद्ध को संतुष्ट करता है। बिंदु यह है कि ऐसे प्रत्येक संबंध को V के कुछ सकर्मक आंतरिक प्रतिरूप में एकरूप किया जा सकता है जिसमें स्वयंसिद्ध निश्चितता रखती है।)

संदर्भ

  • मॉस्कोवाकिस, यियानिस एन. (1980). वर्णनात्मक सेट सिद्धांत. उत्तरी हॉलैंड. ISBN 0-444-70199-0.