मास्टर समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Equations governing time evolution of physical systems}}
{{Short description|Equations governing time evolution of physical systems}}
{{about||क्वांटम भौतिकी में प्रयुक्त  कुशल समीकरण|लिंडब्लाड समीकरण|क्वांटम क्षेत्र सिद्धांत में मौलिक और क्वांटम  कुशल समीकरण|बटालिन-विलकोविस्की औपचारिकता|एल्गोरिथम जटिलता में मास्टर समीकरण का विश्लेषण किया गया|मास्टर प्रमेय (एल्गोरिदम का विश्लेषण)}}
{{about||क्वांटम भौतिकी में प्रयुक्त  कुशल समीकरण|लिंडब्लाड समीकरण|क्वांटम क्षेत्र सिद्धांत में मौलिक और क्वांटम  कुशल समीकरण|बटालिन-विलकोविस्की औपचारिकता| कलन विधि जटिलता में मास्टर समीकरण का विश्लेषण किया गया|मास्टर प्रमेय (एल्गोरिदम का विश्लेषण)}}


भौतिकी [[रसायन विज्ञान|विज्ञान]] और संबंधित क्षेत्रों में, कुशल समीकरणों का उपयोग किसी प्रणाली के समय के विकास का वर्णन करने के लिए किया जाता है जिसे किसी भी समय स्थितियों के संभावित संयोजन के रूप में तैयार किया जा सकता है और स्थितियों के बीच स्विचिंग एक [[संक्रमण दर मैट्रिक्स|संक्रमण दर आव्यूह]] द्वारा निर्धारित किया जाता है। समीकरण अंतर समीकरणों का एक सेट है - समय के साथ - उन संभावनाओं का जो प्रणाली में प्रत्येक अलग-अलग स्थितियों में व्याप्त कर लेता है।
भौतिकी [[रसायन विज्ञान|विज्ञान]], रसायन विज्ञान संबंधित क्षेत्रों, '''मास्टर समीकरणों का''' उपयोग किसी प्रणाली के समय के विकास का वर्णन करने के लिए किया जाता है जिसे किसी भी समय स्थितियों के संभावित संयोजन के रूप में तैयार किया जा सकता है और स्थितियों के बीच स्विचन अनुप्रयोग एक [[संक्रमण दर मैट्रिक्स|संक्रमण दर आव्यूह]] द्वारा निर्धारित किया जाता है। समीकरण अंतर समीकरणों का एक सेट है - समय के साथ - उन संभावनाओं का जो प्रणाली में प्रत्येक अलग-अलग स्थितियों में व्याप्त कर लेता है।


नाम 1940 में प्रस्तावित किया गया था।  
नाम 1940 में प्रस्तावित किया गया था।  
Line 13: Line 13:
एक मास्टर समीकरण प्रथम-क्रम अंतर समीकरणों का एक घटनात्मक सेट है जो एक निरंतर समय चर ''t'' के संबंध में [[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] के असतत [[सेट (गणित)|सेट]] में से प्रत्येक पर व्याप्त करने के लिए सामान्यतः समय के विकास की संभावना का वर्णन करता है। मास्टर समीकरण का सबसे परिचित रूप एक आव्यूह रूप होता है:
एक मास्टर समीकरण प्रथम-क्रम अंतर समीकरणों का एक घटनात्मक सेट है जो एक निरंतर समय चर ''t'' के संबंध में [[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] के असतत [[सेट (गणित)|सेट]] में से प्रत्येक पर व्याप्त करने के लिए सामान्यतः समय के विकास की संभावना का वर्णन करता है। मास्टर समीकरण का सबसे परिचित रूप एक आव्यूह रूप होता है:
:<math> \frac{d\vec{P}}{dt}=\mathbf{A}\vec{P},</math>
:<math> \frac{d\vec{P}}{dt}=\mathbf{A}\vec{P},</math>
जहाँ <math>\vec{P}</math> एक स्तंभ सदिश है, और <math>\mathbf{A}</math> संयोजन का आव्यूह है। स्थितियों के बीच संबंध बनाने का तरीका समस्या के आयाम को निर्धारित करता है; यह या तो है
जहाँ <math>\vec{P}</math> एक स्तंभ सदिश है, और <math>\mathbf{A}</math> संयोजन का आव्यूह है। स्थितियों के बीच संबंध बनाने का विधि समस्या के आयाम को निर्धारित करता है; यह या तो है
* एक d-आयाम प्रणाली (जहां डी 1,2,3,...) है, जहां कोई भी क्षेत्र का अपने 2डी निकटतम समीप से जुड़ा हुआ होता है, या
* एक d-आयाम प्रणाली (जहां d 1,2,3,...) है, जहां कोई भी क्षेत्र का अपने 2डी निकटतम समीप से जुड़ा हुआ होता है, या
* एक नेटवर्क, जहां स्थिति की प्रत्येक जोड़ी का संयोजन हो सकता है (नेटवर्क के गुणों के आधार पर)।
* एक नेटवर्क, जहां स्थिति की प्रत्येक जोड़ी का संयोजन हो सकता है (नेटवर्क के गुणों के आधार पर)।


Line 59: Line 59:
== [[क्वांटम मास्टर समीकरण]] ==
== [[क्वांटम मास्टर समीकरण]] ==


क्वांटम मास्टर समीकरण मास्टर समीकरण के विचार का एक सामान्यीकरण होता है। संभावनाओं के एक सेट (जो केवल एक घनत्व आव्यूह के विकर्ण तत्वों का गठन करता है) के लिए अंतर समीकरणों की एक प्रणाली के अतिरिक्त , क्वांटम मास्टर समीकरण पूरे घनत्व आव्यूह के लिए विभेदक समीकरण होते है, जिसमें अप विकर्ण अवयव सम्मलित होते है। एक घनत्व आव्यूह केवल विकर्ण तत्वों के साथ मौलिक यादृच्छिक प्रक्रिया के रूप में तैयार किया जा सकता है, इसलिए इस तरह के "साधारण" मास्टर समीकरण को मौलिक माना जाता है। अप विकर्ण अवयव क्वांटम सुसंगतता का प्रतिनिधित्व करते है जो एक भौतिक विशेषता है जो आंतरिक रूप से क्वांटम यांत्रिकी होता है।
क्वांटम मास्टर समीकरण मास्टर समीकरण के विचार का एक सामान्यीकरण होता है। संभावनाओं के एक सेट (जो केवल एक घनत्व आव्यूह के विकर्ण तत्वों का गठन करता है) के लिए अंतर समीकरणों की एक प्रणाली के अतिरिक्त , क्वांटम मास्टर समीकरण पूरे घनत्व आव्यूह के लिए विभेदक समीकरण होते है, जिसमें अप विकर्ण अवयव सम्मलित होते है। एक घनत्व आव्यूह केवल विकर्ण तत्वों के साथ मौलिक यादृच्छिक प्रक्रिया के रूप में तैयार किया जा सकता है, इसलिए इस तरह के "साधारण" कुशल  समीकरण को मौलिक माना जाता है। अप विकर्ण अवयव क्वांटम सुसंगतता का प्रतिनिधित्व करते है जो एक भौतिक विशेषता है जो आंतरिक रूप से क्वांटम यांत्रिकी होता है।


रेडफ़ील्ड समीकरण और लिंडब्लाड समीकरण अनुमानित क्वांटम मास्टर समीकरणों के उदाहरण है जिन्हें मार्कोवियन माना जाता है। कुछ अनुप्रयोगों के लिए अधिक त्रुटिहीन क्वांटम मास्टर समीकरणों में ध्रुवीय रूपांतरित क्वांटम मास्टर समीकरण, और वीपीक्यूएमई (परिवर्तनीय ध्रुवीय रूपांतरित क्वांटम मास्टर समीकरण) सम्मलित होते है।<ref name=McCutcheon>{{cite journal |last1=McCutcheon |first1=D. |last2=Dattani |first2=N. S. |last3=Gauger |first3=E. |last4=Lovett |first4=B. |last5=Nazir |first5=A. |date=25 August 2011 |title=A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots |journal=Physical Review B |volume=84 |issue=8 |page=081305R |doi=10.1103/PhysRevB.84.081305 |arxiv = 1105.6015 |bibcode=2011PhRvB..84h1305M|hdl=10044/1/12822 |s2cid=119275166 }}</ref>
रेडफ़ील्ड समीकरण और लिंडब्लाड समीकरण अनुमानित क्वांटम मास्टर समीकरणों के उदाहरण है जिन्हें मार्कोवियन माना जाता है। कुछ अनुप्रयोगों के लिए अधिक त्रुटिहीन क्वांटम मास्टर समीकरणों में ध्रुवीय रूपांतरित क्वांटम मास्टर समीकरण, और वीपीक्यूएमई (परिवर्तनीय ध्रुवीय रूपांतरित क्वांटम मास्टर समीकरण) सम्मलित होते है।<ref name=McCutcheon>{{cite journal |last1=McCutcheon |first1=D. |last2=Dattani |first2=N. S. |last3=Gauger |first3=E. |last4=Lovett |first4=B. |last5=Nazir |first5=A. |date=25 August 2011 |title=A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots |journal=Physical Review B |volume=84 |issue=8 |page=081305R |doi=10.1103/PhysRevB.84.081305 |arxiv = 1105.6015 |bibcode=2011PhRvB..84h1305M|hdl=10044/1/12822 |s2cid=119275166 }}</ref>
Line 67: Line 67:
और
और
:<math>  A_{\ell k} \geq 0 \qquad \forall \ell\neq k,</math> कोई दिखा सकता है<ref>{{Cite journal|last=Keizer|first=Joel|date=1972-11-01|title=मास्टर समीकरण के समाधान और स्थिर अवस्थाओं पर|url=https://doi.org/10.1007/BF01023679|journal=Journal of Statistical Physics|language=en|volume=6|issue=2|pages=67–72|doi=10.1007/BF01023679|bibcode=1972JSP.....6...67K |s2cid=120377514 |issn=1572-9613}}</ref> कि :
:<math>  A_{\ell k} \geq 0 \qquad \forall \ell\neq k,</math> कोई दिखा सकता है<ref>{{Cite journal|last=Keizer|first=Joel|date=1972-11-01|title=मास्टर समीकरण के समाधान और स्थिर अवस्थाओं पर|url=https://doi.org/10.1007/BF01023679|journal=Journal of Statistical Physics|language=en|volume=6|issue=2|pages=67–72|doi=10.1007/BF01023679|bibcode=1972JSP.....6...67K |s2cid=120377514 |issn=1572-9613}}</ref> कि :
* लुप्यमान होने वाले ईजेनवैल्यू के साथ कम से कम एक ईजेनवेक्टर है, अगर एक ग्राफ <math>\mathbf{A}</math> दृढ़ता से जुड़ा होता है।
* लुप्यमान होने वाले एजेंवलुए के साथ कम से कम एक आइजन्वेक्टर है, यदि  एक ग्राफ <math>\mathbf{A}</math> दृढ़ता से जुड़ा होता है।
* अन्य सभी एजेंवलुए <math>  \lambda</math> पूरा <math> 0 > \operatorname{Re} \lambda \geq 2 \operatorname{min}_i A_{ii}</math>.
* अन्य सभी एजेंवलुए <math>  \lambda</math> पूरा <math> 0 > \operatorname{Re} \lambda \geq 2 \operatorname{min}_i A_{ii}</math>.
* सभी आइजन्वेक्टर <math>v</math> एक गैर-शून्य एजेंवलुए पूर्ति के साथ <math>  \sum_{i}v_{i} =  0</math>.
* सभी आइजन्वेक्टर <math>v</math> एक गैर-शून्य एजेंवलुए पूर्ति के साथ <math>  \sum_{i}v_{i} =  0</math>.


किसी स्थिति के समय के विकास के लिए इसका महत्वपूर्ण परिणाम होता है।
किसी स्थिति मे समय के विकास के लिए इसका महत्वपूर्ण परिणाम होता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 15:41, 29 May 2023

भौतिकी विज्ञान, रसायन विज्ञान संबंधित क्षेत्रों, मास्टर समीकरणों का उपयोग किसी प्रणाली के समय के विकास का वर्णन करने के लिए किया जाता है जिसे किसी भी समय स्थितियों के संभावित संयोजन के रूप में तैयार किया जा सकता है और स्थितियों के बीच स्विचन अनुप्रयोग एक संक्रमण दर आव्यूह द्वारा निर्धारित किया जाता है। समीकरण अंतर समीकरणों का एक सेट है - समय के साथ - उन संभावनाओं का जो प्रणाली में प्रत्येक अलग-अलग स्थितियों में व्याप्त कर लेता है।

नाम 1940 में प्रस्तावित किया गया था।

जब प्रारंभिक प्रक्रियाओं की संभावनाएं ज्ञात होती है, तो W के लिए निरंतरता समीकरण लिख सकते है, जिससे अन्य सभी समीकरण प्राप्त किए जा सकते है और जिसे हम "मास्टर" समीकरण कहते है।

— ब्रह्मांडीय-किरण वर्षा के सिद्धांत में समूरीय मॉडल और उच्चावच की समस्या (1940)

परिचय

एक मास्टर समीकरण प्रथम-क्रम अंतर समीकरणों का एक घटनात्मक सेट है जो एक निरंतर समय चर t के संबंध में मौलिक यांत्रिकी के असतत सेट में से प्रत्येक पर व्याप्त करने के लिए सामान्यतः समय के विकास की संभावना का वर्णन करता है। मास्टर समीकरण का सबसे परिचित रूप एक आव्यूह रूप होता है:

जहाँ एक स्तंभ सदिश है, और संयोजन का आव्यूह है। स्थितियों के बीच संबंध बनाने का विधि समस्या के आयाम को निर्धारित करता है; यह या तो है

  • एक d-आयाम प्रणाली (जहां d 1,2,3,...) है, जहां कोई भी क्षेत्र का अपने 2डी निकटतम समीप से जुड़ा हुआ होता है, या
  • एक नेटवर्क, जहां स्थिति की प्रत्येक जोड़ी का संयोजन हो सकता है (नेटवर्क के गुणों के आधार पर)।

जब संयोजन समय-स्वतंत्र दर स्थिरांक होते है, तो मास्टर समीकरण एक गतिज योजना का प्रतिनिधित्व करता है, और प्रक्रिया मार्कोवियन प्रक्रिया होती है (किसी भी कूदने का समय प्रायिकता घनत्व फलन स्थिति i के लिए एक घातीय होता है, संयोजन के मान के बराबर दर के साथ स्थापित होता है)। जब संयोजन वास्तविक समय पर निर्भर करते है (अर्थात आव्यूह समय पर निर्भर करता है, ), प्रक्रिया स्थिर नहीं होती है तो और मास्टर समीकरण का अध्ययन करते है

जब संयोजन बहु घातांकी, प्रायिकता घनत्व फलन का प्रतिनिधित्व करते है, तो प्रक्रिया सेमी-मार्कोवियन प्रक्रिया होती है, और गति का समीकरण एक पूर्णांक-विभेदक समीकरण होते है जिसे सामान्यीकृत मास्टर समीकरण कहा जाता है:

गणित का सवाल जन्म और मृत्यु का भी प्रतिनिधित्व कर सकता है , जिसका अर्थ है कि संभाव्यता अंतःक्षेपित (जन्म) है या प्रणाली (मृत्यु) से ली गई है, जहां प्रक्रिया संतुलन में नहीं है।

आव्यूह का विस्तृत विवरण और प्रणाली के गुण

मान लेना संक्रमण दर का वर्णन करने वाला आव्यूह है (जिसे गतिज दर या प्रतिक्रिया दर भी कहा जाता है)। सदैव की तरह, पहला पादांक पंक्ति का प्रतिनिधित्व करता है। अर्थात्, दूसरे स्रोत पादांक द्वारा और गंतव्य पहले पादांक द्वारा दिया जाता है। यह अपेक्षा के विपरीत होता है, किन्तु यह तकनीकी रूप से सुविधाजनक होता है।

k के लिए, व्यवसाय की संभावना में वृद्धि अन्य सभी स्थितियों से k के योगदान पर निर्भर करती है, और इसके द्वारा दी जाती है:

जहाँ स्थितियो प्रणाली मे होने की संभावना होती है , जबकि आव्यूह (गणित) संक्रमण-दर स्थिर (गणित) के ग्रिड से भरा हुआ होता है। इसी प्रकार, अन्य सभी स्थितियों के व्यावृति में योगदान देता है

संभाव्यता सिद्धांत में, यह विकास को निरंतर-समय की मार्कोव प्रक्रिया के रूप में पहचानता है, जिसमें एकीकृत मास्टर समीकरण चैपमैन-कोलमोगोरोव समीकरण का पालन करता है।

मास्टर समीकरण को सरल बनाया जा सकता है जिससे कि ℓ = k वाले पद योग में प्रकट नही होता है। यह गणना की अनुमति देता है भले ही का मुख्य विकर्ण परिभाषित नही है या एक मनमाना मान निर्दिष्ट किया गया है।

अंतिम समानता इस तथ्य से उत्पन्न होती है कि

क्योंकि संभावनाओं पर योग उत्पन्न, एक निरंतर कार्य होता है। चूंकि इसे किसी भी संभावना के लिए धारण करना है (और विशेष रूप से फॉर्म की किसी भी संभावना के लिए कुछ के लिए) हमें मिलता है
इसका प्रयोग करके हम विकर्ण तत्वों को इस प्रकार लिख सकते है
.

मास्टर समीकरण विस्तृत संतुलन प्रदर्शित करता है यदि योग की प्रत्येक शर्तें संतुलन पर अलग-अलग लुप्यमान हो जाती है - अर्थात यदि, सभी स्थितियों के लिए k और ℓ संतुलन संभावनाएँ होती है और ,

इन सममिति संबंधों को ऑनसेगर पारस्परिक संबंधो के रूप में सूक्ष्म गतिकी (सूक्ष्म प्रतिवर्तीता) की समय उत्क्रमणीयता के आधार पर सिद्ध किया गया था।

मास्टर समीकरणों के उदाहरण

मौलिक यांत्रिकी, क्वांटम यांत्रिकी और अन्य विज्ञानों में कई भौतिक समस्याओं को मास्टर समीकरण के रूप में कम किया जा सकता है, जिससे समस्या का एक बड़ा सरलीकरण हो सकता है (गणितीय मॉडल देखें)।

क्वांटम यांत्रिकी में लिंडब्लाड समीकरण एक घनत्व आव्यूह के समय के विकास का वर्णन करने वाले मास्टर समीकरण का सामान्यीकरण होता है। चूँकि लिंडब्लैड समीकरण को अधिकांशतः मास्टर समीकरण के रूप में संदर्भित किया जाता है, यह सामान्य अर्थों में एक नहीं होते है, क्योंकि यह न केवल संभावनाओं के समय के विकास (घनत्व आव्यूह के विकर्ण तत्व) को नियंत्रित करता है, जबकि क्वांटम सुसंगतता के बारे में जानकारी वाले चरों को भी नियंत्रित करता है। प्रणाली के स्थितियों के बीच (घनत्व आव्यूह के गैर-विकर्ण तत्व) होता है।

मास्टर समीकरण का एक अन्य विशेष स्थिति फोकर-प्लैंक समीकरण होता है जो एक सतत संभाव्यता वितरण के समय विकास का वर्णन करता है।[1] जटिल मास्टर समीकरण जो विश्लेषणात्मक उपचार का विरोध करते है, उन्हें प्रणाली आकार विस्तार जैसी सन्निकटन तकनीकों का उपयोग करके इस रूप में (विभिन्न अनुमानों के तहत) डाला जा सकता है।

प्रसंभाव्य रासायनिक कैनेटीक्स मास्टर समीकरण का एक और उदाहरण है। एक रासायनिक मास्टर समीकरण का उपयोग रासायनिक प्रतिक्रियाओं के एक सेट को मॉडल करने के लिए किया जाता है, जब एक या अधिक प्रजातियों के अणुओं की संख्या छोटी होती है (100 या 1000 अणुओं के क्रम में)[2] मास्टर समीकरण भी बहुत बड़े मॉडल जैसे डीएनए क्षति संकेत, कवक रोगज़नक़ कैंडिडा श्वेत के लिए पहली बार हल किए गए है। [3]

क्वांटम मास्टर समीकरण

क्वांटम मास्टर समीकरण मास्टर समीकरण के विचार का एक सामान्यीकरण होता है। संभावनाओं के एक सेट (जो केवल एक घनत्व आव्यूह के विकर्ण तत्वों का गठन करता है) के लिए अंतर समीकरणों की एक प्रणाली के अतिरिक्त , क्वांटम मास्टर समीकरण पूरे घनत्व आव्यूह के लिए विभेदक समीकरण होते है, जिसमें अप विकर्ण अवयव सम्मलित होते है। एक घनत्व आव्यूह केवल विकर्ण तत्वों के साथ मौलिक यादृच्छिक प्रक्रिया के रूप में तैयार किया जा सकता है, इसलिए इस तरह के "साधारण" कुशल समीकरण को मौलिक माना जाता है। अप विकर्ण अवयव क्वांटम सुसंगतता का प्रतिनिधित्व करते है जो एक भौतिक विशेषता है जो आंतरिक रूप से क्वांटम यांत्रिकी होता है।

रेडफ़ील्ड समीकरण और लिंडब्लाड समीकरण अनुमानित क्वांटम मास्टर समीकरणों के उदाहरण है जिन्हें मार्कोवियन माना जाता है। कुछ अनुप्रयोगों के लिए अधिक त्रुटिहीन क्वांटम मास्टर समीकरणों में ध्रुवीय रूपांतरित क्वांटम मास्टर समीकरण, और वीपीक्यूएमई (परिवर्तनीय ध्रुवीय रूपांतरित क्वांटम मास्टर समीकरण) सम्मलित होते है।[4]

आव्यूह और समय विकास के एजेंवलुए ​​​​के बारे में प्रमेय

क्योंकि पूरा करता है

और

कोई दिखा सकता है[5] कि :
  • लुप्यमान होने वाले एजेंवलुए के साथ कम से कम एक आइजन्वेक्टर है, यदि एक ग्राफ दृढ़ता से जुड़ा होता है।
  • अन्य सभी एजेंवलुए पूरा .
  • सभी आइजन्वेक्टर एक गैर-शून्य एजेंवलुए पूर्ति के साथ .

किसी स्थिति मे समय के विकास के लिए इसका महत्वपूर्ण परिणाम होता है।

यह भी देखें

संदर्भ

  1. Honerkamp, Josef (1998). Statistical physics : an advanced approach with applications ; with 7 tables and 57 problems with solutions. Berlin [u.a.]: Springer. pp. 173. ISBN 978-3-540-63978-7.
  2. Gupta, Ankur; Rawlings, James B. (Apr 2014). "Comparison of Parameter Estimation Methods in Stochastic Chemical Kinetic Models: Examples in Systems Biology". AIChE Journal. 60 (4): 1253–1268. doi:10.1002/aic.14409. ISSN 0001-1541. PMC 4946376. PMID 27429455.
  3. Kosarwal, Rahul; Kulasiri, Don; Samarasinghe, Sandhya (Nov 2020). "बड़े जैविक नेटवर्क के लिए रासायनिक मास्टर समीकरण समाधान की कम्प्यूटेशनल दक्षता में सुधार के लिए उपन्यास डोमेन विस्तार के तरीके". BMC Bioinformatics. 21 (1): 515. doi:10.1186/s12859-020-03668-2. PMC 7656229. PMID 33176690.
  4. McCutcheon, D.; Dattani, N. S.; Gauger, E.; Lovett, B.; Nazir, A. (25 August 2011). "A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots". Physical Review B. 84 (8): 081305R. arXiv:1105.6015. Bibcode:2011PhRvB..84h1305M. doi:10.1103/PhysRevB.84.081305. hdl:10044/1/12822. S2CID 119275166.
  5. Keizer, Joel (1972-11-01). "मास्टर समीकरण के समाधान और स्थिर अवस्थाओं पर". Journal of Statistical Physics (in English). 6 (2): 67–72. Bibcode:1972JSP.....6...67K. doi:10.1007/BF01023679. ISSN 1572-9613. S2CID 120377514.


बाहरी संबंध