मास्टर समीकरण: Difference between revisions

From Vigyanwiki
Line 4: Line 4:




भौतिकी, [[रसायन विज्ञान]] और संबंधित क्षेत्रों में, मास्टर समीकरणों का उपयोग किसी प्रणाली के समय के विकास का वर्णन करने के लिए किया जाता है जिसे किसी भी समय स्थितियों के संभावित संयोजन के रूप में तैयार किया जा सकता है और राज्यों के बीच स्विचिंग एक [[संक्रमण दर मैट्रिक्स]] द्वारा निर्धारित किया जाता है। समीकरण अंतर समीकरणों का एक सेट है - समय के साथ - उन संभावनाओं का जो प्रणाली में प्रत्येक अलग-अलग राज्यों में व्याप्त कर लेता है।
भौतिकी, [[रसायन विज्ञान]] और संबंधित क्षेत्रों में, मास्टर समीकरणों का उपयोग किसी प्रणाली के समय के विकास का वर्णन करने के लिए किया जाता है जिसे किसी भी समय स्थितियों के संभावित संयोजन के रूप में तैयार किया जा सकता है और स्थितियों के बीच स्विचिंग एक [[संक्रमण दर मैट्रिक्स]] द्वारा निर्धारित किया जाता है। समीकरण अंतर समीकरणों का एक सेट है - समय के साथ - उन संभावनाओं का जो प्रणाली में प्रत्येक अलग-अलग स्थितियों में व्याप्त कर लेता है।


नाम 1940 में प्रस्तावित किया गया था।  
नाम 1940 में प्रस्तावित किया गया था।  
Line 15: Line 15:
एक मास्टर समीकरण प्रथम-क्रम अंतर समीकरणों का एक घटनात्मक सेट है जो एक निरंतर समय चर ''t'' के संबंध में [[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] के असतत [[सेट (गणित)|सेट]] में से प्रत्येक पर व्याप्त करने के लिए सामान्यतः समय के विकास की संभावना का वर्णन करता है। मास्टर समीकरण का सबसे परिचित रूप एक मैट्रिक्स रूप होता है:
एक मास्टर समीकरण प्रथम-क्रम अंतर समीकरणों का एक घटनात्मक सेट है जो एक निरंतर समय चर ''t'' के संबंध में [[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] के असतत [[सेट (गणित)|सेट]] में से प्रत्येक पर व्याप्त करने के लिए सामान्यतः समय के विकास की संभावना का वर्णन करता है। मास्टर समीकरण का सबसे परिचित रूप एक मैट्रिक्स रूप होता है:
:<math> \frac{d\vec{P}}{dt}=\mathbf{A}\vec{P},</math>
:<math> \frac{d\vec{P}}{dt}=\mathbf{A}\vec{P},</math>
जहाँ <math>\vec{P}</math> एक कॉलम वेक्टर है, और <math>\mathbf{A}</math> कनेक्शन का मैट्रिक्स है। राज्यों के बीच संबंध बनाने का तरीका समस्या के आयाम को निर्धारित करता है; यह या तो है
जहाँ <math>\vec{P}</math> एक कॉलम वेक्टर है, और <math>\mathbf{A}</math> कनेक्शन का मैट्रिक्स है। स्थितियों के बीच संबंध बनाने का तरीका समस्या के आयाम को निर्धारित करता है; यह या तो है
* एक डी-आयामी प्रणाली (जहां डी 1,2,3,...) है, जहां कोई भी क्षेत्र का अपने 2डी निकटतम समीप से जुड़ा हुआ होता है, या
* एक डी-आयामी प्रणाली (जहां डी 1,2,3,...) है, जहां कोई भी क्षेत्र का अपने 2डी निकटतम समीप से जुड़ा हुआ होता है, या
* एक नेटवर्क, जहां स्थिति की प्रत्येक जोड़ी का संयोजन हो सकता है (नेटवर्क के गुणों के आधार पर)।
* एक नेटवर्क, जहां स्थिति की प्रत्येक जोड़ी का संयोजन हो सकता है (नेटवर्क के गुणों के आधार पर)।
Line 28: Line 28:
मान लेना  <math>\mathbf{A}</math>  परिवर्तन दर का वर्णन करने वाला मैट्रिक्स हो (जिसे गतिज दर या प्रतिक्रिया दर भी कहा जाता है)।  का वर्णन करने वाला मैट्रिक्स बनें। सदैव की तरह, पहला पादांक पंक्ति का प्रतिनिधित्व करता है, दूसरा पादांक कॉलम का। अर्थात्, दूसरे स्रोत पादांक द्वारा और गंतव्य पहले पादांक द्वारा दिया जाता है। यह अपेक्षा के विपरीत होता है, किन्तु यह तकनीकी रूप से सुविधाजनक होता है।
मान लेना  <math>\mathbf{A}</math>  परिवर्तन दर का वर्णन करने वाला मैट्रिक्स हो (जिसे गतिज दर या प्रतिक्रिया दर भी कहा जाता है)।  का वर्णन करने वाला मैट्रिक्स बनें। सदैव की तरह, पहला पादांक पंक्ति का प्रतिनिधित्व करता है, दूसरा पादांक कॉलम का। अर्थात्, दूसरे स्रोत पादांक द्वारा और गंतव्य पहले पादांक द्वारा दिया जाता है। यह अपेक्षा के विपरीत होता है, किन्तु यह तकनीकी रूप से सुविधाजनक होता है।


k के लिए, व्यवसाय की संभावना में वृद्धि अन्य सभी राज्यों से k के योगदान पर निर्भर करती है, और इसके द्वारा दी जाती है:ती  
k के लिए, व्यवसाय की संभावना में वृद्धि अन्य सभी स्थितियों से k के योगदान पर निर्भर करती है, और इसके द्वारा दी जाती है:ती  


:<math> \sum_\ell A_{k\ell}P_\ell, </math>
:<math> \sum_\ell A_{k\ell}P_\ell, </math>
जहाँ <math> P_\ell </math> राज्य में सिस्टम होने की संभावना है <math> \ell </math>, जबकि [[मैट्रिक्स (गणित)]] <math>\mathbf{A}</math> ट्रांज़िशन-रेट कॉन्सटेंट (गणित) के ग्रिड से भरा हुआ है। इसी प्रकार, <math>P_k</math> अन्य सभी राज्यों के कब्जे में योगदान देता है <math> P_\ell, </math>
जहाँ <math> P_\ell </math> राज्य में प्रणाली होने की संभावना है <math> \ell </math>, जबकि [[मैट्रिक्स (गणित)]] <math>\mathbf{A}</math> ट्रांज़िशन-रेट कॉन्सटेंट (गणित) के ग्रिड से भरा हुआ है। इसी प्रकार, <math>P_k</math> अन्य सभी स्थितियों के कब्जे में योगदान देता है <math> P_\ell, </math>
:<math> \sum_\ell A_{\ell k}P_k, </math>
:<math> \sum_\ell A_{\ell k}P_k, </math>
संभाव्यता सिद्धांत में, यह विकास को निरंतर-समय की मार्कोव प्रक्रिया के रूप में पहचानता है, जिसमें एकीकृत मास्टर समीकरण चैपमैन-कोलमोगोरोव समीकरण का पालन करता है।
संभाव्यता सिद्धांत में, यह विकास को निरंतर-समय की मार्कोव प्रक्रिया के रूप में पहचानता है, जिसमें एकीकृत मास्टर समीकरण चैपमैन-कोलमोगोरोव समीकरण का पालन करता है।
Line 46: Line 46:
:<math> A_{kk} = -\sum_{\ell\neq k}(A_{\ell k}) \Rightarrow A_{kk} P_k = -\sum_{\ell\neq k}(A_{\ell k} P_k) </math>.
:<math> A_{kk} = -\sum_{\ell\neq k}(A_{\ell k}) \Rightarrow A_{kk} P_k = -\sum_{\ell\neq k}(A_{\ell k} P_k) </math>.


मास्टर समीकरण [[विस्तृत संतुलन]] प्रदर्शित करता है यदि योग की प्रत्येक शर्तें संतुलन पर अलग-अलग गायब हो जाती हैं- यानी यदि, सभी राज्यों के लिए k और ℓ संतुलन संभावनाएँ हैं <math>\pi_k</math> और <math>\pi_\ell</math>,
मास्टर समीकरण [[विस्तृत संतुलन]] प्रदर्शित करता है यदि योग की प्रत्येक शर्तें संतुलन पर अलग-अलग गायब हो जाती हैं- यानी यदि, सभी स्थितियों के लिए k और ℓ संतुलन संभावनाएँ हैं <math>\pi_k</math> और <math>\pi_\ell</math>,


:<math>A_{k \ell} \pi_\ell = A_{\ell k} \pi_k .</math>
:<math>A_{k \ell} \pi_\ell = A_{\ell k} \pi_k .</math>
इन सममिति संबंधों को [[ऑनसेगर पारस्परिक संबंध]]ों के रूप में सूक्ष्म गतिकी ([[सूक्ष्म प्रतिवर्तीता]]) की समय उत्क्रमणीयता के आधार पर सिद्ध किया गया था।
इन सममिति संबंधों को [[ऑनसेगर पारस्परिक संबंध|ऑनसेगर पारस्परिक संबंधो]] के रूप में सूक्ष्म गतिकी ([[सूक्ष्म प्रतिवर्तीता]]) की समय उत्क्रमणीयता के आधार पर सिद्ध किया गया था।


== मास्टर समीकरणों के उदाहरण ==
== मास्टर समीकरणों के उदाहरण ==
मौलिक यांत्रिकी, [[क्वांटम यांत्रिकी]] और अन्य विज्ञानों में कई भौतिक समस्याओं को मास्टर समीकरण के रूप में कम किया जा सकता है, जिससे समस्या का एक बड़ा सरलीकरण हो सकता है (गणितीय मॉडल देखें)।
मौलिक यांत्रिकी, [[क्वांटम यांत्रिकी]] और अन्य विज्ञानों में कई भौतिक समस्याओं को मास्टर समीकरण के रूप में कम किया जा सकता है, जिससे समस्या का एक बड़ा सरलीकरण हो सकता है (गणितीय मॉडल देखें)।


क्वांटम यांत्रिकी में [[लिंडब्लाड समीकरण]] एक [[घनत्व मैट्रिक्स]] के समय के विकास का वर्णन करने वाले मास्टर समीकरण का सामान्यीकरण है। हालांकि लिंडब्लैड समीकरण को अक्सर एक मास्टर समीकरण के रूप में संदर्भित किया जाता है, यह सामान्य अर्थों में एक नहीं है, क्योंकि यह न केवल संभावनाओं के समय के विकास (घनत्व मैट्रिक्स के विकर्ण तत्व) को नियंत्रित करता है, बल्कि [[क्वांटम सुसंगतता]] के बारे में जानकारी वाले चरों को भी नियंत्रित करता है। सिस्टम के राज्यों के बीच (घनत्व मैट्रिक्स के गैर-विकर्ण तत्व)।
क्वांटम यांत्रिकी में [[लिंडब्लाड समीकरण]] एक [[घनत्व मैट्रिक्स]] के समय के विकास का वर्णन करने वाले मास्टर समीकरण का सामान्यीकरण है। चूँकि लिंडब्लैड समीकरण को अधिकांशतः एक मास्टर समीकरण के रूप में संदर्भित किया जाता है, यह सामान्य अर्थों में एक नहीं है, क्योंकि यह न केवल संभावनाओं के समय के विकास (घनत्व मैट्रिक्स के विकर्ण तत्व) को नियंत्रित करता है, बल्कि [[क्वांटम सुसंगतता]] के बारे में जानकारी वाले चरों को भी नियंत्रित करता है। प्रणाली के स्थितियों के बीच (घनत्व मैट्रिक्स के गैर-विकर्ण तत्व)।


मास्टर समीकरण का एक अन्य विशेष मामला फोकर-प्लैंक समीकरण है जो निरंतर संभावना वितरण के समय के विकास का वर्णन करता है।<ref>{{cite book|last1=Honerkamp|first1=Josef|title=Statistical physics : an advanced approach with applications ; with 7 tables and 57 problems with solutions|url=https://archive.org/details/statisticalphysi00hone_604|url-access=limited|date=1998|publisher=Springer|location=Berlin [u.a.]|isbn=978-3-540-63978-7|pages=[https://archive.org/details/statisticalphysi00hone_604/page/n180 173]}}</ref> जटिल मास्टर समीकरण जो विश्लेषणात्मक उपचार का विरोध करते हैं, उन्हें [[सिस्टम आकार विस्तार]] जैसी सन्निकटन तकनीकों का उपयोग करके इस रूप में (विभिन्न अनुमानों के तहत) डाला जा सकता है।
मास्टर समीकरण का एक अन्य विशेष मामला फोकर-प्लैंक समीकरण है जो निरंतर संभावना वितरण के समय के विकास का वर्णन करता है।<ref>{{cite book|last1=Honerkamp|first1=Josef|title=Statistical physics : an advanced approach with applications ; with 7 tables and 57 problems with solutions|url=https://archive.org/details/statisticalphysi00hone_604|url-access=limited|date=1998|publisher=Springer|location=Berlin [u.a.]|isbn=978-3-540-63978-7|pages=[https://archive.org/details/statisticalphysi00hone_604/page/n180 173]}}</ref> जटिल मास्टर समीकरण जो विश्लेषणात्मक उपचार का विरोध करते हैं, उन्हें [[सिस्टम आकार विस्तार|प्रणाली आकार विस्तार]] जैसी सन्निकटन तकनीकों का उपयोग करके इस रूप में (विभिन्न अनुमानों के तहत) डाला जा सकता है।


स्टोचैस्टिक रासायनिक कैनेटीक्स मास्टर समीकरण का एक और उदाहरण है। एक रासायनिक मास्टर समीकरण का उपयोग रासायनिक प्रतिक्रियाओं के एक सेट को मॉडल करने के लिए किया जाता है जब एक या अधिक प्रजातियों के अणुओं की संख्या छोटी होती है (100 या 1000 अणुओं के क्रम में)।<ref>{{Cite journal|last1=Gupta|first1=Ankur|last2=Rawlings|first2=James B.|date=Apr 2014|title=Comparison of Parameter Estimation Methods in Stochastic Chemical Kinetic Models: Examples in Systems Biology|journal=AIChE Journal|volume=60|issue=4|pages=1253–1268|doi=10.1002/aic.14409|issn=0001-1541|pmc=4946376|pmid=27429455}}</ref> रासायनिक मास्टर समीकरण भी बहुत बड़े मॉडल जैसे डीएनए क्षति संकेत, फंगल रोगज़नक़ कैंडिडा अल्बिकन्स के लिए पहली बार हल किए गए हैं। <ref>{{Cite journal|last1=Kosarwal|first1=Rahul|last2=Kulasiri|first2=Don|last3=Samarasinghe|first3=Sandhya|date=Nov 2020|title=बड़े जैविक नेटवर्क के लिए रासायनिक मास्टर समीकरण समाधान की कम्प्यूटेशनल दक्षता में सुधार के लिए उपन्यास डोमेन विस्तार के तरीके|journal=BMC Bioinformatics |volume=21 |issue=1 |page=515 |doi=10.1186/s12859-020-03668-2 |pmid=33176690 | pmc=7656229}}</ref>
स्टोचैस्टिक रासायनिक कैनेटीक्स मास्टर समीकरण का एक और उदाहरण है। एक रासायनिक मास्टर समीकरण का उपयोग रासायनिक प्रतिक्रियाओं के एक सेट को मॉडल करने के लिए किया जाता है जब एक या अधिक प्रजातियों के अणुओं की संख्या छोटी होती है (100 या 1000 अणुओं के क्रम में)।<ref>{{Cite journal|last1=Gupta|first1=Ankur|last2=Rawlings|first2=James B.|date=Apr 2014|title=Comparison of Parameter Estimation Methods in Stochastic Chemical Kinetic Models: Examples in Systems Biology|journal=AIChE Journal|volume=60|issue=4|pages=1253–1268|doi=10.1002/aic.14409|issn=0001-1541|pmc=4946376|pmid=27429455}}</ref> रासायनिक मास्टर समीकरण भी बहुत बड़े मॉडल जैसे डीएनए क्षति संकेत, फंगल रोगज़नक़ कैंडिडा अल्बिकन्स के लिए पहली बार हल किए गए हैं। <ref>{{Cite journal|last1=Kosarwal|first1=Rahul|last2=Kulasiri|first2=Don|last3=Samarasinghe|first3=Sandhya|date=Nov 2020|title=बड़े जैविक नेटवर्क के लिए रासायनिक मास्टर समीकरण समाधान की कम्प्यूटेशनल दक्षता में सुधार के लिए उपन्यास डोमेन विस्तार के तरीके|journal=BMC Bioinformatics |volume=21 |issue=1 |page=515 |doi=10.1186/s12859-020-03668-2 |pmid=33176690 | pmc=7656229}}</ref>
Line 63: Line 63:
== [[क्वांटम मास्टर समीकरण]] ==
== [[क्वांटम मास्टर समीकरण]] ==


क्वांटम मास्टर समीकरण मास्टर समीकरण के विचार का एक सामान्यीकरण है। संभावनाओं के एक सेट (जो केवल एक घनत्व मैट्रिक्स के विकर्ण तत्वों का गठन करता है) के लिए अंतर समीकरणों की एक प्रणाली के अतिरिक्त , क्वांटम मास्टर समीकरण पूरे घनत्व मैट्रिक्स के लिए विभेदक समीकरण हैं, जिसमें ऑफ-डायगोनल तत्व शामिल हैं। एक घनत्व मैट्रिक्स केवल विकर्ण तत्वों के साथ मौलिक यादृच्छिक प्रक्रिया के रूप में तैयार किया जा सकता है, इसलिए इस तरह के एक साधारण मास्टर समीकरण को मौलिक माना जाता है। ऑफ-डायगोनल तत्व क्वांटम सुसंगतता का प्रतिनिधित्व करते हैं जो एक भौतिक विशेषता है जो आंतरिक रूप से क्वांटम मैकेनिकल है।
क्वांटम मास्टर समीकरण मास्टर समीकरण के विचार का एक सामान्यीकरण है। संभावनाओं के एक सेट (जो केवल एक घनत्व मैट्रिक्स के विकर्ण तत्वों का गठन करता है) के लिए अंतर समीकरणों की एक प्रणाली के अतिरिक्त , क्वांटम मास्टर समीकरण पूरे घनत्व मैट्रिक्स के लिए विभेदक समीकरण हैं, जिसमें ऑफ-डायगोनल तत्व सम्मलितहैं। एक घनत्व मैट्रिक्स केवल विकर्ण तत्वों के साथ मौलिक यादृच्छिक प्रक्रिया के रूप में तैयार किया जा सकता है, इसलिए इस तरह के एक साधारण मास्टर समीकरण को मौलिक माना जाता है। ऑफ-डायगोनल तत्व क्वांटम सुसंगतता का प्रतिनिधित्व करते हैं जो एक भौतिक विशेषता है जो आंतरिक रूप से क्वांटम मैकेनिकल है।


रेडफ़ील्ड समीकरण और लिंडब्लाड समीकरण लगभग क्वांटम मास्टर समीकरणों के उदाहरण हैं जिन्हें मार्कोव प्रक्रिया माना जाता है। कुछ अनुप्रयोगों के लिए अधिक सटीक क्वांटम मास्टर समीकरणों में ध्रुवीय रूपांतरित क्वांटम मास्टर समीकरण और [[VPQME]] (परिवर्तनीय ध्रुवीय परिवर्तित क्वांटम मास्टर समीकरण) शामिल हैं।<ref name=McCutcheon>{{cite journal |last1=McCutcheon |first1=D. |last2=Dattani |first2=N. S. |last3=Gauger |first3=E. |last4=Lovett |first4=B. |last5=Nazir |first5=A. |date=25 August 2011 |title=A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots |journal=Physical Review B |volume=84 |issue=8 |page=081305R |doi=10.1103/PhysRevB.84.081305 |arxiv = 1105.6015 |bibcode=2011PhRvB..84h1305M|hdl=10044/1/12822 |s2cid=119275166 }}</ref>
रेडफ़ील्ड समीकरण और लिंडब्लाड समीकरण लगभग क्वांटम मास्टर समीकरणों के उदाहरण हैं जिन्हें मार्कोव प्रक्रिया माना जाता है। कुछ अनुप्रयोगों के लिए अधिक सटीक क्वांटम मास्टर समीकरणों में ध्रुवीय रूपांतरित क्वांटम मास्टर समीकरण और [[VPQME]] (परिवर्तनीय ध्रुवीय परिवर्तित क्वांटम मास्टर समीकरण) सम्मलितहैं।<ref name=McCutcheon>{{cite journal |last1=McCutcheon |first1=D. |last2=Dattani |first2=N. S. |last3=Gauger |first3=E. |last4=Lovett |first4=B. |last5=Nazir |first5=A. |date=25 August 2011 |title=A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots |journal=Physical Review B |volume=84 |issue=8 |page=081305R |doi=10.1103/PhysRevB.84.081305 |arxiv = 1105.6015 |bibcode=2011PhRvB..84h1305M|hdl=10044/1/12822 |s2cid=119275166 }}</ref>
== मैट्रिक्स और समय विकास के एजेंवलुए ​​​​के बारे में प्रमेय ==
== मैट्रिक्स और समय विकास के एजेंवलुए ​​​​के बारे में प्रमेय ==
क्योंकि <math>\mathbf{A}</math> पूरा करता है
क्योंकि <math>\mathbf{A}</math> पूरा करता है

Revision as of 14:17, 25 May 2023


भौतिकी, रसायन विज्ञान और संबंधित क्षेत्रों में, मास्टर समीकरणों का उपयोग किसी प्रणाली के समय के विकास का वर्णन करने के लिए किया जाता है जिसे किसी भी समय स्थितियों के संभावित संयोजन के रूप में तैयार किया जा सकता है और स्थितियों के बीच स्विचिंग एक संक्रमण दर मैट्रिक्स द्वारा निर्धारित किया जाता है। समीकरण अंतर समीकरणों का एक सेट है - समय के साथ - उन संभावनाओं का जो प्रणाली में प्रत्येक अलग-अलग स्थितियों में व्याप्त कर लेता है।

नाम 1940 में प्रस्तावित किया गया था।

जब प्रारंभिक प्रक्रियाओं की संभावनाएं ज्ञात होती हैं, तो डब्ल्यू के लिए निरंतरता समीकरण लिख सकते हैं, जिससे अन्य सभी समीकरण प्राप्त किए जा सकते हैं और जिसे हम "मास्टर" समीकरण कहते हैं।

— ब्रह्मांडीय-किरण वर्षा के सिद्धांत में समूरीय मॉडल और उच्चावच की समस्या (1940)

परिचय

एक मास्टर समीकरण प्रथम-क्रम अंतर समीकरणों का एक घटनात्मक सेट है जो एक निरंतर समय चर t के संबंध में मौलिक यांत्रिकी के असतत सेट में से प्रत्येक पर व्याप्त करने के लिए सामान्यतः समय के विकास की संभावना का वर्णन करता है। मास्टर समीकरण का सबसे परिचित रूप एक मैट्रिक्स रूप होता है:

जहाँ एक कॉलम वेक्टर है, और कनेक्शन का मैट्रिक्स है। स्थितियों के बीच संबंध बनाने का तरीका समस्या के आयाम को निर्धारित करता है; यह या तो है

  • एक डी-आयामी प्रणाली (जहां डी 1,2,3,...) है, जहां कोई भी क्षेत्र का अपने 2डी निकटतम समीप से जुड़ा हुआ होता है, या
  • एक नेटवर्क, जहां स्थिति की प्रत्येक जोड़ी का संयोजन हो सकता है (नेटवर्क के गुणों के आधार पर)।

जब कनेक्शन समय-स्वतंत्र दर स्थिरांक होते हैं, तो मास्टर समीकरण एक गतिज योजना का प्रतिनिधित्व करता है, और प्रक्रिया मार्कोवियन प्रक्रिया होती है (राज्य i के लिए कोई भी कूदते समय प्रायिकता घनत्व फलन एक घातीय होता है, संयोजन के मान के बराबर दर के साथ)। जब संयोजन वास्तविक समय पर निर्भर करते हैं (अर्थात मैट्रिक्स समय पर निर्भर करता है, ), प्रक्रिया स्थिर नहीं है और मास्टर समीकरण अध्ययन करते है

जब संयोजन बहु घातांकी, कूदने समय प्रायिकता घनत्व फलन का प्रतिनिधित्व करते हैं, तो प्रक्रिया सेमी-मार्कोवियन प्रक्रिया होती है, और गति का समीकरण एक पूर्णांक-विभेदक समीकरण होते है जिसे सामान्यीकृत मास्टर समीकरण कहा जाता है:

गणित का सवाल जन्म और मृत्यु का भी प्रतिनिधित्व कर सकता है , जिसका अर्थ है कि संभाव्यता अंतःक्षेपित (जन्म) है या प्रणाली (मृत्यु) से ली गई है, जहां प्रक्रिया संतुलन में नहीं है।

मैट्रिक्स का विस्तृत विवरण और प्रणाली के गुण

मान लेना परिवर्तन दर का वर्णन करने वाला मैट्रिक्स हो (जिसे गतिज दर या प्रतिक्रिया दर भी कहा जाता है)। का वर्णन करने वाला मैट्रिक्स बनें। सदैव की तरह, पहला पादांक पंक्ति का प्रतिनिधित्व करता है, दूसरा पादांक कॉलम का। अर्थात्, दूसरे स्रोत पादांक द्वारा और गंतव्य पहले पादांक द्वारा दिया जाता है। यह अपेक्षा के विपरीत होता है, किन्तु यह तकनीकी रूप से सुविधाजनक होता है।

k के लिए, व्यवसाय की संभावना में वृद्धि अन्य सभी स्थितियों से k के योगदान पर निर्भर करती है, और इसके द्वारा दी जाती है:ती

जहाँ राज्य में प्रणाली होने की संभावना है , जबकि मैट्रिक्स (गणित) ट्रांज़िशन-रेट कॉन्सटेंट (गणित) के ग्रिड से भरा हुआ है। इसी प्रकार, अन्य सभी स्थितियों के कब्जे में योगदान देता है

संभाव्यता सिद्धांत में, यह विकास को निरंतर-समय की मार्कोव प्रक्रिया के रूप में पहचानता है, जिसमें एकीकृत मास्टर समीकरण चैपमैन-कोलमोगोरोव समीकरण का पालन करता है।

मास्टर समीकरण को सरल बनाया जा सकता है ताकि ℓ = k वाले पद योग में प्रकट न हों। यह गणना की अनुमति देता है भले ही का मुख्य विकर्ण परिभाषित नहीं है या एक मनमाना मान निर्दिष्ट किया गया है।

अंतिम समानता इस तथ्य से उत्पन्न होती है कि

क्योंकि संभावनाओं पर योग पैदावार एक, एक निरंतर कार्य। चूंकि इसे किसी भी संभावना के लिए धारण करना है (और विशेष रूप से फॉर्म की किसी भी संभावना के लिए कुछ के लिए) हमें मिलता है
इसका प्रयोग करके हम विकर्ण तत्वों को इस प्रकार लिख सकते हैं
.

मास्टर समीकरण विस्तृत संतुलन प्रदर्शित करता है यदि योग की प्रत्येक शर्तें संतुलन पर अलग-अलग गायब हो जाती हैं- यानी यदि, सभी स्थितियों के लिए k और ℓ संतुलन संभावनाएँ हैं और ,

इन सममिति संबंधों को ऑनसेगर पारस्परिक संबंधो के रूप में सूक्ष्म गतिकी (सूक्ष्म प्रतिवर्तीता) की समय उत्क्रमणीयता के आधार पर सिद्ध किया गया था।

मास्टर समीकरणों के उदाहरण

मौलिक यांत्रिकी, क्वांटम यांत्रिकी और अन्य विज्ञानों में कई भौतिक समस्याओं को मास्टर समीकरण के रूप में कम किया जा सकता है, जिससे समस्या का एक बड़ा सरलीकरण हो सकता है (गणितीय मॉडल देखें)।

क्वांटम यांत्रिकी में लिंडब्लाड समीकरण एक घनत्व मैट्रिक्स के समय के विकास का वर्णन करने वाले मास्टर समीकरण का सामान्यीकरण है। चूँकि लिंडब्लैड समीकरण को अधिकांशतः एक मास्टर समीकरण के रूप में संदर्भित किया जाता है, यह सामान्य अर्थों में एक नहीं है, क्योंकि यह न केवल संभावनाओं के समय के विकास (घनत्व मैट्रिक्स के विकर्ण तत्व) को नियंत्रित करता है, बल्कि क्वांटम सुसंगतता के बारे में जानकारी वाले चरों को भी नियंत्रित करता है। प्रणाली के स्थितियों के बीच (घनत्व मैट्रिक्स के गैर-विकर्ण तत्व)।

मास्टर समीकरण का एक अन्य विशेष मामला फोकर-प्लैंक समीकरण है जो निरंतर संभावना वितरण के समय के विकास का वर्णन करता है।[1] जटिल मास्टर समीकरण जो विश्लेषणात्मक उपचार का विरोध करते हैं, उन्हें प्रणाली आकार विस्तार जैसी सन्निकटन तकनीकों का उपयोग करके इस रूप में (विभिन्न अनुमानों के तहत) डाला जा सकता है।

स्टोचैस्टिक रासायनिक कैनेटीक्स मास्टर समीकरण का एक और उदाहरण है। एक रासायनिक मास्टर समीकरण का उपयोग रासायनिक प्रतिक्रियाओं के एक सेट को मॉडल करने के लिए किया जाता है जब एक या अधिक प्रजातियों के अणुओं की संख्या छोटी होती है (100 या 1000 अणुओं के क्रम में)।[2] रासायनिक मास्टर समीकरण भी बहुत बड़े मॉडल जैसे डीएनए क्षति संकेत, फंगल रोगज़नक़ कैंडिडा अल्बिकन्स के लिए पहली बार हल किए गए हैं। [3]


क्वांटम मास्टर समीकरण

क्वांटम मास्टर समीकरण मास्टर समीकरण के विचार का एक सामान्यीकरण है। संभावनाओं के एक सेट (जो केवल एक घनत्व मैट्रिक्स के विकर्ण तत्वों का गठन करता है) के लिए अंतर समीकरणों की एक प्रणाली के अतिरिक्त , क्वांटम मास्टर समीकरण पूरे घनत्व मैट्रिक्स के लिए विभेदक समीकरण हैं, जिसमें ऑफ-डायगोनल तत्व सम्मलितहैं। एक घनत्व मैट्रिक्स केवल विकर्ण तत्वों के साथ मौलिक यादृच्छिक प्रक्रिया के रूप में तैयार किया जा सकता है, इसलिए इस तरह के एक साधारण मास्टर समीकरण को मौलिक माना जाता है। ऑफ-डायगोनल तत्व क्वांटम सुसंगतता का प्रतिनिधित्व करते हैं जो एक भौतिक विशेषता है जो आंतरिक रूप से क्वांटम मैकेनिकल है।

रेडफ़ील्ड समीकरण और लिंडब्लाड समीकरण लगभग क्वांटम मास्टर समीकरणों के उदाहरण हैं जिन्हें मार्कोव प्रक्रिया माना जाता है। कुछ अनुप्रयोगों के लिए अधिक सटीक क्वांटम मास्टर समीकरणों में ध्रुवीय रूपांतरित क्वांटम मास्टर समीकरण और VPQME (परिवर्तनीय ध्रुवीय परिवर्तित क्वांटम मास्टर समीकरण) सम्मलितहैं।[4]

मैट्रिक्स और समय विकास के एजेंवलुए ​​​​के बारे में प्रमेय

क्योंकि पूरा करता है

और

कोई दिखा सकता है[5] कि :
  • लुप्यमान होने वाले ईजेनवैल्यू के साथ कम से कम एक ईजेनवेक्टर है, अगर एक ग्राफ दृढ़ता से जुड़ा होता है।
  • अन्य सभी एजेंवलुए पूरा .
  • सभी आइजन्वेक्टर एक गैर-शून्य एजेंवलुए पूर्ति के साथ .

किसी स्थिति के समय के विकास के लिए इसका महत्वपूर्ण परिणाम होता है

यह भी देखें

संदर्भ

  1. Honerkamp, Josef (1998). Statistical physics : an advanced approach with applications ; with 7 tables and 57 problems with solutions. Berlin [u.a.]: Springer. pp. 173. ISBN 978-3-540-63978-7.
  2. Gupta, Ankur; Rawlings, James B. (Apr 2014). "Comparison of Parameter Estimation Methods in Stochastic Chemical Kinetic Models: Examples in Systems Biology". AIChE Journal. 60 (4): 1253–1268. doi:10.1002/aic.14409. ISSN 0001-1541. PMC 4946376. PMID 27429455.
  3. Kosarwal, Rahul; Kulasiri, Don; Samarasinghe, Sandhya (Nov 2020). "बड़े जैविक नेटवर्क के लिए रासायनिक मास्टर समीकरण समाधान की कम्प्यूटेशनल दक्षता में सुधार के लिए उपन्यास डोमेन विस्तार के तरीके". BMC Bioinformatics. 21 (1): 515. doi:10.1186/s12859-020-03668-2. PMC 7656229. PMID 33176690.
  4. McCutcheon, D.; Dattani, N. S.; Gauger, E.; Lovett, B.; Nazir, A. (25 August 2011). "A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots". Physical Review B. 84 (8): 081305R. arXiv:1105.6015. Bibcode:2011PhRvB..84h1305M. doi:10.1103/PhysRevB.84.081305. hdl:10044/1/12822. S2CID 119275166.
  5. Keizer, Joel (1972-11-01). "मास्टर समीकरण के समाधान और स्थिर अवस्थाओं पर". Journal of Statistical Physics (in English). 6 (2): 67–72. Bibcode:1972JSP.....6...67K. doi:10.1007/BF01023679. ISSN 1572-9613. S2CID 120377514.


बाहरी संबंध